试验四光开关特性测量
光电开关实验

中国计量学院实验报告课程名称:《电子基础实验》实验项目:光电开关实验实验报告人:金莹莹实验时间:2010.10.21实验(一)透射式光电开关一、实验目的了解透射式光电开关组成原理及应用。
二、实验仪器光电实验装置、光电器件实验模块(一)、普通发光二极管、光敏二极管、主机箱见图1光敏器件实验装置图。
三、实验原理光电开关可以由一个光发射管和一个接收管组成(光耦、光断续器)。
当发射管和接收管之间无遮挡时,接收管有光电流产生,一旦此光路中有物体阻挡时光电流中断,利用这种特性可制成光电开关用于工业零件计数、控制等。
四、实验内容与步骤1、将发光二极管两端接入实验模板光敏器件输入两端(注意极性),将实验模板上的电流表的两个插孔用线短接,再将光敏二极管(接收管)两端引入实验模块的光敏接收器件两端,再将实验模块上的VCC插孔与“⊥”插孔接到主机箱的+5V电源的相应插孔上。
2、开启主机箱电源,用手或者其他物体挡住发光二极管与光敏二极管之间的光路,接收管接收不到光,实验模板上的发光二极管不点亮,当光路中无物体阻隔畅通时,实验模板上的发光二极管亮,由此形成了开关功能。
五、实验结果当接收管和发射管间无遮挡时,开关指示灯亮;当有遮挡时,开关指示灯灭。
六、注意事1)避免强光源光电开关在环境照度较高时,一般都能稳定工作。
但应回避将传感器光轴正对太阳光、白炽灯等强光源。
在不能改变传感器(受光器)光轴与强光源的角度时,可在传感器上方四周加装遮光板或套上遮光长筒。
2)防止相互干扰防止相互干扰最有效的办法是投光器和受光器交叉设置,超过2组时还拉开组距。
当然,使用不同频率的机种也是一种好办法。
实验(二)红外线反射式光电开关一、实验目的了解红外线光耦开关的组成及基本原理。
二、实验仪器光电器件实验(光开关)模板、主机箱、反射光耦三、基本原理红外线开关模块(OW2152反射式光耦)中有一个红外发射二极管和红外三极管组成。
当物体接近时,发射管发射的红外线被物体反射回来接收管上,被接收管接收。
液晶光开关实验报告(3篇)

第1篇一、实验目的1. 理解液晶光开关的基本工作原理,掌握其电光特性。
2. 通过实验测量液晶光开关的电光特性曲线,并从中得到液晶的阈值电压和关断电压。
3. 探究驱动电压周期变化对液晶光开关性能的影响。
二、实验原理液晶是一种具有光学各向异性的有机化合物,其分子在电场作用下会改变排列方向,从而影响光线的传播。
液晶光开关利用这一特性,通过施加电压来控制光的透过。
TN(扭曲向列)型液晶光开关是最常用的液晶光开关之一。
其基本工作原理如下:1. 在两块玻璃板之间夹有液晶层,其中液晶分子在未加电压时呈扭曲排列,使得入射光发生偏振。
2. 当施加电压后,液晶分子排列方向改变,扭曲消失,光线的偏振状态也随之改变。
3. 通过控制电压的大小,可以调节光线的透过情况,从而实现光开关的功能。
三、实验仪器与材料1. 液晶电光效应实验仪一台2. 液晶片一块3. 可变电压电源一台4. 光强计一台5. 记录仪一台6. 连接线若干四、实验步骤1. 将液晶片放置在实验仪中,并调整光路,使光线垂直照射到液晶片上。
2. 连接可变电压电源,设置初始电压为0V。
3. 使用光强计测量透过液晶片的光强,记录数据。
4. 逐渐增加电压,每次增加0.5V,重复步骤3,记录数据。
5. 绘制电光特性曲线,分析阈值电压和关断电压。
6. 改变驱动电压的周期,重复实验,观察液晶光开关性能的变化。
五、实验结果与分析1. 电光特性曲线:根据实验数据,绘制电光特性曲线,如图1所示。
曲线呈现出典型的非线性关系,表明液晶光开关的电光特性。
图1 电光特性曲线2. 阈值电压和关断电压:根据电光特性曲线,确定阈值电压和关断电压。
阈值电压为液晶光开关开始工作的电压,关断电压为液晶光开关完全关闭的电压。
3. 驱动电压周期变化对性能的影响:改变驱动电压的周期,观察液晶光开关性能的变化。
实验结果表明,驱动电压周期变化对液晶光开关性能有一定影响,但影响程度较小。
六、结论1. 本实验成功实现了液晶光开关的电光特性测量,并得到了阈值电压和关断电压。
实验四pn结特性测量

实验四pn结特性测量实验四 pn 结特性测量⼀、前⾔早在六⼗年代初,⼈们就试图⽤PN 结正向压降随温度升⾼⽽降低的特性作为测温元件,由于当时PN 结的参数不稳定,始终未进⼊实⽤阶段。
随着半导体⼯艺⽔平的提⾼及⼈们不断的探索,到七⼗年代时,PN 结以及在此基础上发展起来的晶体管温度传感器,已成为⼀种新的测温技术跻⾝于各个领域了。
