实验七 移位寄存器及其应用
移位寄存器的应用(应用)

提高: 利用移位寄存器和计数器实现一 个彩灯控 制电路。要求能够两灯循环和三灯 循环。观察显示结果,记录数据。
返回目录
2011-7-14
实验原理
移位寄存器的应用十分广泛,除了作数码寄存器外,还可以作移 存型计数器、随机码发生器、延时电路以及串/并行代码变换器等。 1)移存型计数器 (1)环形计数器 将移位寄存器的最后一级输出回送到第一级的输入,便可构成环 形计数器(Ring counter)。环形计数器的特点是计数器的模数与 移位寄存器位数相等,且工作状态是依次循环出1(或0),如四 位环形计数器的状态为0001-0010-0100-1000或1110-1101- 1011-0111。 (2)扭环形计数器 扭环形计数器又叫约翰逊计数器,它是将移位寄存器中最后一级 的反变量输出与第一级输入端相连而构成的。扭环形计数器的特 点是M=2N,工作状态转换时相邻状态之间只有一位发生变化, 避免了功能冒险。
2011-7-14
返回目录
2011-7-14
输入端
输出端
方式 清除 AB 时 钟
QA QB QC QD QE QF QG QH
L H H H H
×× ×× H H L H H L
× L ↑ ↑ ↑
L L L L L 保持 1 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 返回目录
L
L
L
2011-7-14
常见问题
1、74LS164移位寄存器的管脚是怎样排列的? 答:如图所示
Vcc QH QG QF QE CLR CK
14 13 12 11 10 1 2 3 4 5
实验七 移位寄存器及其应用

实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。
二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。
三、实验原理1.移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
74 LS194是一个4位双向移位寄存器, 最高时钟脉冲为36MHz, 其逻辑符号及引脚排列如如图7.1所示。
图实验7.1 74 LS194逻辑符号及引脚排列其中: D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1.S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。
74LS194模式控制及状态输出如表实验7.1所示。
2.用74LS194构成8位移位寄存器电路如实验7.2所示, 将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至(1)的SL, 即可构成8位的移位寄存器。
注意: /CR端必须正确连接。
3.74LS194构成环形计数器把位移寄存器的输出反馈到它的串行输入端, 就可以进行循环移位, 如图实验7.3所示。
设初态为Q3Q2Q1Q0=1000,则在CP作用下, 模式设为右移, 输出状态依次为:表实验7.1 74LS194工作状态表图实验7.2 8位移位寄存器图实验7..3 环形计数器四、实验仪器设备1.TPE-AD数字实验箱 1台2.四位双向移位寄存器74LS194 2片3.四两输入集成与非门74LS00 1片五、实验内容及方法1.测试74LS194(或CC40194)的逻辑功能参图实验7.1接线, /CR 、S1.S0、SL、SR、D3.D2.D1.D0分别接逻辑电平开关输出插孔;Q3Q2Q1Q0用LED电平显示, CP接单脉冲源输出插孔。
按表实验7.1进行逐项对比测试。
(1)清零: 令=0, 此时Q3Q2Q1Q0=0000。
移位寄存器实验报告

移位寄存器课程设计报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。
根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。
74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。
该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。
有如下功能表(三)实验内容1.按如下电路图连接电路十个输入端,四个输出端,主体为74194.2.波形图参数设置:End time:2us Grid size:100ns波形说明:clk:时钟信号; clrn:置0s1s0:模式控制端 sl_r:串行输入端abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。
3.数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102clk:122 clk0:125 clrn:95q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72sl_r:82,83结论:下载结果与仿真结果一致,下载正确。
一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。
五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。
根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。
应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。
(2)仿真常规方法步骤是什么?有什么注意事项?a)新建波形文件后波形图参数设置b)添加结点或总线后信号整合与位置分配c)激励输入及分段仿真注意事项:1.激励输入信号与待分析输出信号上下放置,界限分明;时钟信号置顶,其他输入信号可按异步控制,同步控制,数据输入顺序向下放置;同一元器件的控制信号就近放置;同一功能的控制信号就近放置;2.符合总线形式的IO信号优先整合;同一器件和同一属性的控制信号优先整合;脉冲信号一般不整合;整合前信号应按高位到低位顺序向下放置;整合后信号名以能直观反映该信号功能为宜;3.首先设置时钟信号等系统信号激励完成电路初始状态,其次将时间轴划分为连续的时间段,一时间段完成一小步实验内容。
实验七 移位寄存器及其应用

