剪切波速汇报
剪切波速

琼中白鹭湖度假区19#楼场地土剪切波速测试报告工程名称:琼中白鹭湖度假区19#楼场地位置:琼中县湾岭镇白鹭湖度假区测试人员:黄小松报告编写:黄小松审核人:周龙茂东华理工大学勘察设计研究院二O一三年十一月一、项目概况琼中白鹭湖度假区19#楼详细勘察为确定场地各土层剪切波波速和土层等效剪切波,划分建筑场地的类别。
现场进行了场地土层剪切波试验,本次完成测试孔2个(编号为ZK4、ZK13)。
二、地质概况地质概况详见“琼中白鹭湖度假区19#楼岩土工程详细勘察报告”。
三、野外工作方法与技术1、剪切波速测试工作方法本次试验采用单孔法波速测试——敲板法。
震源设置在离孔口1.5米左右的地方,木板与地面耦合良好,木板上压上数百公斤重物,木板中心位置应正对钻孔,精确测量震源至孔口距离。
测量时,井中三分量检波器(探头)放至孔底,由深到浅测量,测点点距为1米。
在板两端用重锤垂直测线沿水平方向敲击并采集数据。
测试过程如图1所示。
测试仪器采用武汉岩海的RS-1616K动测仪及配套设备。
2、遵循的技术标准《建筑抗震设计规范》(GB 50011—2010)(2010版);《地基动力特性测试规范》(GB/T 50269-97)。
3、土的分类及场地类别判别标准(1)按表1划分土的类型土的类型划分和剪切波速范围表1ak(2)建筑的场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表2划分为四类各类建筑场地的覆盖层厚度(m)表2四、数据采集与处理根据工作任务,现场采集了2个孔的剪切波速数据。
数据处理,室内采用武汉岩海公司剪切波分析程序分析。
利用该程序提供的数据处理功能进行曲线修正,有数字滤波、平滑、消除直流、前清零、后清零、波形前移、波形后移、波形反相等。
完成工勘资料的输入,人工分层,并输出成果图,成果图有原始波形图、剪切波速直方图。
五、测试结果与结论1、测试结果场地各岩土层剪切波波速值测试结果如下表各土层剪切波波速值(m/s ) 表32、测试结论(1)根据《建筑抗震设计规范》(GB50011-2010)(2010版)土的类型划分和剪切波速范围来确定(即表1):该场地土的类型属中软土。
剪切波速测试报告

剪切波速测试报告1.引言剪切波速是指材料在受到剪切力作用下的传播速度,是材料力学性能的重要指标之一、本次测试旨在通过对不同材料的剪切波速进行测试,以评估其力学性能和实际应用价值。
2.测试方法2.1 试样制备:选取不同材料的实验片,尺寸为100mm×100mm×10mm,要求试样表面光滑平整,以保证测试结果的准确性。
2.2仪器设备:本次测试采用高精度剪切波仪器,能够准确测量材料剪切波的传播时间和距离。
2.3测试步骤:1)将试样放置在剪切波仪器上,调整好位置。
2)启动仪器,设定合适的测试参数。
3)利用仪器发出剪切波信号,测量传播时间和距离。
4)重复以上步骤,以保证测试结果的精确性。
5)记录测试数据并进行分析。
3.测试结果与分析3.1不同材料的剪切波速测试结果如下表所示:材料,剪切波速(m/s)----------,----------------金属材料,3500陶瓷材料,2500橡胶材料,12003.2结果分析:从上表中可以看出,金属材料的剪切波速最高,达到3500m/s,表明金属材料具有很高的强度和刚性;陶瓷材料的剪切波速稍低,在2500m/s 左右,说明陶瓷材料在强度和刚性方面略低于金属材料;而橡胶材料的剪切波速最低,仅为1200m/s,说明橡胶材料具有较低的强度和刚性。
4.结论通过对不同材料的剪切波速进行测试,并对测试结果进行分析金属材料具有较高的剪切波速,表明其具有良好的力学性能和实际应用价值;陶瓷材料在剪切波速方面略低于金属材料,但仍具有一定的强度和刚性;橡胶材料的剪切波速最低,说明其在力学性能方面较差,适用范围相对较窄。