众所周知,常⽤的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各⾃的优点,但也有它的不⾜之处,如热电偶适⽤温度范围宽,但灵敏度低、线性差且需要参考温度;热敏电阻灵敏度⾼、热响应快、体积⼩,缺点是⾮线性,这对于仪表的校准和控制系统的调节均感不便;测温电阻器如铂电阻虽有精度⾼、线性好的长处,但灵敏度低且价格贵;⽽PN 结温度传感器则具有灵敏度⾼、线性好、热响应快和体⼩轻巧等特点,尤其是温度数字化、温度控制以及⽤微机进⾏温度实时信号处理等⽅⾯,仍是其它温度传感器所不能⽐的,其应⽤势必⽇益⼴泛。
⽬前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放⼤等电路组成⼀块集成电路。
美国Motorola 电⼦器件公司在1979年就开始⽣产测温晶体管及其组件,如今灵敏度⾼达100mV/℃、分辨率不低于0.1℃的硅集成电路温度传感器也已问世。
但是以硅为材料的这类传感器也不是尽善尽美的,在⾮线性不超过标准值0.5%的条件下,其⼯作温度⼀般不超为-50℃~150℃,与其它温度传感器相⽐,测温范围的局限性较⼤,如果采⽤不同材料如锑化铟或砷化镓的PN 结可以展宽低温区或⾼温区的测量范围。
⼋⼗年代中期我国就研制成功以SiC 为材料的PN 结温度传感器,其⾼温区可延伸到500℃,并荣获国际博览会⾦奖。
⾃然界有丰富的材料资源,⽽⼈类具有⽆穷的智慧,理想的温度传感器正期待着⼈们去探索、开发。
⼆、实验⽬的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
液晶电光效应

液晶电光效应实验液晶是介于液体与晶体之间的一种物质状态。
一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性,当光通过液晶时,会产生偏振面旋转,双折射等效应。
液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。
一、实验目的(1)在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性,由光开关的特性曲线,得到液晶的阈值电压和关断电压,上升时间和下降时间。
(2)测量液由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶的工作条件。
(3)了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构文字和图形的的显示模式,从而了解液晶显示器件的工作原理。
二、实验仪器简介本实验所用仪器为液晶电光效应综合实验仪,其外部结构如图1所示,下面简单介绍仪器各个按钮的功能。
模式转换开关:切换液晶的静态和动态(图像显示)两种工作模式。
在静态时,所有的液晶单元所加电压相同,在动态图像显示时,每个单元所加的电压由开关矩阵控制。
同时,当开关处于静态时打开发射器,当开关处于动态时关闭发射器;静态闪烁/动态清屏切换开关:当仪器工作在静态的时候,此开关可以切换到闪烁和静止两种方式;当仪器工作在动态的时候,此开关可以清除液晶屏幕因按动开关矩阵而产生的斑点;供电电压显示:显示加在液晶板上的电压,范围在0.00V-7.60V之间;供电电压调节按键:改变加在液晶板上的电压,调节范围在0V-7.6V之间。
其中单击“+”按键或“-”按键可以增大或减小0.01V。
一直按住“+”按键或“-”按键2秒以上可以快速增大或减小供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压;透过率显示:显示光透过液晶板后光强的相对百分比;透过率校准按键:在接收器处于最大接收状态的时候(即供电电压为0V时),如果显示值大于“250”,则按住该键3秒可以将透过率校准为100%;如果供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率;液晶驱动输出:接存储示波器,显示液晶的驱动电压;光功率输出:接存储示波器,显示液晶的时间响应曲线,可以根据此曲线来得到液晶响应时间的上升时间和下降时间;扩展接口:连接LCDEO信号适配器的接口,通过信号适配器可以使用普通示波器观测液晶光开关特性的响应时间曲线,此时用信号适配器的液晶驱动输出和光功率输出接双踪示波器;发射器:为仪器提供较强的光源;液晶板:本实验仪器的测量样品;接收器:将透过液晶板的光强信号转换为电压输入到透过率显示表;开关矩阵:此为16×16的按键矩阵,用于液晶的显示功能实验;液晶转盘:承载液晶板一起转动,用于液晶的视角特性实验;电源开关:仪器的总电源开关。
光电接近开关实验报告

一、实验目的1. 了解光电接近开关的基本原理和工作原理。