在具体独立应用方面,移位寄存器不单可做成可编程的分频器、串行 加法器、串行累加器和序列号发生器(见书上P229),而且还可以用来 构成计数器,这是工程中经常用到的。以74LS194双向移位寄存器为 例,74LS194可构成环形计数器、扭环形计数器和自启动的扭环形计数 器。 五、实验的步骤 ㈠ 集成移位寄存器基本功能验证。
将74LS194插入实验箱中,并按图7-2进行接线。接线完毕后,接通 电源,即可进行74LS194双向移位寄存器的功能验证。 ① 清零。将复位开关K3置0,使=0,通过观察LED灯的亮、灭情况, 记录有关实验数据。 =0时,74LS194输出为:Q0Q1Q2Q3= 。 ② 保持。使=1,CP=0,拨动逻辑开关K1和K2,输出状态不变。或者 使=1,M1和M0都为0(即K1和K2都为0),按动单次脉冲,这时输出状 态仍不变。 ③ 置数。使=1,M1=M0=1,数据开关置为0101,按动单次脉冲,这时 数据0101存入Q0Q1Q2Q3中。根据LED发光二极管的状态,记录 Q0Q1Q2Q3= ;变换数据开关的输出为1011,再按动单次脉冲,根 据LED发光二极管的状态,记录Q0Q1Q2Q3= 。
保1 × × 0
持1 0 0 × × × × × × ×
保持
置 1 1 1 ↑ × × d0 d1 d2 d3 d0 d1 d2 d3 数
பைடு நூலகம்
右1 0 1 ↑ × 1
1
移1 0 1 ↑
×
××××
0
0
左1 1 0 ↑ 1 ×
1
移1 1 0 ↑
移位寄存器 实验报告

实验室:实验台号:日期:
专业班级:姓名:学号:
一、实验目的
1.了解二进方法。
二、实验内容
(一)用D触发器设计左移移位寄存器
(二)利用74LS161和74LS00设计实现任意进制的计数器
设计要求:
以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
8进制
利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题
1. 74LS161是同步还是异步,加法还是减法计数器?
答:在上图电路中74LS161是异步加法计数器。
2.设计十进制计数器时将如何去掉后6个计数状态的?
答:通过置位端实现时,将Q0、Q3接到与非门上,输出连接到置位控制端。当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
三、实验原理图
1.由4个D触发器改成的4位异步二进制加法计数器
(输入二进制:11110000)
2.测试74LS161的功能
输入端
输出
Qn
时钟
清零
置数
P
T
X
0
X
X
X
清零
1
0
X
X
置数
1
1
1
1
计数
X
1
1
0
X
不计数
X
1
1
X
0
不计数
3.熟悉用74LS161设计十进制计数器的方法。
1利用置位端实现十进制计数器。
移位寄存器应用.pptx

二、实验原理
第1页/共6页
3、74LS194的功能表
第2页/共6页
4. 移位寄存器的应用
移位寄存器构成的计数器在实际工程中经常用到。如:用移位存器构成环形计数器、扭环形计数器和自起动扭环形计数器、顺序脉冲发生器等等。
第5容及要求
设计并完成P178实验内容③图5.23.5所示串并转换(左移与右移)电路并用数码管显示电路输出状态选做:P180思考题6:设计并实现电路
第4页/共6页
考试安排
操作考试下周2小时随堂出题考试;含一定设计;开卷;考察学生设计、实现并测试简单数字逻辑电路功能的基本实践能力;要求准备好所有已发元器件,包括各类逻辑门、触发器、数码管、发光二极管、电阻、电容、161、194等。笔试2小时,具体时间地点由学校统一安排;闭卷。
实验七---移位寄存器及其应用

