实验七 移位寄存器及其应用

合集下载

移位寄存器的应用(应用)

移位寄存器的应用(应用)

提高: 利用移位寄存器和计数器实现一 个彩灯控 制电路。要求能够两灯循环和三灯 循环。观察显示结果,记录数据。
返回目录
2011-7-14
实验原理
移位寄存器的应用十分广泛,除了作数码寄存器外,还可以作移 存型计数器、随机码发生器、延时电路以及串/并行代码变换器等。 1)移存型计数器 (1)环形计数器 将移位寄存器的最后一级输出回送到第一级的输入,便可构成环 形计数器(Ring counter)。环形计数器的特点是计数器的模数与 移位寄存器位数相等,且工作状态是依次循环出1(或0),如四 位环形计数器的状态为0001-0010-0100-1000或1110-1101- 1011-0111。 (2)扭环形计数器 扭环形计数器又叫约翰逊计数器,它是将移位寄存器中最后一级 的反变量输出与第一级输入端相连而构成的。扭环形计数器的特 点是M=2N,工作状态转换时相邻状态之间只有一位发生变化, 避免了功能冒险。
2011-7-14
返回目录
2011-7-14
输入端
输出端
方式 清除 AB 时 钟
QA QB QC QD QE QF QG QH
L H H H H
×× ×× H H L H H L
× L ↑ ↑ ↑
L L L L L 保持 1 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 返回目录
L
L
L
2011-7-14
常见问题
1、74LS164移位寄存器的管脚是怎样排列的? 答:如图所示
Vcc QH QG QF QE CLR CK
14 13 12 11 10 1 2 3 4 5

实验七 移位寄存器及其应用

实验七 移位寄存器及其应用

实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。

二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。

三、实验原理1.移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

74 LS194是一个4位双向移位寄存器, 最高时钟脉冲为36MHz, 其逻辑符号及引脚排列如如图7.1所示。

图实验7.1 74 LS194逻辑符号及引脚排列其中: D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1.S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。

74LS194模式控制及状态输出如表实验7.1所示。

2.用74LS194构成8位移位寄存器电路如实验7.2所示, 将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至(1)的SL, 即可构成8位的移位寄存器。

注意: /CR端必须正确连接。

3.74LS194构成环形计数器把位移寄存器的输出反馈到它的串行输入端, 就可以进行循环移位, 如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下, 模式设为右移, 输出状态依次为:表实验7.1 74LS194工作状态表图实验7.2 8位移位寄存器图实验7..3 环形计数器四、实验仪器设备1.TPE-AD数字实验箱 1台2.四位双向移位寄存器74LS194 2片3.四两输入集成与非门74LS00 1片五、实验内容及方法1.测试74LS194(或CC40194)的逻辑功能参图实验7.1接线, /CR 、S1.S0、SL、SR、D3.D2.D1.D0分别接逻辑电平开关输出插孔;Q3Q2Q1Q0用LED电平显示, CP接单脉冲源输出插孔。