5.建议根据上述结论,可以对各种材料的应用进行适当调整和优化,选择合适的材料来满足不同需求;此外,还可以进一步研究材料的微观结构与剪切波速之间的关系,以提高材料的力学性能和应用效能。
综上所述,剪切波速测试是评估材料力学性能和实际应用价值的重要手段之一、通过对不同材料的剪切波速进行测试,并对测试结果进行分析,可以为材料的选择和应用提供有益的参考和指导。
土层剪切波速度测试报告

**民生产业基地土层剪切波速度测试报告深圳市**有限公司二0一七年十月二十七日**民生产业基地土层剪切波速度测试报告测试:报告编写:审核:批准:深圳市**有限公司二0一七年十月二十七日测试单位地址:深圳市**号邮编:联系电话:联系人:目录1.前言 (1)2.测试目的及执行标准 (1)2.1测试目的 (1)2.2执行标准 (1)3.测试方法及仪器设备 (1)3.1测试方法 (1)3.2仪器设备 (2)4.测试结果 (2)5.地面脉动的卓越周期 (5)1.前言受深圳市**有限公司委托,我公司于2017年09月21日至017年09月29日对**民生产业基地场地进行了3个钻孔的土层剪切波速度测试工作。
波速测试孔附近场地内自上而下主要有如下岩土层:素填土、粉质黏土、全风化混合岩、强风化混合岩、中风化混合岩、微风化混合岩。
2.测试目的及执行标准2.1测试目的本次试验目的是提供地层剪切波波速,判定土的类型及建筑场地类别;提供场地卓越周期。
2.2执行标准《岩土工程勘察规范》(GB 50021-2001)(2009年版) 《建筑抗震设计规范》(GB 50011-2010)(2016年版)3.测试方法及仪器设备3.1测试方法本项目剪切波速度测试采用单孔检层法,将起振板置于距井口约1.0~1.5米处,并使其中点与井口的连线垂直于起振板,同时在其上面加压整体性较好的重物。
然后,锤击起振板产生纵波和剪切波(记录时通过调节仪器采样率对纵波和剪切波分开采集),并通过置于井内的三分向拾振器将土的振动历程输入电脑分析,获得各测点纵波和剪切波的到时,并利用下式计算相应剪切波速:Vi =(h i -h i-1)/(t i sin αi -t i-1sin αi-1) (1) 22sin i i ii D h h +=α (2)i=1......N其中h i ,t i 分别为第i 测点的深度和剪切波的走时,D 为起振板中点至孔口的垂直距离。
波速测试报告1

一、前言辽宁水文地质工程地质勘察院物探工程处于2009年12月8日在胜宝地产小平岛项目场地进行了剪切波速测试工作,以确定该场地各地层的剪切波波速值。
二、测试依据的规范《地基动力特性测试规范》(GB/T 50269-97);三、完成的工作量本次工作测试了5个钻孔,共完成78米的剪切波速测试工作。
四、测试仪器及测试方法简介1、测试仪器采用重庆奔腾数控技术研究所研制生产的WZG-24A工程地震仪,该仪器适用于钻孔原位波速测试、常时微动测试等。
该仪器具有信号自动增益、采集、图形显示、数据存盘、数据分析、打印等功能。
配有剪切波分析系统软件。
现场测试的仪器配接如图1所示。
图1 测试仪器配接示意图各孔利用水平锤击上压汽车两前轮的木板激发剪切波,木板下部铺沙垫平,以保证与地面紧密接触。
木板的长向中垂线对准测试孔中心,孔口与木板的距离为1米,满足《地基动力特性测试规范》(GB/T 50269-97)的相关要求。
对每个钻孔,测点的划分合理地考虑了场地地质分层和《地基动力特性测试规范》规定的每隔1~3米布置一个测点的要求。
测试时均采用自下而上按预定1m的深度进行测量的方式。
2、剪切波速测试处理结果利用剪切波测试系统软件进行分析,将板距、地层等参数输入,分析处理得到各孔的剪切波波速直方图,从该图上可以确定出不同深度地层的剪切波速值。
具体情况详见各孔的剪切波波速直方图。
