(完整版)双曲线简单几何性质知识点总结
(完整)双曲线的方程及其几何性质

双曲线的标准方程及其几何性质一、双曲线的标准方程及其几何性质。
1.双曲线的定义:平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零,小于|F 1F 2|)的点的轨迹叫双曲线.两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示,常数用2a 表示. (1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|—|MF 2|=—2a 时,曲线只表示焦点F 1所对应的一支双曲线.(3)若2a =2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线。
(4)若2a >2c 时,动点的轨迹不存在.2。
双曲线的标准方程:22a x -22b y =1(a >0,b >0)表示焦点在x 轴上的双曲线;22a y -22bx =1(a >0,b >0)表示焦点在y 轴上的双曲线。
判定焦点在哪条坐标轴上,不像椭圆似的比较x 2、y 2的分母的大小,而是x 2、y 2的系数的符号,焦点在系数正的那条轴上。
4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。
(1)通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式∆,则有:⇔>∆0直线与双曲线相交于两个点;⇔=∆0直线与双曲线相交于一个点;⇔<∆0 直线与双曲线无交点.(2)若得到关于x (或y )的一元二次方程,则直线与双曲线相交于一个点,此时直线平行于双曲线的一条渐近线.(3)直线l 被双曲线截得的弦长2212))(1(x x k AB -+=或2212))(11(y y k-+,其中k 是直线l 的斜率,),(11y x ,),(22y x 是直线与双曲线的两个交点A ,B 的坐标,且212212214)()(x x x x x x -+=-,21x x +,21x x 可由韦达定理整体给出.二、例题选讲例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为 ( )A .x 2-y 2=1 B .x 2-y 2=2 C .x 2-y 2=错误! D .x 2-y 2=错误!解析:由题意,设双曲线方程为x 2a2-错误!=1(a >0),则c =错误!a ,渐近线y =x ,∴错误!=错误!,∴a 2=2。
双曲线知识点总结

双曲线知识点总结一.双曲线的定义及其性质1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a<c)点的集合。
2. 求轨迹的方法:(1)设点的坐标 ;(2)找条件 ;(3)代入点的坐标,列等式;(4)化简;(5)检验。
3. 双曲线的标准方程及其性质 (1)双曲线的方程标准方程:12222=-by a x (若x 的系数为正,则焦点x 在轴上;若x 的系数为负,则焦点在y 轴上)共焦点双曲线的方程: 12222=--+m b y m a x ; 共离心率双曲线的方程: 12222=-mb y ma x 共渐近线的双曲线的方程:λ=-2222by a x(2)性质: ①c 2=b 2+a 2;②e=a c =2222221⎪⎭⎫ ⎝⎛+=+=a b a b a a c或e=ac =a c22=aR R R PF PF F F sin sin )sin(sin 2sin 2sin 22121-+=-=-ββααβθ③当PF 2⊥x 轴时,|PF 2|=ab 2④若点P (x 0,y 0)在双曲线12222=-by a x 上,则过点P 与双曲线相切的直线方程为12020=-byy a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。
二.双曲线的焦点三角形(1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ;mn=θcos 122-b ),[2+∞∈b ;θθcos 1cos 2-=b n m ),[2+∞-∈b ;S∆PF 1F 2=2tan 2θb .证明如下:①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ)⇒mn=θcos 122-b②S∆PF 1F 2=21mnsinΘ=2tan 2sin 22cos2sin2cos 1sin 2212222θθθθθθb b b ==-三.双曲线的中点弦(1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2(3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。
第二章 2.3.2 双曲线的简单几何性质

2.3.2双曲线的简单几何性质学习目标 1.掌握双曲线的简单几何性质.2.理解双曲线离心率的定义、取值范围和渐近线方程.3.了解直线与双曲线相交的相关问题.知识点一双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a y≤-a或y≥a对称性对称轴:坐标轴;对称中心:原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2a,b,c间的关系c2=a2+b2(c>a>0,c>b>0)知识点二等轴双曲线实轴和虚轴等长的双曲线,它的渐近线方程是y=±x,离心率为 2.1.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的渐近线互相垂直,离心率e= 2.(√)4.椭圆的离心率与双曲线的离心率取值范围相同.(×)5.双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点.(×)一、由双曲线方程研究其几何性质例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程. 解 将9y 2-4x 2=-36化为标准方程为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13.因此顶点坐标为A 1(-3,0),A 2(3,0), 焦点坐标为F 1(-13,0),F 2(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =c a =133,渐近线方程为y =±b a x =±23x .延伸探究求双曲线nx 2-my 2=mn (m >0,n >0)的实半轴长、虚半轴长、焦点坐标、离心率、顶点坐标和渐近线方程. 