按表实验7.1进行逐项对比测试。

(1)清零: 令=0, 此时Q3Q2Q1Q0=0000。

数字电路与数字逻辑实验4-移位寄存器及应用

数字电路与数字逻辑实验4-移位寄存器及应用
1、4选1数据选择器-74LS153
2、多功能移位寄存器-74LS194
多功能寄存器具有并行置数、左移、右移、保持的功能。
S1S0 =00: 保持
S1S0 =01:右移
S1S0 =10: 左移
S1S0 =11: 置位
三、实验内容
1、用74LS194设计扭环型计数器
扭环形计数器:用n位的移位寄存器所构成的具有2n种状态的 计数器,也称为约翰逊计数器。
1
DIL Q0
DIR Q 0 Q 1 Q 2 Q 3 S 0
0
DIL 74LS194 S1 1
CP CP D0 D1 D2 D3 RD
Q0Q1Q2Q3
××××
0000Βιβλιοθήκη 00010011左移
复位
0111
1000
1100
1110
1111
2、用74LS194设计00011101序列信号发生器
⑴ 序列信号的循环长度 M=8,确定移位寄存器位数 n, 2n-1<M≤2n,。故 n=3,选定为 3 位。
设备型号 THM—7
ESCORT 3136A
TBS1102B AFG3000C
数量 一台 一台 一台 一台
备注
⑵ 确定移位寄存器的 M个独立状态。将序列码 00011101按 照每 3 位一组,划分为 8个状态,状态转换图如下:
⑶ 根据 M个不同状态列出移位寄存器的状态表和反馈函 数表,求出反馈函数 F 的表达式。
⑷ 设计电路
利用双四选一数据选择 器74LS153实现组合电路, 具体电路如右图所示。
CP端输入1KHz,VP-P=4V, 直流偏置=2v的方波信号, 用示波器观察CP信号和F输 出信号。
⑸ 实验结果

实验七 移位寄存器及其应用

实验七 移位寄存器及其应用
息,也可以用来把串行的二进制数转换为并行的二进制数(串并转换) 或相反(并串转换)。在计算机电路中,还可以应用移位寄存器来实现 二进制的乘2和除2功能。
在具体独立应用方面,移位寄存器不单可做成可编程的分频器、串行 加法器、串行累加器和序列号发生器(见书上P229),而且还可以用来 构成计数器,这是工程中经常用到的。以74LS194双向移位寄存器为 例,74LS194可构成环形计数器、扭环形计数器和自启动的扭环形计数 器。 五、实验的步骤 ㈠ 集成移位寄存器基本功能验证。
将74LS194插入实验箱中,并按图7-2进行接线。接线完毕后,接通 电源,即可进行74LS194双向移位寄存器的功能验证。 ① 清零。将复位开关K3置0,使=0,通过观察LED灯的亮、灭情况, 记录有关实验数据。 =0时,74LS194输出为:Q0Q1Q2Q3= 。 ② 保持。使=1,CP=0,拨动逻辑开关K1和K2,输出状态不变。或者 使=1,M1和M0都为0(即K1和K2都为0),按动单次脉冲,这时输出状 态仍不变。 ③ 置数。使=1,M1=M0=1,数据开关置为0101,按动单次脉冲,这时 数据0101存入Q0Q1Q2Q3中。根据LED发光二极管的状态,记录 Q0Q1Q2Q3= ;变换数据开关的输出为1011,再按动单次脉冲,根 据LED发光二极管的状态,记录Q0Q1Q2Q3= 。
保1 × × 0
持1 0 0 × × × × × × ×
保持
置 1 1 1 ↑ × × d0 d1 d2 d3 d0 d1 d2 d3 数
பைடு நூலகம்
右1 0 1 ↑ × 1
1
移1 0 1 ↑
×
××××
0
0
左1 1 0 ↑ 1 ×
1
移1 1 0 ↑