五、结论通过对5个钻孔的原位测试工作,得到该场地不同地层的剪切波速值如下:杂填土:Vs=135m/s;碎石:Vs=322m/s;全风化板岩:Vs=412m/s;强风化板岩:Vs=540m/s;中风化板岩:Vs=952m/s;Zk6钻孔剪切波速直方图Zk28钻孔剪切波速直方图Zk33钻孔剪切波速直方图。
波速文字报告

嵊州鹿山路地块东段地块单孔波速测试报告一、前言嵊州鹿山路地块东段地块位于嵊州市鹿山路,由嵊州市信和置业有限公司投资开发,本工程包含5幢高层住宅,受业主的委托,由我公司承担嵊州鹿山路地块东段地块的单孔波速测试工作。
本次单孔剪切波波速测试在拟建建筑场地共测5个孔,测孔编号为Z93、Z100、Z107、Z113和Z121孔,测试深度19.00m~21.00m不等,测试工作于2012年2月29日至2012年3月10日期间陆续进行,执行如下有关规范:⑴国标《岩土工程勘察规范》(GB50021-2001);⑵行标《浅层地震勘查技术规范》(DZ/T0170-1997);⑶国标《地基动力特性测试规范》(GB/T50269-97);⑷国标《建筑抗震设计规范》(GB50011-2010)。
二、方法原理、仪器设备及测试1.方法原理各地质土层由于其沉积年代不同,土质颗粒度、孔隙度和密度等物理性质必然存在着一定的差异,从而导致弹性波在各土层中的传播速度有所不同。
弹性波的传播特性不仅仅取决与介质的受力状态,还有其物理力学性质,如弹性模量、剪切模量和泊松比等。
根据弹性波动理论,弹性波在介质中传播时,其传播波速与介质的物理力学参数有下列关系:其中V p、V s分别为传播介质的纵、横波波速,γ为泊松比,ρ为密度,E d 为动弹性模量,G d为动剪切模量。
单孔波速测试技术就是建立在上述理论基础上的一种波速测试方法。
该方法是在地面水平方向敲击激震板,从而产生向土层四周传播的压缩波和剪切波,有孔中的三分量传感器接受直达的压缩波和剪切波,根据波的初至时间,计算出两波在土层中的传播速度V p和V s。
2.仪器设备⑴桩基动测仪⑵三分量传感器⑶钉耙式激震板和铁锤所有仪器的系统性能均满足GB/T50269-97规范中的方法要求。
3.现场测试现场测试见单孔波速测试安装示意图、测试步骤如下:⑴激震板的安放:距孔口1.5m左右,压重不小于400kg;⑵将三分量传感器放置于钻孔内,由深至浅,每间隔1m进行一次采样;⑶正、反向各敲击一次激震板,接收并存储正、反向波形数据。
土层剪切波速度测试报告

**民生产业基地土层剪切波速度测试报告深圳市**有限公司二0一七年十月二十七日**民生产业基地土层剪切波速度测试报告测试:报告编写:审核:批准:深圳市**有限公司二0一七年十月二十七日测试单位地址:深圳市**号邮编:联系电话:联系人:1.前言12.测试目的及执行标准1 2.1测试目的12.2执行标准13.测试方法及仪器设备1 3.1测试方法13.2仪器设备24.测试结果25.地面脉动的卓越周期51.前言受深圳市**有限公司委托,我公司于2017年09月21日至017年09月29日对**民生产业基地场地进行了3个钻孔的土层剪切波速度测试工作。
波速测试孔附近场地内自上而下主要有如下岩土层:素填土、粉质黏土、全风化混合岩、强风化混合岩、中风化混合岩、微风化混合岩。
2.测试目的及执行标准2.1测试目的本次试验目的是提供地层剪切波波速,判定土的类型及建筑场地类别;提供场地卓越周期。
2.2执行标准《岩土工程勘察规范》(GB50021-2001)(2009年版)《建筑抗震设计规范》(GB50011-2010)(2016年版)3.测试方法及仪器设备3.1测试方法本项目剪切波速度测试采用单孔检层法,将起振板置于距井口约1.0〜1.5米处,并使其中点与井口的连线垂直于起振板,同时在其上面加压整体性较好的重物。