解 把方程nx 2-my 2=mn (m >0,n >0)化为标准方程为x 2m -y 2n=1(m >0,n >0), 由此可知,实半轴长a =m , 虚半轴长b =n ,c =m +n ,焦点坐标为(m +n ,0),(-m +n ,0),离心率e =ca=m +nm=1+n m, 顶点坐标为(-m ,0),(m ,0), 所以渐近线方程为y =±n mx ,即y =±mn m x .反思感悟 由双曲线的方程研究几何性质的解题步骤 (1)把双曲线方程化为标准形式是解决此类题的关键.(2)由标准方程确定焦点位置,确定a,b的值.(3)由c2=a2+b2求出c的值,从而写出双曲线的几何性质.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程为 y 242-x 232=1. 由此可知,实半轴长a =4,虚半轴长b =3; c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5);离心率e =c a =54;渐近线方程为y =±43x .二、由双曲线的几何性质求标准方程 例2 根据以下条件,求双曲线的标准方程. (1)过点P (3,-5),离心率为2;(2)与椭圆x 29+y 24=1有公共焦点,且离心率e =52;(3)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23).解 (1)若双曲线的焦点在x 轴上, 设其方程为x 2a 2-y 2b 2=1(a >0,b >0),∵e =2,∴c 2a2=2,即a 2=b 2.①又双曲线过P (3,-5),∴9a 2-5b 2=1,②由①②得a 2=b 2=4,故双曲线方程为x 24-y 24=1. 若双曲线的焦点在y 轴上, 设其方程为y 2a 2-x 2b 2=1(a >0,b >0),同理有a 2=b 2,③ 5a 2-9b 2=1,④ 由③④得a 2=b 2=-4(舍去). 综上,双曲线的标准方程为x 24-y 24=1.(2)由椭圆方程x 29+y 24=1,知半焦距为9-4=5,∴焦点是F 1(-5,0),F 2(5,0). 因此双曲线的焦点为(-5,0),(5,0). 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知条件,有⎩⎪⎨⎪⎧c a =52,a 2+b 2=c 2,c =5,解得⎩⎪⎨⎪⎧a =2,b =1.∴所求双曲线的标准方程为x 24-y 2=1.(3)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,∴双曲线方程为x 29-y 216=14,即双曲线的标准方程为x 294-y 24=1.反思感悟 (1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的六种方法与技巧①焦点在x 轴上的双曲线的标准方程可设为x 2a 2-y 2b 2=1(a >0,b >0).②焦点在y 轴上的双曲线的标准方程可设为y 2a 2-x 2b2=1(a >0,b >0).③与双曲线x 2a 2-y 2b 2=1共焦点的双曲线方程可设为x 2a 2-λ-y 2b 2+λ=1(λ≠0,-b 2<λ<a 2).④与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).⑤渐近线为y =kx 的双曲线方程可设为k 2x 2-y 2=λ(λ≠0). ⑥渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0). 跟踪训练2 求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)渐近线方程为y =±12x 且过点A (2,-3).解 (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9, 故双曲线的标准方程为x 29-y 216=1.(2)方法一 ∵双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b 2=1.②由①②联立,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b 2=1.④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,∴λ=-8 ∴所求双曲线的标准方程为y 28-x 232=1.三、双曲线的离心率例3 设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为________.答案 53解析 不妨设P 为双曲线右支上一点, |PF 1|=r 1,|PF 2|=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a 2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =c a =a 2+b 2a 2=⎝⎛⎭⎫b a 2+1 =⎝⎛⎭⎫432+1=53. 反思感悟 求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =ca求解,若已知a ,b ,可利用e =1+⎝⎛⎭⎫b a 2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =ca ,转化为关于e 的n 次方程求解.跟踪训练3 (1)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( ) A .4+2 3 B .23-1 C.3+12D.3+1答案 D解析 因为MF 1的中点P 在双曲线上,所以|PF 2|-|PF 1|=2a ,因为△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a, 所以e =c a =23-1=3+1.(2)如果双曲线x 2a 2-y 2b 2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________. 答案 (2,+∞)解析 如图,因为AO =AF ,F (c ,0),所以x A =c2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =c a>2.1.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .4 B .-4 C .-14D.14答案 C解析 由双曲线方程mx 2+y 2=1,知m <0, 则双曲线方程可化为y 2-x 2-1m=1, 则a 2=1,a =1,又虚轴长是实轴长的2倍, ∴b =2,∴-1m =b 2=4,∴m =-14,故选C.2.