移位寄存器实验心得

移位寄存器实验心得

移位寄存器实验心得在数字电路实验中,移位寄存器是一个非常重要的组件,它在数字信号处理和数据存储中起着至关重要的作用。

通过对移位寄存器的实验,我对其工作原理和应用有了更深入的了解,并且积累了一些宝贵的实验心得。

首先,移位寄存器是一种能够将数据按位进行移动的寄存器,它可以实现数据的左移和右移操作。

在实验中,我使用了几种不同类型的移位寄存器,包括串行移位寄存器和并行移位寄存器。

通过对这些寄存器的实验,我发现它们在数据处理中具有非常灵活的应用方式,能够满足不同的需求。

其次,通过实验我了解到移位寄存器在数字信号处理中的重要性。

在实际应用中,移位寄存器可以用来实现数字信号的平移、延迟和时序控制等功能。

在数字滤波、数字调制解调、数字信号处理等领域,移位寄存器都扮演着不可或缺的角色。

另外,通过实验我还学会了如何使用移位寄存器来实现数据存储和传输。

在实验中,我将移位寄存器和其他逻辑门电路结合起来,实现了数据的存储和传输功能。

这种方法可以在数字系统设计中发挥重要作用,提高数据处理的效率和可靠性。

在实验中,我还发现了一些需要注意的问题。

首先是移位寄存器的时钟信号。

在实际应用中,时钟信号的频率和相位对移位寄存器的工作有着重要影响,需要合理设计和控制。

其次是移位寄存器的级联和级联。

在实验中,我发现级联多个移位寄存器可以实现更复杂的数据处理功能,但是需要注意级联的时序和逻辑关系,以避免出现故障。

总的来说,通过对移位寄存器的实验,我对其工作原理和应用有了更深入的了解,并且积累了一些宝贵的实验心得。

移位寄存器在数字信号处理和数据存储中具有非常重要的作用,它可以实现数据的移动、存储和传输等功能,对于数字系统设计和数字信号处理具有重要意义。

希望通过不断的实验和学习,我能够更深入地理解移位寄存器的工作原理和应用,为将来的工程实践打下坚实的基础。

集成移位寄存器实验报告

集成移位寄存器实验报告

集成移位寄存器实验报告1.实验目的本次实验旨在通过使用集成移位寄存器来深入了解移位寄存器的工作原理,掌握其使用方法,并验证其功能。

通过实验,我们期望提高对集成电路的理解和实际操作能力,同时为今后的电子设计提供实践经验。

2.实验原理移位寄存器是数字电路中的重要组成部分,它能够将数据按照设定的位数向左或向右移动。

集成移位寄存器是一种四位或八位的移位寄存器,它由触发器和移位寄存器构成。

在时钟信号的控制下,数据在寄存器中向左或向右移动。

3.实验设备实验所需设备包括:集成移位寄存器、电源、时钟发生器、数据输入开关、测试仪器、示波器等。

4.实验步骤(1)按照电路图连接实验设备,确保电源和信号线的连接正确无误。

(2)设置时钟发生器,为移位寄存器提供时钟信号。

(3)设置数据输入开关,为移位寄存器提供输入数据。

(4)观察测试仪器的输出结果,记录实验数据。

(5)使用示波器观察移位寄存器的时序波形,了解其工作原理。

5.实验结果实验过程中,我们观察到移位寄存器的输出随着时钟信号的变化而变化。

当输入数据为0001时,经过四个时钟周期后,输出数据变为0100;当输入数据为1011时,经过四个时钟周期后,输出数据变为1100。

这说明移位寄存器能够将数据向左移动四位。

6.实验总结通过本次实验,我们深入了解了集成移位寄存器的工作原理和使用方法。

实验结果表明,移位寄存器能够实现数据的向左或向右移动,具有广泛的应用价值。

在今后的电子设计中,我们可以利用集成移位寄存器的特点来实现数据的处理和传输。

此外,本次实验也提高了我们的实践能力和对数字电路的理解。

数电6实验报告--移位寄存器及其应用

数电6实验报告--移位寄存器及其应用

学生实验报告系别电子信息学院课程名称电子技术实验班级 12通信A 实验名称移位寄存器及其应用姓名实验时间2014年4月29 日学号 20120101010 指导教师陈卉成绩教师签名陈卉批改时间2014年月日报告内容一、实验目的1. 掌握四位双向移位寄存器的逻辑功能与使用方法。

2. 了解移位寄存器的使用—实现数据的串行,并行转换和构成环形计数器。

二、实验原理1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左右移的控制信号便可实现双向移位要求。

根据寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图15-1所示。

图15-1 74LS194(或CC40194)的逻辑符号及引脚排列表14-1 74LS194的功能表其中SR为右移串行输入端,SL为左移串行输入端;功能作用如表15-1所示。

2、移位寄存器应用很广,可构成移位寄存器型计数器、顺序脉冲发生器和串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

