细胞信号转导概述与整合控制
细胞生物学第4版第9章细胞信号转导

第一节 细胞信号转导概述
• 细胞通讯步骤与功能
Figure 15-8 Molecular Biology of the Cell (© Garland Science 2008)
一、细胞通讯
• 化学信号通讯 • 接触依赖性通讯(contact-dependent signaling) P157 • 间隙连接(gap junction)胞间连丝(plasmodesma)
– 受体特异性识别并结合胞外信号分子 , 形成受体-配体复合物,导致受体 激活
– 受体构象改变,导致信号初级跨膜转 导,靶细胞内产生第二信使或活化的 信号蛋白
– 胞内第二信使或胞内信号蛋白复合物 装配,起始胞内信号放大的级联反应
– 细胞应答反应 – 受体脱敏或受体下调,终止或降低细
胞反应
蛋白质模式结合域(modular binding domain)
一、细胞内核受体及其对基因表达的调节
• 3 个功能域
– C 端激素结合结构域 – 中部DNA 或Hsp90 结合结构域 – N 端转录激活结构域
• 细胞内受体的本质是依赖激素激活 的转录因子。
• 信号分子的作用是将抑制性蛋白从 细胞内受体上解离,使受体上的 DNA结合位点暴露而激活。
• 激素-核受体复合物与激素反应元 件(HRE)结 合,调节基因转录。
一细胞,常见于癌变细胞。 化学突触(chemical synapse):神经递质由突触前膜释
放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。
二、几个基本概念
• 信号分子 • 受体 • 第二信使 • 分子开关
1. 化学信号分子
• 根据其溶解性分类: • 亲水性信号分子——神经递质、生长因子、细胞因子
第9章 细胞信号转导

G-蛋白偶联的受体(G-protein-linked receptor)
酶偶连的受体(enzyme-linked receptor)
第9章 细胞信号转导
细胞表面受体信号转导
第9章 细胞信号转导
受体结合特异性的配体后而被激活,通过信号转导 (signal transduction)途径将胞外信号转换为胞内 信号引发两种主要的细胞反应。
第9章 细胞信号转导
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)© 2011 高等教育出版社
第一节 细胞信号转导概述
一、细胞通讯(cell communication)
一个细胞发出的信息通过介质传递到另一个细胞并与其相 应的受体结合,通过细胞信号转导产生使靶细胞产生相应的 生理生化变化,使靶细胞产生生物学效应的过程。 细胞间的通讯对于多细胞生物体的组织发生和形态构建, 协调细胞间的功能,控制细胞的生长和分裂是必须的。细胞 信号转导是实现细胞通讯的关键过程。
Thanks for your attention!
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)配套PPT 欢迎使用!
第9章 细胞信号转导
二、信号分子与受体
(一)信号分子(signal molecule)
• 气体信号分子(gaseous signal molecule ) NO CO • 疏水性信号分子(hydrophobic signal molecule ) 甾类激素和甲状腺素 • 亲水性信号分子(hydrophilic signal molecule ) 神经递质、局部介质和蛋白类激素
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)© 2011 高等教育出版社
细胞信号转导PPT课件

21
11/24/2019
22
一般将细胞外信号分子称为“第一信使”,第一信使与受 体作用后在细胞内产生的信号分子称为第二信使。
胞外物质(第一信使)不能进入细胞,它作用于细胞表面 受体导致胞内产生第二信使,从而激发一系列生化反应, 最后产生一定的生理效应,第二信使的降解使其信号作用 终止。
11/24/2019
11/24/2019
11
亲脂性信号分子:主要是甾类激素和甲状腺素,它们可以穿过细胞膜 进入细胞,与细胞质或细胞核中的受体结合,调节基因表达。