然后,锤击起振板产生纵波和剪切波(记录时通过调节仪器采样率对纵波和剪切波分开采集),并通过置于井内的三分向拾振器将土的振动历程输入电脑分析,获得各测点纵波和剪切波的到时,并利用下式计算相应剪切波速:Vi=(hi-hi-1)/(tisin a j-tiTsin a iy)(1)sina.=h,h2+D2(2)ii iii=1N其中hi,ti分别为第i测点的深度和剪切波的走时,D为起振板中点至孔口的垂直距离。
现场测试时,一般每一岩土层都有一个测点每1〜2米左右一测点。
3.2仪器设备本次测试所采用仪器为武汉岩海工程技术开发公司RS-1616K(S)型波速测试仪,其采样速率为剪切波250厚、频带宽度1-300HZ。
场地土剪切波速测试报告

附件3:场地土剪切波速测试报告报告编号:2016.0.02.从1工程名称:中铁五局(集团)有限公司科研培训中心工程地点:广州市南沙区工业五路5号主要检测人:报告编写人:报告审核人:试验日期:2012年8月26日~2012年8月28日中国有色金属长沙勘察设计研究院有限公司试验室二○一二年九月目录1、前言2、测试原理及仪器设备3、野外测试方法4、资料整理5、测试成果1、前言我公司于2012年8月26日~2012年8月28日对拟建中铁五局(集团)有限公司科研培训中心场地进行了剪切波速测试。
执行标准:《岩土工程勘察规范》(GB50021-2001)(2009年版);《建筑抗震设计规范》(GB50011-2010);《地基动力特性测试规范》(GB/T50269-97)。
本次测试共完成波速测试孔2个,钻孔编号ZK16、ZK17号。
2、测试原理及仪器设备2.1 测试原理通过人工激发产生的剪切波,穿过被测土层,被传感器接收转换成电讯号,输入仪器放大并记录下来。
由激发点和接收点的相对位置,可知波的传播距离,由激发时间和波到接收点的初至时间,可知波的传播时间,因而便可计算出剪切波在被测土层中的传播速度。
2.2 仪器设备采用武汉岩海公司生产的RS—1616J桩基动测仪及日本OYO公司生产的井中三分量检波器, 该仪器采用专门设计的电脑与大屏幕液晶显示器;通过键盘和液晶显示器进行人机对话,菜单式提示操作,可在强干扰环境中提取有用信息,准确测试波的传播时间。
采用地面激发井中接收,测量点距1-3m ;工作中先将探头放入井底,然后自下而上逐点激振采样。
对每个接收点均进行正反向水平激发并记录各激振波形。
采样间隔100~400μs,记录长度100~400ms。
3、野外测试方法采用单孔检层法:将激振板置于孔口附近地面,并使其中点与孔口的连线垂直于激振板,板上加压400公斤以上重物。
用激振锤横向敲击激振板两端,产生剪切波向地下传播。
将三分量检波器置于孔中不同深度处,接收剪切波输入仪器记录。
剪切波速

琼中白鹭湖度假区19#楼场地土剪切波速测试报告工程名称:琼中白鹭湖度假区19#楼场地位置:琼中县湾岭镇白鹭湖度假区测试人员:黄小松报告编写:黄小松审核人:周龙茂东华理工大学勘察设计研究院二O一三年十一月一、项目概况琼中白鹭湖度假区19#楼详细勘察为确定场地各土层剪切波波速和土层等效剪切波,划分建筑场地的类别。
现场进行了场地土层剪切波试验,本次完成测试孔2个(编号为ZK4、ZK13)。
二、地质概况地质概况详见“琼中白鹭湖度假区19#楼岩土工程详细勘察报告”。
三、野外工作方法与技术1、剪切波速测试工作方法本次试验采用单孔法波速测试——敲板法。
震源设置在离孔口1.5米左右的地方,木板与地面耦合良好,木板上压上数百公斤重物,木板中心位置应正对钻孔,精确测量震源至孔口距离。
测量时,井中三分量检波器(探头)放至孔底,由深到浅测量,测点点距为1米。
在板两端用重锤垂直测线沿水平方向敲击并采集数据。
测试过程如图1所示。
测试仪器采用武汉岩海的RS-1616K动测仪及配套设备。
2、遵循的技术标准《建筑抗震设计规范》(GB 50011—2010)(2010版);《地基动力特性测试规范》(GB/T 50269-97)。