2. 掌握光电接近开关的安装、调试和应用方法。
3. 通过实验验证光电接近开关在不同环境下的工作性能。
二、实验原理光电接近开关是一种利用光电效应原理实现物体检测的传感器。
当被检测物体进入光电开关的检测区域时,光电开关会输出一个信号,从而实现对物体的检测。
其基本原理如下:1. 发光器件(如LED)发出光束。
2. 光束经过被检测物体时,部分光束被遮挡或反射。
3. 接收器件(如光电二极管)接收反射光束,并将其转化为电信号。
4. 根据电信号的变化,判断物体是否存在。
三、实验器材1. 光电接近开关1套2. 信号发生器1台3. 测量仪器1套4. 实验电路板1块5. 连接线若干四、实验步骤1. 安装与调试:- 将光电接近开关按照说明书要求安装到实验电路板上。
- 连接好信号发生器和测量仪器。
- 对光电接近开关进行调试,确保其正常工作。
2. 实验一:检测距离实验:- 调整光电接近开关的检测距离,记录不同距离下光电开关的输出信号。
- 分析光电接近开关的检测距离与输出信号的关系。
3. 实验二:环境适应性实验:- 在不同光照条件下(如强光、弱光、无光)进行实验,观察光电接近开关的输出信号变化。
- 在不同温度、湿度等环境下进行实验,观察光电接近开关的输出信号变化。
4. 实验三:物体材料适应性实验:- 使用不同材料(如金属、塑料、木材)进行实验,观察光电接近开关的输出信号变化。
- 分析光电接近开关对不同材料的检测效果。
5. 实验四:光电开关应用实验:- 将光电接近开关应用于实际场景中,如自动门、流水线检测等。
- 观察光电接近开关在实际应用中的工作性能。
五、实验结果与分析1. 检测距离实验:- 实验结果表明,光电接近开关的检测距离与输出信号呈线性关系。
当检测距离增大时,输出信号逐渐减小。
2. 环境适应性实验:- 实验结果表明,光电接近开关在不同光照条件下仍能正常工作,但在强光环境下,输出信号会受到干扰。
液晶电光效应

液晶电光效应实验【实验目的】1在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2、测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3、测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4、了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶光开关电光特性综合实验仪,其外部结构如图1所示。
1、液晶早在上世纪70年代,液晶已作为物质存在的第四态开始写入物理学。
液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。
液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子有取向序,但无位置序;晶体则既有取向序又有位置序。
就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。
热致液晶又可分为近晶相、向列相和胆甾相。
其中向列相液晶是液晶显示器件的主要材料。
2、液晶电光效应液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场(电流),随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。
液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)、电控双折射(ECB)等。
其中应用较广的有:TFT型——主要用于液晶电视、笔记本电脑等高档产品;STN型------ 要用于手机屏幕等中档产品;TN型——要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。
TN型液晶显示器件显示原理较简单,是STN、TFT等显示方式的基础。
本仪器所使用的液晶样品即为TN型。
传感器实验仪实验指导书(应变 电容 霍尔 光电_光纤)2020.10.15

目录实验一金属箔式应变计三种桥路性能比较 (2)实验二电容传感器性能实验 (5)实验三霍尔式传感器—直流激励特性 (7)实验四光电开关传感器转速测量 (9)实验五光纤位移传感器静态实验 (11)实验一 金属箔式应变计三种桥路性能比较一、实验目的1、掌握应变传感器的基本工作原理;2、掌握应变传感器的测量电路(电桥电路);3、学习传感器与计算机进行通信的方法;4、掌握利用虚拟仪器技术进行数据采集;5、掌握对测试数据进行静态特性分析的方法;6、验证单臂、半桥、全桥的性能及相互之间关系。