亲水性信号分子:包括神经递质、生长因子和大多数激素,它们不能 穿过细胞质膜,只能通过与靶细胞膜表面受体结合,再经过信号转导 机制,在细胞内产生第二信使或激活蛋白激酶或磷酸蛋白酶的活性, 引起细胞的应答反应。
气体性信号分子(NO) :是迄今为止发现的第一个气体信号分子,它 能直接进入细胞直接激活效应酶,是近年来出现的“明星分子”。
11/24/2019
12
11/24/2019
13
受体是一种能够识别和选择性结合某种配体(信号分子) 的大分子。当与配体结合后,通过信号转导作用将胞外信 号转换为胞内物理或化学的信号,以启动一系过程,最终 表现出生物学效应。
11/24/2019
18
此类受体是细胞表面受体中最大家族,普遍存在于各类 真核细胞表面。其信号的传递需要依赖于G蛋白的活性。
11/24/2019
19
此类受体包括两种类型:一是受体胞内结构域具有潜在酶 活力,另一类是受体本身不具酶活性,通过其胞内区与酶 相联系。
11/24/2019
20
11/24/2019
山东师范大学生命科学学院
11/24/2019
概述细胞信号的整合方式与控制机制

概述细胞信号的整合方式与控制机制细胞信号的传递与控制机制是生物体内至关重要的生命活动之一。
在多细胞生物中,细胞间的信号传递对于维持组织器官的功能、生长和分化具有重要意义。
本文将概述细胞信号的整合方式与控制机制,主要包括以下五个方面:信号接收、信号转导、效应器反应、反馈调节和信号终止。
1.信号接收细胞信号的传递始于信号的接收。
细胞表面存在着多种受体,它们能够识别和结合细胞外环境中的信号分子。
这些信号分子可能来自细胞内或细胞外,包括激素、神经递质、生长因子等。
当受体与信号分子结合后,会产生一系列的构象变化,进而触发下游的信号转导过程。
2.信号转导信号转导是指将接收到的信号传递到细胞内部的过程。
这一过程涉及到一系列的化学反应,最终将外部信号转化为细胞内具体的生理反应。
信号转导的途径多种多样,主要包括:离子通道型、G蛋白偶联型、酶联型和受体型等。
这些途径中涉及到的关键元件包括酶、激酶、磷酸化酶、脱氢酶等,它们在特定的信号转导途径中发挥着不同的作用。
3.效应器反应效应器反应是指细胞对外部信号做出的具体生理反应。
根据信号的性质和类型,效应器反应可能涉及到细胞形态的改变、生长或分化、代谢调节等。
例如,在神经元中,突触处的神经递质通过与受体结合触发一系列的效应器反应,导致神经元产生动作电位或改变其兴奋性。
4.反馈调节反馈调节是一种重要的细胞信号控制机制,它能够根据细胞内外的环境变化对细胞信号进行负反馈或正反馈调节。
负反馈调节能够减弱外部刺激引起的效应器反应,使细胞回到原始状态;而正反馈调节则能够放大外部刺激引起的效应器反应,使细胞状态进一步向刺激方向发展。
例如,在血糖调节中,胰岛素通过负反馈调节降低血糖水平,而胰高血糖素则通过正反馈调节提高血糖水平。
5.信号终止信号终止是细胞信号控制机制的最后一个环节,它能够确保细胞信号传递的短暂性和适应性。
信号终止的方式包括:通过酶降解受体、通过蛋白酶体降解受体、通过内吞作用将受体转运回细胞内等。
细胞生物学第11章-细胞通讯与信号转导

(3)不同的细胞通过各自的受体,对胞外信号应答, 产生相同的效应。如:肝细胞肾上腺素受体和胰 高血糖素受体结合各自的配体激活以后,都能促 进血糖的升高。
(4)一种细胞具有一套多种类型的受体,应答多种 不同的胞外信号,从而启动细胞的不同生物学效 应。
(3)自分泌(autocrine):
细胞对自身分泌物产生反应,常见于病理 条件下。如:肿瘤细胞合成释放生长因子刺 激自身。
(4)化学突触传递神经信号:
神经细胞兴奋后,动作电位的传递,引起突 触前突起终末分泌化学信号,扩散至突触后细 胞,实现电信号和化学信号之间的转换。
2 通过细胞的直接接触(contactdependent signaling):即细胞间接 触性依赖的通讯
(3)气体信号分子: 第一个发现的气体信号分子是NO,可以进入细胞直 接激活效应酶,参与体内众多的生理和病理过程。
2. 受体(receptor)
是一种能够识别和选择性结合某种配体的大分子, 通过和配体的结合,经信号转导作用,最终表现为生 物学效应。