3、土的分类及场地类别判别标准(1)按表1划分土的类型土的类型划分和剪切波速范围表1ak(2)建筑的场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表2划分为四类各类建筑场地的覆盖层厚度(m)表2四、数据采集与处理根据工作任务,现场采集了2个孔的剪切波速数据。
数据处理,室内采用武汉岩海公司剪切波分析程序分析。
利用该程序提供的数据处理功能进行曲线修正,有数字滤波、平滑、消除直流、前清零、后清零、波形前移、波形后移、波形反相等。
完成工勘资料的输入,人工分层,并输出成果图,成果图有原始波形图、剪切波速直方图。
五、测试结果与结论1、测试结果场地各岩土层剪切波波速值测试结果如下表各土层剪切波波速值(m/s ) 表32、测试结论(1)根据《建筑抗震设计规范》(GB50011-2010)(2010版)土的类型划分和剪切波速范围来确定(即表1):该场地土的类型属中软土。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪切波速
剪切波速是区别土动力学和土静力学的一个主要物理量。
它反映了土在动力影响下的惯性作用和波传行为。
因此也是反映土体在地震作用下行为反应的一个重要物理量。
土层的剪切波速Vs只与组成土层的骨架的性质有关, 而与孔隙中的充填物无关, 这是由剪切波的运动特点所决定的, 剪切波是由介质的质点垂直于传播方向的振动形式向前运动的,即后一个质点的振动是由前一个质点的振动产生的剪切作用力所推的。
剪切波的这一传播特性决定了它不能在气体或液体中传播, 因此, 剪切波速Vs与介性中是否含有气体或液体无关, 而只与土层骨架的性质有关。
土层的骨架性质变化是一个漫长的缓慢的渐变过程, 其性质是相对稳定的。
对于一种特定的土层而言, 它有比较稳定的剪切波速值, 它几乎不受时间及自然条件的影响。
所以, 剪切波速是衡量土层物理力学性质的一项硬指标。
在工程试验中,通常假定所试验的土层位均匀土层,或者各层均匀土体,在这种土体中,远离任何边界的波动,存在两种基本莫泰:压缩波(P波)和剪切波(S波),他们的传播速度取决于弹性介质的刚度和质量密度,即:
V p=M
=
E1−υ
(1)V s=
G
ρ(2)
其中ρ为土体质量密度,M、G和E分别是约束、剪切模量和杨氏模量,υ为泊松比。
而在均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由换算公式求出其他所有的弹性模量,由以上两公式知,我们以杨氏模量E和泊松比υ为变量,那么剪切模量G就可以表示为:
G=
E
2(1+υ)(3)
那么(2)式可变为:
V s=E1
(4)
对比(1)式和(4)式,压缩波(P波)波速V p和和剪切波(S波)波速V s有公共因子 Eρ,因此归一化后,可得压缩波(P波)波速V p和和剪切波(S波)波速V s随泊松比变化的趋势图(图1),土层泊松比的取值范围是0.3~0.5。
图1. 压缩波(P波)波速V p和和剪切波(S波)波速V s随泊松比变化的趋势图
由图1可以清晰地看出压缩波(P波)波速V p和和剪切波(S波)波速V s随泊松比的变化趋势,显然剪切波(S波)波速V s基本没有变化。
因此,剪切波速可以作为探讨土的本构关系和研究土力学的一个重要参数。
剪切波速在抗震工程中的研究与应用
剪切波速可用于场地土类型划分、判别地基饱和砂土或少粘性土(轻亚粘土)土层地震液化可能性、土工建筑物及地基在地震中的反应分析、鉴别饱和砂原位动力特性、确定土层的力学参数等。
剪切波速的测试方法
目前,剪切波速的测试方法总体上可以分为两大类:有损检测和无损检测
接下来要做的事情:
1、了解剪切波速的各种测试方法
2、了解剪切波速的现状及未来发展。