集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。
移位寄存器及其应用

实验移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验原理1、寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下一次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
2、本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图所示。
其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;C R为直接无条件清零端;CP为时钟脉冲输入端。
功能见表8-1。
表8-1CC40194功能表功能输入输出CP R C S1S0S R S L D0D1D2D3Q0Q1Q2Q3清除×0××××××××0000送数↑111××a b c d a b c d右移↑101D SR×××××D SR Q0Q1Q2左移↑110×D SL××××Q1Q2Q3D SL保持↑100××××××Q0n Q1n Q2n Q3n保持↓1××××××××Q0n Q1n Q2n Q3n3、移位寄存器的应用可构成移位寄存器形计数器;:顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六移位寄存器及其应用
一、实验目的
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验原理
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。
图10-1 CC40194的逻辑符号及引脚功能
其中 D
0、D
1
、D
2
、D
3
为并行输入端;Q
、Q
1
、Q
2
、Q
3
为并行输出端;S
R
为右
移串行输入端,S
L 为左移串行输入端;S
1
、S
为操作模式控制端;R
C为直接无
条件清零端;CP为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q
0→Q
3
),左移
(方向由Q
3→Q
),保持及清零。
S 1、S
和R C端的控制作用如表10-1。
2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。
本实验研究移位寄存器用作环形计数器和数据的串、并行转换。
(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,
如图10-2所示,把输出端 Q
3和右移串行输入端S
R
相连接,设初始状态Q
Q
1
Q
2
Q
3
=1000,则在时钟脉冲作用下Q
0Q
1
Q
2
Q
3
将依次变为0100→0010→0001→1000→……,
如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。
图10-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。
图 10-2环形计数器
如果将输出Q
O 与左移串行输入端S
L
相连接,即可达左移循环移位。
(2)实现数据串、并行转换
①串行/并行转换器
串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。
图10-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数
据转换电路。
图10-3 七位串行 / 并行转换器
电路中S 0端接高电平1,S 1受Q 7控制,二片寄存器连接成串行输入右移工作模式。
Q 7是转换结束标志。
当Q 7=1时,S 1为0,使之成为S 1S 0=01的串入右移工作方式,当Q 7=0时,S 1=1,有S 1S 0=10,则串行送数结束,标志着串行输入的数据已转换成并行输出了。
串行/并行转换的具体过程如下:
转换前,R C 端加低电平,使1、2两片寄存器的内容清0,此时S 1S 0=11,寄存器执行并行输入工作方式。
当第一个CP 脉冲到来后,寄存器的输出状态Q 0~Q 7为01111111,与此同时S 1S 0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的S R 端加入。
随着CP 脉冲的依次加入,输出状态的变化可列成表10-3所示。
表10-3
由表10-3可见,右移操作七次之后,Q
7变为0,S
1
S
又变为11,说明串行输
入结束。
这时,串行输入的数码已经转换成了并行输出了。
当再来一个CP脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。
②并行/串行转换器
并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。
图10-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比
图10-3多了两只与非门G
1和G
2
,电路工作方式同样为右移。
图10-4 七位并行 / 串行转换器
寄存器清“0”后,加一个转换起动信号(负脉冲或低电平)。
此时,由于
方式控制S
1S
为11,转换电路执行并行输入操作。
当第一个CP脉冲到来后,
Q 0Q
1
Q
2
Q
3
Q
4
Q
5
Q
6
Q
7
的状态为0D
1
D
2
D
3
D
4
D
5
D
6
D
7
,并行输入数码存入寄存器。
从而使得G
1
输
出为1,G
2输出为0,结果,S
1
S
2
变为01,转换电路随着CP脉冲的加入,开始执行
右移串行输出,随着CP脉冲的依次加入,输出状态依次右移,待右移操作七次后,
Q 0~Q
6
的状态都为高电平1,与非门G
1
输出为低电平,G
2
门输出为高电平,S
1
S
2
又变为
11,表示并/串行转换结束,且为第二次并行输入创造了条件。
转换过程如表10-4所示。
中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几片移位寄存器用级连的方法来扩展位数。
三、实验设备及器件
1、+5V直流电源
2、单次脉冲源
3、逻辑电平开关
4、逻辑电平显示器
5、 CC40194×2(74LS194) CC4011(74LS00) CC4068(74LS30)
四、实验内容
1 、测试CC40194(或74LS194)的逻辑功能
按图10-5接线,R C、S
1、S
、S
L
、
S R 、D
、D
1
、D
2
、D
3
分别接至逻辑开关的
输出插口;Q
0、Q
1
、Q
2
、Q
3
接至逻辑电平
显示输入插口。
CP端接单次脉冲源。
按
表10-5所规定的输入状态,逐项进行测
试。
图10-5 CC40194逻辑功能测试
(1)清除:令R C=0,其它输入均为任意态,这时寄存器输出Q0、Q1、Q2、
Q
3
应均为0。
清除后,置R C=1 。
(2)送数:令R C=S
1=S
=1 ,送入任意4位二进制数,如D
D
1
D
2
D
3
=abcd,加
CP脉冲,观察CP=0 、CP由0→1、CP由1→0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP脉冲的上升沿。
(2)右移:清零后,令R C=1,S
1=0,S
=1,由右移输入端S
R
送入二进
制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。
(4) 左移:先清零或予置,再令R C=1,S
1=1,S
=0,由左移输入端S
L
送
入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之。
(5) 保持:寄存器予置任意4位二进制数码abcd,令R C=1,S
1=S
=0,加CP
脉冲,观察寄存器输出状态,记录之。
2、环形计数器
自拟实验线路用并行送数法予置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表10-6中。
3、实现数据的串、并行转换
(1)串行输入、并行输出
按图10-3接线,进行右移串入、并出实验,串入数码自定;改接线路用左移方式实现并行输出。
自拟表格,记录之。
(2)并行输入、串行输出
按图10-4接线,进行右移并入、串出实验,并入数码自定。
再改接线路用左移方式实现串行输出。
自拟表格,记录之。
五、实验报告
1、分析表10-4的实验结果,总结移位寄存器CC40194的逻辑功能并写入表格功能总结一栏中。
1、根据实验内容2 的结果,画出4位环形计数器的状态转换图及波形图。