▪ 受体的结构特点:
多为糖蛋白,至少包含配体结合区和效应区2个 功能区域,分别具有结合特异性和效应特异性。
▪ 特异性 ▪ 放大作用 ▪ 信号终止或下调特征 ▪ 整合作用
第二节
细胞内受体介导的信号传递
一、细胞内受体与基因表达
细胞内受体活化的机制:
激活前:受体和抑制性蛋白结合成复合物 激活后:如果甾类激素和受体结合,导致抑制
性蛋白从复合物上解离下来,使受体暴露出 DNA结合位点,激素-受体复合物与基因调 控区(激素应答元件,hormone response element, HRE)结合,影响基因的转录。
细胞信号转导

细胞信号转导细胞信号转导是指细胞内外信息的传递和转化过程,这一过程起着调节和控制细胞生理活动的重要作用。
通过信号传递,细胞可以对外界环境做出适应性的反应,维持内部稳态,实现生长、分化和细胞命运决定等功能。
本文将从信号的产生、传递和转导机制等方面进行讨论。
一、信号的产生1. 内源性信号细胞自身产生的化学物质可以作为信号分子,以调节细胞内外环境。
例如,细胞内的离子浓度、pH值和代谢产物等,都可以通过信号传递机制发挥作用。
2. 外源性信号外界环境中的物质和刺激也可以作为细胞信号的来源。
例如,细胞表面的受体可以与激素、细菌毒素和细胞外基质等结合,引发相应的信号传递。
二、信号的传递细胞信号传递通常有三种主要方式:通过直接细胞接触、通过细胞间联系以及通过远距离的物质传递。
1. 直接细胞接触细胞表面的受体与邻近细胞的配体结合,通过接触传递信号。
这种方式在免疫系统的活化、神经细胞的传递和胚胎发育等过程中起重要作用。
2. 细胞间联系细胞通过细胞间连接物质(如细胞间隙连接、紧密连接和连接蛋白)进行信号传递。
这种方式在组织内细胞间的协调和相互影响中起到重要作用。
3. 物质传递一些信号分子可以通过远距离的物质传递,例如激素、细菌毒素和神经递质等。
它们通过血液、淋巴液和突触间隙等途径到达目的地细胞,触发相应的信号级联反应。
三、信号的转导机制1. 受体的激活和信号传导当信号分子结合至受体上时,受体会发生构象变化,从而激活相应的信号通路。
这种激活过程包括泛素化修饰、磷酸化等,促使信号传导的启动。
2. 信号通路的级联反应一旦信号通路被启动,连锁反应会引发一系列级联反应。
这些反应会通过激活一些键酶、转录因子和细胞器等,最终产生细胞内外多种生理活动的结果。
3. 信号的转导和传递信号通路中的组分和中介物质可以通过蛋白质相互作用、分子承载体和次级信号等方式,进行信号的转导和传递。
这种方式可以将信号的强度和特异性传递至下游组分,以发挥预期的生物学功能。
细胞信号转导

细胞信号转导细胞信号转导是细胞内外环境信息传递和响应的过程。
在细胞内外环境发生变化时,细胞通过感知这些信号并传导到细胞内部,最终引发一系列的生物学效应。
本文将介绍细胞信号转导的基本概念、机制与重要研究领域。
一、信号转导的基本概念细胞信号转导是细胞内外信号信息通过具体的分子机制传递到细胞内部,并且在细胞内引发相应的生物学反应。
信号可以是化学物质、光线、温度和压力等,这些信号通过细胞膜表面受体或胞浆内受体与信号分子特异性结合,从而激活一系列的信号转导分子。
细胞信号转导的过程通常包括受体激活、信号传导、增强或抑制等多个环节。
二、信号转导的机制在细胞信号转导的过程中,不同信号可以通过不同的机制进行转导,包括直接通过受体激活、信号级联放大、二级信号传导以及负反馈调控等机制。
1. 直接激活:有些信号可以直接通过受体激活下游分子,例如膜受体激活酪氨酸激酶,进而磷酸化下游调节因子。
2. 信号级联放大:部分信号转导可以通过级联放大的方式增强信号的强度和传递效果。
一个典型例子是G蛋白偶联受体信号转导通路,一个G蛋白偶联受体可以激活多个G蛋白,每个G蛋白可进一步激活下游信号转导分子。
3. 二级信号传导:某些信号分子可以通过激活下游信号分子形成二级信号传导,例如细胞内钙离子浓度的增加可以激活蛋白激酶C,进而磷酸化下游的蛋白质。
4. 负反馈调控:为了避免过度的信号激活,细胞常常会通过负反馈调控机制来抑制信号转导分子的活性,以保持信号的动态平衡。
三、细胞信号转导的重要研究领域细胞信号转导是生物学的重要研究领域,许多科学家致力于探索细胞内信号传导的机制和调控网络。