二、预习要求1、认真阅读实验指导书,明确本次实验的目的,首先从理论上明白三种桥式电路的工作原理以及在本次实验中作用。
2、按照实验指导书的实验内容及步骤写出详细的实验步骤。
3、绘制与之对应的实验线路图,并说明详细的接线方法。
三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:/R R K ε∆=。
式中/R R ∆为电阻丝电阻的相对变化,K 为应变灵敏系数,/l l ε=∆为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压/4o U EK ε=,只有一个桥臂电阻是应变片,其余为固定电阻。
半桥测量电路中,将受力性质相反的两应变片接入电桥邻边,其余两个临边接固定电阻,输出电压/2o U EK ε=,其输出灵敏度比单臂桥提高了一倍;全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R1= R2= R3= R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压o U KE ε=。
其输出灵敏度比半桥提高了一倍,非线性误差和温度误差均得到改善。
四、实验仪器(所需单元及部件)直流稳压电源、差动变换器I 、电桥、电压表、砝码、应变片传感器、电源。
光电开关实验报告

光电开关实验报告光电开关实验报告引言:光电开关是一种常见的光电传感器,主要通过感应光的存在或消失来控制电路的开关状态。
本实验旨在通过搭建光电开关电路并观察其工作原理,进一步了解光电开关的应用和特性。
一、实验器材和原理1. 实验器材:- 光电开关模块- 电源- 电线- 电阻- 数字万用表2. 实验原理:光电开关模块由发光二极管和光敏三极管组成。
当光线照射到光敏三极管上时,光敏三极管会产生电流,经过放大后驱动继电器闭合,从而控制电路的开关状态。
当光线被遮挡时,光敏三极管不再产生电流,继电器断开,电路断开。
二、实验步骤和结果1. 搭建电路:将光电开关模块与电源、电阻和数字万用表连接,保证电路连接正确。
2. 确定光电开关的感应距离:将光电开关模块与物体放置在一定距离上,逐渐调整距离,观察光电开关的工作状态。
记录当光电开关感应到物体时,继电器闭合,电路导通,数字万用表显示电流值;当光电开关未感应到物体时,继电器断开,电路断开,数字万用表显示电流值为零。
3. 测量光电开关的响应时间:在确定的感应距离上,将物体快速移动至光电开关前方,观察继电器闭合的时间。
使用计时器记录响应时间。
4. 测量光电开关的稳定性:在确定的感应距离上,保持物体静止不动,观察光电开关的工作状态是否稳定。
记录光电开关感应到物体时的电流值,并持续观察一段时间,确认电流值保持稳定。
5. 分析实验结果:根据实验数据,分析光电开关的感应距离、响应时间和稳定性。
比较不同条件下的实验结果,讨论光电开关的特点和应用场景。
三、实验结果分析1. 感应距离:根据实验结果,确定了光电开关的感应距离为X厘米。
在此距离下,当物体靠近光电开关时,继电器闭合,电路导通,数字万用表显示电流值;当物体离开光电开关时,继电器断开,电路断开,数字万用表显示电流值为零。
这说明光电开关对物体的感应距离较近,适用于近距离控制电路的开关状态。
2. 响应时间:根据实验结果,光电开关的响应时间为Y秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四光开关特性测量
一. 实验目的
1.了解光开关的工作原理和内部结构。
2.学习光开关的使用方法。
二. 实验原理
光开关是一种具有一个或多个可选择的传输端口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。
端口是指连接于光器件中允许光输入或输出的光纤或光纤连接器。
光开关可用于光纤通信系统、光纤网络系统、光纤测量系统或仪器以及光纤传感系统,起到开关切换作用。
根据其工作原理,光开关可分为机械式和非机械式两大类。
机械式光开关靠光纤或光学元件移动,使光路发生改变。
它的优点是:插入损耗较低,一般不大于2dB;隔离度高,一般大于45dB;不受偏振和波长的影响。
不足之处是:开关时间较长一般为毫秒数量级,有的还存在回跳抖动和重复性较差的问题。
机械式光开关又可细分为移动光纤,移动反光镜,移动耦合器等种类。
非机械式光开关则依靠电光效应、磁光效应、声光效应以及热光效应来改变波导折射率,使光路发生改变。
这类开关的优点是:开关时间短,达到毫微妙数量级甚至更低;体积小,便于集成。
不足之处是插入损耗大,隔离度低。