中心在原点,焦点在x 轴上,且一个焦点在直线3x -4y +12=0上的等轴双曲线的方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4答案 A解析 令y =0,得x =-4, ∴等轴双曲线的一个焦点为(-4,0), ∴c =4,a 2=b 2=12c 2=12×16=8,故选A.3.双曲线x 2-y 2m=1的离心率大于2的充要条件是( ) A .m >12B .m ≥1C .m >1D .m >2 答案 C解析 由题意得,a 2=1,b 2=m >0,∴c 2=m +1 ∴e =c a=m +1>2,∴m >1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,则其渐近线方程为________________.答案 y =±33x解析 由题意知,e =c a =233,得c 2a 2=43.又c 2=b 2+a 2,所以b 2+a 2a 2=43. 故b 2a 2=13. 所以b a =33,所以该双曲线的渐近线方程为y =±33x .5.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围为________. 答案 (-2,2)解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.1.知识清单: (1)双曲线的几何性质. (2)双曲线的离心率的求法.2.方法归纳:定义法、函数与方程、数形结合. 3.常见误区:忽略双曲线中x ,y 的范围.1.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.31414B.324C.32D.43答案 C解析 由题意知a 2+5=9,解得a =2,e =c a =32.2.双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A.12 B.22 C .1 D. 2 答案 B解析 双曲线x 2-y 2=1的渐近线方程为x ±y =0,顶点坐标为(1,0),(-1,0),故顶点到渐近线的距离为22. 3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则双曲线C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12. 故双曲线C 的渐近线方程为y =±12x ,故选C. 4.已知双曲线方程为x 2-y 24=1,过点P (1,0)的直线l 与双曲线只有一个公共点,则l 共有( ) A .4条 B .3条 C .2条 D .1条答案 B解析 因为双曲线方程为x 2-y 24=1,则P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则双曲线C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 双曲线C 的渐近线方程为y =±b a x ,点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2, 又a 2+b 2=c 2=25,解得b 2=5,a 2=20,故选A.6.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.答案 4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,所以|AB |=4 3.7.已知双曲线方程为8kx 2-ky 2=8(k ≠0),则其渐近线方程为________________. 答案 y =±22x解析 由已知令8kx 2-ky 2=0,得渐近线方程为y =±22x .8.过双曲线x 2-y 23=1的左焦点F 1作倾斜角为π6的弦AB ,则|AB |=________.答案 3解析 易得双曲线的左焦点F 1(-2,0),∴直线AB 的方程为y =33(x +2), 与双曲线方程联立,得8x 2-4x -13=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+13×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-138=3. 9.求适合下列条件的双曲线的标准方程.(1)两顶点间的距离是6,两焦点所连线段被两顶点和中心四等分;(2)渐近线方程为2x ±3y =0,且两顶点间的距离是6.解 (1)由两顶点间的距离是6,得2a =6,即a =3.由两焦点所连线段被两顶点和中心四等分可得2c =4a =12,即c =6,于是有b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1. (2)设双曲线方程为4x 2-9y 2=λ(λ≠0),即x 2λ4-y 2λ9=1(λ≠0),由题意得a =3. 当λ>0时,λ4=9,λ=36, 双曲线方程为x 29-y 24=1; 当λ<0时,-λ9=9,λ=-81, 双曲线方程为y 29-x 2814=1. 故所求双曲线的标准方程为x29-y24=1或y29-x2814=1.10.过双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,求双曲线C的离心率.解如图所示,不妨设与渐近线平行的直线l的斜率为ba,又直线l过右焦点F(c,0),则直线l的方程为y=ba(x-c).因为点P的横坐标为2a,代入双曲线方程得4a2a2-y2b2=1,化简得y=-3b或y=3b(点P在x轴下方,故舍去),故点P的坐标为(2a,-3b),代入直线方程得-3b=ba(2a-c),化简可得离心率e=ca=2+ 3.11.如图,双曲线C:x29-y210=1的左焦点为F1,双曲线上的点P1与P2关于y轴对称,则|P2F1|-|P1F1|的值是()A.3 B.4 C.6 D.8答案 C解析 设F 2为右焦点,连接P 2F 2(图略),由双曲线的对称性,知|P 1F 1|=|P 2F 2|,所以|P 2F 1|-|P 1F 1|=|P 2F 1|-|P 2F 2|=2×3=6.12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是()A .3B .2 C. 3 D. 2答案 B解析 设椭圆与双曲线的标准方程分别为x 2a 2+y 2b 2=1(a >b >0), x 2m 2-y 2n 2=1(m >0,n >0), 因为它们共焦点,所以设它们的半焦距均为c ,所以椭圆与双曲线的离心率分别为e 1=c a ,e 2=c m, 由点M ,O ,N 将椭圆长轴四等分可知m =a -m ,即2m =a ,所以e 2e 1=c m c a=a m=2. 