以下是其中的几个重要研究领域:1. 肿瘤信号转导:细胞信号转导的异常调控与肿瘤的发生和发展密切相关。
研究人员通过研究与肿瘤发生相关的信号转导通路,探索肿瘤的分子机制,并寻找新的治疗靶点。
2. 免疫信号转导:细胞信号转导在免疫系统中起着重要的作用。
研究人员致力于解析免疫应答的信号转导网络,以揭示免疫反应的机制,为免疫相关疾病的治疗提供新的思路。
细胞信号转导途径的分子机制和控制措施

细胞信号转导途径的分子机制和控制措施细胞信号转导途径是维持细胞生命和功能的重要机制,它应对外界刺激并引导细胞行为,调节生物体内各种生理过程。
在细胞信号转导途径中,分子机制和控制措施具有重要意义。
本文将探讨细胞信号转导途径的分子机制和控制措施。
一、分子机制在细胞信号转导途径中,信号分子通过与细胞膜上的受体结合来引起一系列反应,最终导致细胞内信号通路的激活。
这一过程包括多种分子机制的参与。
1. 受体及信号分子多种化学物质参与信号转导,其中包括激素、神经递质、细胞因子等。
这些信号分子通过结合细胞膜或核内的受体,继而引起某些分子的活化。
常见的受体包括酪氨酸激酶受体、G蛋白偶联受体等。
2. 信号转导通路信号转导通路是信号分子从受体到细胞内质膜或细胞核的转导过程。
这一过程包括多种通路的参与,例如酪氨酸激酶信号转导通路、G蛋白偶联受体通路以及酵素调节通路等。
这些通路的不同之处在于参与的分子机制以及终点的信号反应类型。
3. 下游效应分子信号通路中的下游效应分子扮演着十分重要的角色。
其主要作用是转导细胞内的信号,从而控制细胞的反应。
下游效应分子包括细胞内酶、转录因子等。
4. 信号抑制分子细胞还存在着一些信号抑制分子,它们的作用是阻止细胞内信号通路的激活。
这些分子常见于负反馈调节的信号通路中。
二、控制措施细胞信号转导途径的控制措施是指通过控制信号分子活性和调节信号传导通路等方式,从而对细胞信号转导途径进行调控。
1. 分子靶点的招募和催化分子靶点的招募和催化是一种对信号分子活性进行调控的方式。
例如,在信号转导通路中,酶催化单元可以使信号分子更加有效地催化下游反应。
2. 负反馈调节负反馈调节是信号转导通路中一种经典的调控方式。
其机制是通过信号通路内部产生抑制性信号来抑制初始信号的活化,从而稳定信号通路的强度。
这一机制在信号转导通路生理过程中具有重要的意义。
3. 修饰信号分子修饰信号分子是指通过亚细胞水平控制细胞内分子的活性和局部分布,从而对信号转导进行调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞表面受体(Cell Surface Receptor)
介导亲水性信号分子的信息传递,可分为: ① 离子通道耦连受体 ② G蛋白耦连受体 ③ 酶连受体
第一类存在于可兴奋细胞,后两类存在于大多数 细胞。
离子通道偶联受体
特点: - 受体/离子通道复合体,四次/六次跨膜蛋白 - 受体本身为离子通道,即配体门通道 - 跨膜信号转导无需中间步骤 - 主要存在于神经细胞或其他可兴奋细胞间的突触信
旁分泌:信号分子通过扩散作用于邻近的细胞。 包括:①各类细胞因子;②气体信号分子。 化学突触:神经递质经突触作用于靶细胞。
自分泌:信号发放细胞和靶细胞为同类或同一细 胞,常见于癌变细胞。
二、细胞的信号分子与受体
1. 信号分子(signal molecule) 亲脂性信号分子: 如甲状腺素和甾体激素 亲水性信号分子: 如神经递质,生长因子 气体性信号分子(NO, CO)
细胞间隙连接
连接子:中央为直径 1.5nm 的 亲 水 性 孔 道 , 允许小分子如Ca2+、 cAMP通过。 作用:协同相邻细胞 对外界信号的反应, 如可兴奋细胞的电耦 联现象(电紧张突触)。
膜表面分子 接触通讯
即细胞识别,如:精子和卵子之间的 识别,T与B淋巴细胞间的识别。
化学通讯
细胞分泌一些化学物质(如激素)至细 胞贝尔医学与生理学奖
分子开关(molecular switches) 调节细胞信号的激活/失活机制的蛋白
细胞内的分子开关蛋白分为两类: 1.活性由蛋白磷酸化/去磷酸化调节 2.活性由结合GTP/GDP调节
蛋白激酶