(1)环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如下图所示。

图14-2 环形计数器示意图将输出端Q3与输入端SR相连后,在时钟脉冲的作用下Q0Q1Q2Q3将依次右移。

同理,将输出端Q0与输入端SL相连后,在时钟脉冲的作用下Q0Q1Q2Q3将依次左移。

(2)实现数据串、并转换1 串行/并行转换器串行/并行转换是指串行输入的数据,经过转换电路之后变成并行输出。

下面是用两片74LS194构成的七位串行/并行转换电路。

图14-3 七位串行/并行转换电路示意图电路中S0端接高电平1,S1受Q7控制,两片寄存器连接成串行输入右移工作模式。

实验七---移位寄存器及其应用

实验七---移位寄存器及其应用

集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七移位寄存器及其应用一、实验目的1. 掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2. 熟悉移位寄存器的应用——环形计数器。

二、实验原理1. 移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又有右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图1所示。

图 1 74LS194的逻辑符号及其引脚排列其中D3、D2、D1、D为并行输入端,Q3、Q2、Q1、Q为并行输出端;SR为右移串行输入端,SL 为左移串行输入端,S1、S为操作模式控制端;CR为直接无条件清零端;CP为时钟脉冲输入端。

74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q3→Q0),左移(方向由Q→Q3),保持及清零。

S1、S和CR端的控制作用如表1所示。

表12.移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验研究移位寄存器用作环形计致器和串行累加器的线路及其原理。

(1) 环形计数器:把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图2所示,把输出端Q0和右移串行输入端SR相连接,设初始状态Q3Q2Q1Q=1000,则在时钟脉冲作用下Q3Q2Q1Q将依次变为0100→0010→0001→1000→……,可见它是具有四个有效状态的计数器,这种类型的计效器通常称为环形计数器。

图2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

图 2(2)串行累加器(了解内容)累加器是由移位寄存器和全加器组成的一种求和电路,它的功能是将本身寄存的数和另一个输入的数相加,并存放在累加器中。

图3是由二个右向移位寄存器、一个全加器和一个进位触发器组成的串行累加器。

设开始时,被加数A=0A1-N …A和加数B=0B1-N…B已分别存入N+1位累加数移位寄存器和加数移位寄存器。

再设进位触发器D已被清零。

在第一个CP脉冲到来之前,全加器各输入、输出端的情况为:An =A,Bn=B,C1-n=0,Sn =A+B+0=S,Cn=C。

当第一个CP脉冲到来后,S存入累加移位寄存器的最高位,C存入进位触发器D端,且两个移位寄存器中的内容都向右移动一位。

全加器输出为:Sn =A1+B1十C=S1,Cn=C1。

图 3 串行累加器结构框图在第二个脉冲到来后,两个移位寄存器的内容又右移一位,S1存入累加和移位寄存器的最高位,原先存入的S0进入次高位,C1存入进位触发器Q端,全加器输出为:Sn=A2+B2+C1, Cn=C2。

如此顺序进行,到第N+1个CP时钟脉冲后,不仅原先存入两个移位寄存器中的数已被全部移出,且A、B两个数相加的和及最后的进位C1n也被全部存入累加和移位寄存器中。

若需要继续累加,则加数移位寄存器中需再一次存入新的加数。

中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几块移位寄存器用级联的方法来扩展位数。

三、实验设备及器件1、数字电路实验箱2、双踪示波器3、万用表4、74LS194(CC40194)×1四、实验内容1.测试74LS194(或CC40194)的逻辑功能按图4接线,即CR、S1、S、SL、SR、D3、D2、D1、D分别接至逻辑开关的输出插口;Q3、Q2、Q1、Q接至LED逻辑电平显示输入插口。

CP端接(正或负)单次脉冲源输出插口。

按表9-9-2所规定的输入状态,逐项进行测试。

图 4 741S194逻辑功能测试(1)清除:令CR=0,其它输入均为任意态,这时寄存器输出Q3、Q2、Q1、Q均为0。

清除后,置CR=l。

(2)送数:令CR=S1=S=1,送入任意4位二进制数,如D3D2D1D=abcd,加CP脉冲,观察CP=0、CP由0→1、CP由l→0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP脉冲的上升沿。