13.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,点P ,Q 在双曲线的右支上,由双曲线的定义,得|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,∴△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.14.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1),即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-k ,x 2-y 22=1,得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2, 所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2), 则⎩⎨⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2). 因为x 1≠x 2,所以y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2, 所以k AB =2×1×22×2=1, 所以直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0. 所以直线AB 的方程为y =x +1.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A.43 B.53 C .2 D.73答案 B解析 ∵P 在双曲线的右支上,∴由双曲线的定义可得|PF 1|-|PF 2|=2a , ∵|PF 1|=4|PF 2|,∴4|PF 2|-|PF 2|=2a ,即|PF 2|=23a , 根据点P 在双曲线的右支上,可得|PF 2|=23a ≥c -a , ∴53a ≥c ,又∵e >1,∴1<e ≤53, ∴此双曲线的离心率e 的最大值为53. 16.已知双曲线C 1:x 2-y 24=1. (1)求与双曲线C 1有相同的焦点,且过点P (4,3)的双曲线C 2的标准方程;(2)直线l :y =x +m 分别交双曲线C 1的两条渐近线于A ,B 两点,当OA →·OB →=3时,求实数m的值.解 (1)双曲线C 1的焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 则⎩⎪⎨⎪⎧ a 2+b 2=5,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1, 所以双曲线C 2的标准方程为x 24-y 2=1. (2)双曲线C 1的渐近线方程为y =2x ,y =-2x ,设A (x 1,2x 1),B (x 2,-2x 2),由⎩⎪⎨⎪⎧ x 2-y 24=0,y =x +m ,消去y 化简得3x 2-2mx -m 2=0, 由Δ=(-2m )2-4×3×(-m 2)=16m 2>0,得m ≠0.因为x 1x 2=-m 23, OA →·OB →=x 1x 2+2x 1(-2x 2)=-3x 1x 2=m 2, 所以m 2=3,即m =±3.。
(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
双曲线的基本知识点(大全)

双曲线的基本知识点(大全)双曲线的基本知识点(大全)双曲线,这在高中数学中是一大考点,那么双曲线知识点又有什么重点呢?下面小编给大家整理了关于双曲线的基本知识点的内容,欢迎阅读,内容仅供参考!双曲线的基本知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的'直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。
但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
双曲线经典知识点总结-双曲线知识点总结

双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1.双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2.若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3.若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a >0,b >0)的简单几何性质(1)对称性:对于双曲线标准方程(a >0,b >0),把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a 和x=a 的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x ≤-a 或x ≥a 。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(―a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。
(完整版)双曲线标准方程及几何性质知识点及习题

双曲线标准方程及几何性质知识点及习题1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。
这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。
2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。
定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。
当曲线上一点沿曲线无限远离原点时,如果到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
无限接近,但不可以相交。
例1. 方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。
注:c 2=a 2+b 2【例2】求虚轴长为12,离心率为54双曲线标准方程。
【例3】求焦距为26,且经过点M (0,12)双曲线标准方程。
练习。
焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x【例4】与双曲线221916x y -=有公共渐进线,且经过点(3,A -练习。