-是一类磷酸转移酶,将 ATP 的 γ 磷酸基转 移到底物特定氨基酸残基上,使蛋白质磷酸 化。分为5类,其中了解较多的是蛋白酪氨酸 激酶、蛋白丝氨酸/苏氨酸激酶。 -作用:通过磷酸化调节蛋白质的活性。
号传递 - 有选择性:配体的特异性选择和运输离子的选择性 分为:
– 阳离子通道,如乙酰胆碱受体 – 阴离子通道,如γ-氨基丁酸受体
G蛋白耦联受体
-7次跨膜蛋白,胞外结构域识别信号分子,胞 内结构域与G蛋白耦联,调节相关酶活性,在 胞内产生第二信使。
-类型:①多种神经递质、肽类激素和趋化因 子受体 ②味觉、视觉和嗅觉感受器。
细胞间分泌化学信号进行通讯的方式:
内分泌(endocrine) 旁分泌(paracrine) 自分泌(autocrine) 化学突触(chemical synapse)
细胞间分泌化学信号进行通讯的方式:
内分泌:内分泌激素随血液循环输至全身,作用 于靶细胞。特点:①低浓度(10-8-10-12M ),② 全身性,③长时效。
细胞信号转导概述 和整合控制
- 概述 - 细胞内受体介导的信号转导 - G蛋白耦联受体介导的信号转导 - 酶连受体介导的信号转导 - 其他细胞表面受体介导的信号转导 - 细胞信号转导的整合与控制
信号分子
细 合成、运输 胞 ◈ 细胞识别 通
配体 受体
讯信
膜内 受体
膜上 受体
离子通道耦联 G蛋白耦联 与酶耦联
三、 信号转导系统的特性
1.信号转导系统的基本组成与信号蛋白 细胞特异性受体识别信号分子 信号跨膜转导 信号级联放大 细胞应答反应 受体脱敏或下调, 细胞反应终止或降低
2。细胞内信号蛋白的相互作用, 由蛋白质模式结合域特异性介导
信号蛋白之间通过蛋白质模式结构域的特异性介导
3. 信号转导系统的主要特性
2. 受体(Receptor) - 能识别和选择性结合某种配体(信号分子)的大分子 - 与配体结合后, 通过信号转导作用将胞外信号转 换为胞内物理或化学信号并产生特定生物学效应 - 受体多为糖蛋白 - 功能: (1)细胞内蛋白质活性或功能改变
(2) 影响细胞内蛋白质的表达 - 功能结构域: (1)结合配体功能域 (2)效应功能域
号
G蛋白 耦联
cAMP信号通路 磷脂酰肌醇信号通路
通
与酶连接
受体酪氨酸激酶
路
的受体
受体耦联的酪氨酸激酶 受体丝/苏激酶
受体酪氨酸磷酸酯酶
◈由整联蛋白介导的信号传递 受体鸟苷酸环化酶
第一节 概述
一 细胞通讯(cell communication)
细胞通讯的概念:一个细胞发出的信息通过介质 传递到另一个细胞产生相应的反应。
特异性 放大作用 网络化与反馈调节机制 整合作用
第二节 细胞内受体介导的信号传递
一 细胞内核受体及其对基因表达的调节
二
细胞内受体超家族: 依赖激素激活的基
因
三 细胞调核控内蛋受白体. :
配体(通过核孔进入细胞核)
类固醇激素 视黄酸 维生素D 甲状腺素
胞内受体一般有三个结构域: 1C端的激素结合位点 2中部富含Cys,具有锌指结构的DNA或Hsp90 结合位点 3N 端的转录激活结构域
胞的代谢过程及基因表达等功能
第三节 G蛋白耦联受体介导的信号转导
G-蛋白偶联受体(GPCR)
配体-受体复合物与靶蛋白的作用需要通过与 G蛋白的藕联, 在细胞内产生第二信使, 将胞外信 号传递到胞内.
G蛋白偶联受体的信号传递过程包括 (1)配体与受体结合 (2)受体活化G蛋白 (3)G蛋白激活或抑制细胞中的效应分子 (4)效应分子改变细胞内信使的含量与分布 (5)细胞内信使作用于相应的靶分子,从而改变细
细胞通讯的作用: 多细胞生物的组织发生与形态建成 协调多细胞生物细胞间的功能 控制细胞的生长和分裂 组织发生与形态建成
细胞的信号转导 - 细胞必须接受合适的环境信号才能生存 - 细胞必须对信号作出适当的反应
1. 细胞通讯的方式: 分泌化学信号 细胞间的直接接触或分子作用 (膜表面分子接触通讯) 动物细胞的间隙连接和植物细胞的胞间连丝
-相关信号途径:cAMP途径、磷脂酰肌醇途径。
细胞内受体
甾体类激素 甲状腺素 气体分子 的受体
第一信使:水溶性信号分子(如神经递 质)不能穿过靶细胞膜,只能经膜上的信 号转换机制实现信号传递,称第一信使。
第二信使(second messenger)
已经发现的第二 信使有: cAMP,
Ca2+, cGMP, IP3, DG等