(3)右移:清零后,令CR=l,S1=0,S=l,由右移输入端SR送入二进制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。

(4)左移:先清零或预置,再令CR=l,S1=1,S=0,由左移输入SL送入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之表 2(5)保持:寄存器预置任意4位二进制数码abcd,令CR=l,S1=S=0,加CP脉冲,观察寄存器输出状态,记录之。

2. 循环移位将实验内容1接线参照图2进行改接。

用并行送数法预置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表3中。

表 33.累加运算(不必做)按图3连接实验电路。

CR、S1、S接逻辑开关输出插口,CP接单次脉冲源(正脉冲)由于逻辑开关的数量有限,两寄存器并行输入端D3D2D1D根据实验设备现有条件进行接线。

两寄存器的输出端接至LED逻辑电平显示输入插口。

(1)触发器置零使74LS74的R由低电平变为高电平。

(2)送数令CR=S1=S=1,用并行送数方法把三位被加数A2A1A和三位加数B2B1B分别送入累加和移位寄存器A和加数移位寄存器B中。

然后进行右移,实现加法运算。

连续输入4个CP脉冲,观察两个寄存器输出状态变化,记入表4中。

表 4五、实验预习要求1. 复习有关寄存器及累加运算的有关内容。

2. 查阅74LS194、74LS183、74LS74逻辑线路。

熟悉其逻辑功能及引脚排列。

3. 在对74ILS194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?4. 使寄存器清零,除采用CR输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?5. 若进行循环左移,图4接线应如何改接?六、实验报告1. 分析表2的实验结果,总结移位寄存器74LS194的逻辑功能并写入表格功能总结一栏中。

2. 根据实验内容2的结果,写出4位环形计数器的状态转换图及波形图。

3. 分析累加运算所得结果的正确性。

实验八、综合设计实验一、目的:1、综合应用所学的数字电路知识,学会查找相关资料,针对设计提出的任务要求和使用条件,设计制作合理、可靠、经济、可行的电子产品。

2、培养学生独立分析问题、解决问题的能力。

3、培养严肃认真的工作作风和严谨的科学态度。

4、掌握PCB板的设计,完成电路连接和调试方法。

二、实验内容:1、明确设计任务、确定设计题目2、设计电路,选择器件,电路模拟仿真设计功能3、完成电路连接(制作PCB板或用万能板),写出调试测试方法4、设计报告撰写三、设计基本步骤1、明确设计任务要求:充分了解设计任务的具体要求,如性能指标、内容及要求,明确设计任务。

2、方案选择:根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。

3、根据设计框架进行电路单元设计、参数计算和器件选择:具体设计时可以模仿成熟的电路进行改进和创新,注意信号之间的关系和限制;接着根据电路工作原理和分析方法,进行参数的估计与计算;器件选择时,元器件的工作、电压、频率和功耗等参数应满足电路指标要求,元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻和电容的参数应选择计算值附近的标称值。

4、电路原理图的绘制:电路原理图是组装、焊接、调试和检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出各单元电路,反馈通路的信号流向则与此相反;图形符号和标准,并加适当的标注;连线应为直线,并且交叉和折弯应最少,互相连通的交叉处用圆点表示,地线用接地符号表示。

四、综合设计报告1、课题名称2、内容摘要3、设计内容及要求4、比较和选择的设计方案5、单元电路设计、参数计算和器件选择6、画出完整的电路图。

并说明电路的工作原理7、组装调试的内容,如使用的主要仪器和仪表、调试电路的方法和技巧、测试的数据和波形并与计算结果进行比较分析、调试中出现的故障、原因及排除方法8、总结设计电路的特点和方案的优缺点,指出课题的核心及实用价值,提出改进意见和展望9、列出元器件清单10、列出参考文献11、收获、体会五、实验题目:具体要求见实验指导书或自己查资料1、光电计数器2、汽车尾灯控制电路3、数字显示的洗衣机控制电路4、可预置的定时显示报警器5、六人智力抢答器6、拔河游戏模拟机。

相关文档
最新文档