求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.解决双曲线的性质问题,关键是找好等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。
双曲线基本知识点

双曲线基本知识点1. 什么是双曲线?在数学中,双曲线是平面上的一种特殊曲线,它与椭圆和抛物线类似,都是由焦点和直角的性质定义的。
双曲线有许多重要的应用,特别是在几何学、物理学和工程学中。
2. 双曲线的方程双曲线的一般方程可以写成:其中a和b分别是椭圆的半轴长度。
当a和b相等时,我们得到一个标准形式的双曲线:3. 双曲线的性质对称轴双曲线有两条对称轴:x轴和y轴。
对称轴通过焦点,并且与直角垂直。
焦点焦点是双曲线上最重要的点之一。
对于标准形式的双曲线,焦点位于原点的左右两侧。
焦点与直角的距离由半轴长度决定。
集中距离集中距离是指从原点到双曲线上任意一点的距离与该点到焦点的距离之差。
对于标准形式的双曲线,集中距离等于半轴长度。
渐近线双曲线有两条渐近线,分别与双曲线无限接近但永远不会相交。
渐近线的斜率等于b/a或-a/b,取决于椭圆的方程形式。
离心率离心率是描述椭圆形状的一个重要参数。
对于标准形式的双曲线,离心率等于根号下(a^2 + b^2)/a。
4. 双曲线的类型根据椭圆方程中a和b的关系,可以将双曲线分为以下几种类型:横向双曲线当a^2 > b^2时,我们得到一个横向双曲线。
这意味着双曲线在x轴上延伸,并且在y轴上收敛。
纵向双曲线当a^2 < b^2时,我们得到一个纵向双曲线。
这意味着双曲线在y轴上延伸,并且在x轴上收敛。
等轴双曲线当a^2 = b^2时,我们得到一个等轴双曲线。
这意味着双曲线在两个方向上都延伸,并且对称于原点。
5. 双曲函数与双曲线相关的函数被称为双曲函数。
常见的双曲函数包括双曲正弦、双曲余弦和双曲正切。
双曲正弦(sinh)双曲余弦(cosh)双曲正切(tanh)%3D-%20i+%20tan(i x))6. 双曲线的应用由于其特殊的性质,双曲线在许多领域中都有重要的应用。
物理学双曲线经常用于描述电磁波、粒子运动和引力场等物理现象。
例如,电磁波在空间中传播的路径可以由双曲线方程表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、双曲线
一、双曲线及其简单几何性质
(一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨
迹叫做双曲线。
定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。
● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支);
当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支);
② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。
双曲线12222=-b y a x 与122
22=-b
x a y (a>0,b>0)的区别和联系
(二)双曲线的简单性质
1.范围: 由标准方程122
22=-b
y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的
方向来看,随着x 的增大,y 的绝对值也无限增大。
x 的取值范围________ ,y 的取值范围______
2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________
特殊点:____________
实轴:21A A 长为2a, a 叫做半实轴长
虚轴:21B B 长为2b ,b 叫做半虚轴长
双曲线只有两个顶点,而椭圆则有四个顶点
4.离心率:
双曲线的焦距与实轴长的比
a c
a c e =
=
22,叫做双曲线的离心率 范围:___________________
双曲线形状与e 的关系:1122
222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越
大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔
5.双曲线的第二定义:
到定点F 的距离与到定直线l 的距离之比为常数
)0(>>=
a c a c
e 的点的轨迹是双曲线 其中,定点叫做双
曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程:
对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2
1:-=, 相对于右焦点)0,(2c F 对应着右准线
c a x l 2
2:=
; 6.渐近线
过双曲线122
2
2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线
围成一个矩形 矩形的两条对角线所在直线方程是____________或(0
=±b y
a x ),这两条直线就是双曲线
的渐近线
双曲线无限接近渐近线,但永不相交。
7.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线
性质:(1)渐近线方程为:x y ±=; (2)渐近线互相垂直; (3)离心率2=e
8.共渐近线的双曲线系
与双曲线122
22=-b y a x (a >0,b >0)共渐近线的双曲线方程可表示为λ=-2222b y a x (λ≠0且λ为待定
常数)
●备注:与双曲线122
22=-b y a x (a >b >0)共焦点的双曲线方程可表示为1-222
2=+-λ
λb y a x (λ<a 2,且b 2> - λ)
例1 求与双曲线 - =1有共同渐近线且过点(2,3)的双曲线方程.
9.共轭双曲线
以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三个量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上
确定双曲线的共轭双曲线的方法:将1变为-1
10 .双曲线的焦半径
定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径 焦半径公式的推导:利用双曲线的第二定义,
设双曲线 )0,0( 12
2
22>>=-b a b y a x ,21,F F 是其左右焦点 则由第二定义:e d MF =11,
∴
e c
a
x MF =+
2
01 a x MF +=∴01e 同理 a ex MF -=02
11.通径 定义:过焦点且垂直于对称轴的焦点弦
a b d 2
2=。