本实验所用的光开关属于机械式中的移动反射镜2X2类型。
其外形如图4.1所示,结构示意图如图4.2所示。
图4.1 光开关的外形图
(a ) (b )
图4.2 光开关的结构示意图
这种光开关有四个输出端口,还有控制光路转换用的连接电源的正、负两个电极。
在这种移动反射镜型光开关中,输入输出端口的光纤都是固定的,球面镜置于受外电场控制的旋转器上。
它依靠旋转球面反射镜,使输入光与不同的输出端口接通。
当光开关不接DC5V 电压时,球面镜的位置如图4.2(a )中所示。
此时,端口1与2、3与4接通。
当光开关接上DC5V 电压时,球面镜旋转90º,此时,端口1与3、2与4接通。
因此,通过此光开关可以达到光路切换的目的。
三. 实验设备
1. A V38124A 1.55μm 单模调制光源
2. A V38121A 1.31μm 单模调制光源
3. A V2498 光纤多用表
4. 2X2光开关
5. 一条2kM 的光纤链路和一条10kM 的光纤链路
6. 光时域反射计(OTDR )
7. 直流稳压稳流电源
四. 实验步骤
1.按图4.3将各设备连接起来。
2kM 的光纤链路和10kM 的光纤链路分别通过光纤 活动连接器与光开关的端口1、4连接起来。
光开关的端口2也通过光纤活动连接器接入OTDR 的光输出端。
球面镜
光纤
1
2
3 4
10km光纤链路2km光纤链路
图4.3 光开关与OTDR组合测试图
3.光开关工作电压电流的调整。
光开关的工作电压为DC4.6V~6.0V,工作电流为DC36mA~48mA。
光开关的两电极先不接上稳压电源,调节稳压电源的输出电压:首先将稳流调节旋钮旋钮顺时针调到最大,然后打开稳压源的电源开关,调节电压调节旋钮,使输出直流电压到约5V左右。
再反时针将稳流调节旋钮调到最小,光开关的正、负电极分别与直流稳压电源的正、负极相接,并顺时针调节稳流调节旋钮到约40mA左右。
注意:供给电压、电流不能超过光开关要求的工作电压、电流范围。
否则会损坏光开关。
4.光开关的直流电源先不接通,打开OTDR的电源。
调整OTDR的有关测量参数,然后打开“START/STOP”键,OTDR发出激光,在OTDR屏幕上可看见10kM光纤链路的测量曲线。
这说明光开关的端口1、2是连通的,并且可以双向传输光信号。
(为什么?)
5.关闭“START/STOP”键,OTDR停止发出激光,接通光开关的直流电源,调整OTDR的有关测量参数,然后打开“START/STOP”键,OTDR发出激光,在OTDR屏幕上可看见2kM光纤链路的测量曲线。
这说明光开关的端口4、2是连通的,并且可以双向传输光信号。
6.将OTDR接到光开关的端口3,重复步骤(3)、(4)。
类似可以证明光开关不接电源时,端口4、3接通;接上电源后,端口4、2通。
因此,实验证明:光开关不接DC5V电源时,端口1和2、4和3相通;接
上DC5V电源后,端口1和3,4和2相通。
再测试光开关各通道对1.55μm LD光源和1.31μm LD光源的插入损耗,请将下面的测试数据填入表4-1中。
7.用光纤多用表分别测出1.55μm LD光源和1.31μm LD光源的输出光功率P0。
8.按图4.3将1.31μm LD光源、1.55μm LD光源、光开关、光纤多用表和直流
稳压稳流电源连接起来。
1.31μm LD光源接光开关的端口1, 1.55μm LD光源接光开关的端口4。
光开关先不接通DC5V电源,此时端口1和2、4和3相通,用光纤多用表在端口2和端口4分别测出输出光功率P1-2、P4-3,从而测出光开关端口1-2对1.31μm LD光源、光开关端口4-3对1.55μm LD光源的插入损耗A1-2、A4-3。
9.光开关接上DC5V电源,此时端口1和3、4和2相通,类似用光纤多用表在端口2和端口4分别测出光开关端口1-3对1.31μm LD光源、光开关端口4-2对1.55μm LD光源的插入损耗A1-3、A1-4。
10.断开光开关的DC5V电源,交换1.31μm LD光源、1.55μm LD光源的位置,即1.55μm LD光源接光开关的端口1, 1.31μm LD光源接光开关的端口4,用类似方法测出光开关端口1-2、1-3对1.55μm LD光源、光开关端口4-2、4-3对1.31μm LD 光源的插入损耗。
五. 实验报告
1.测试光开关各通道的插入损耗时的相关结果填入表4-1中。
2. 为什么用OTDR测出光纤链路的特性曲线,就说明这两个端口可以双向传输光信
号?
3.如果要将一路光信号分时传输给两个不同的目标,或者一个探测器要分时检测两
路光信号,应该将它们如何连接?
4.对测试结果进行分析。
图4.3 光开关插入损耗测试图。