圆的基本概念和性质—知识讲解(基础)

合集下载

8圆的基本概念与性质

8圆的基本概念与性质

圆的基本概念1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )(7)两个劣弧之和等于半圆( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHG FE DCB A【例2】 如图,直线212l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【例3】 如图,ABC ∆内接于O ,84AB AC D ==,,是AB 边上一点,P 是优弧 BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.二 垂径定理及其应用【例4】 如图,AB 是O 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O 的半径.【例5】 如图,在O 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______BAO【例6】 如图,D 内接于O ,D 为线段AB 的中点,延长OD 交O 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤12AB ACB =,正确结论的个数是( )EDCBAA .2B .3C . 4D .5如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )ODCBAA . 70︒B . 35︒C . 30︒D .20︒【例7】 如图,AB 是O 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O 的直径为( )EO BDCAA .10B .12C .14D .16【例8】 如图,O 是ABC ∆的外接圆,60BAC ∠=︒,若O 的半径OC 为2,则弦BC 的长为( )A .1B .3C .2D .23【例9】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )OCBAA .2B .5C .22D .3如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【例10】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )ABCDA .5米B . 8米C .7米D .53米【例11】 如图,AB 为O 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______BEO DCA【例12】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )AOBEC DOCBAA .16B .10C .8D .6【例13】 已知,如图,1O 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O 的半径。

第01讲 圆的基本概念和性质(知识解读+真题演练+课后巩固)(原卷版)

第01讲 圆的基本概念和性质(知识解读+真题演练+课后巩固)(原卷版)

第01讲圆的基本概念和性质1.在探索过程中认识圆,理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.掌握不在一条直线上的三点确定一个圆,掌握不在同一直线上的三个点作圆的方法。

4.能画出三角形的外接圆,了解三角形的外心知识点1 :圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心,线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。

圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。

确定圆的条件:1)圆心;2)半径。

备注:圆心确定圆的位置,半径长度确定圆的大小。

【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。

圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

知识点2 :圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

⏜,读作圆弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。

以A、B为端点的弧记作AB弧AB或弧AB。

等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

知识点3 点与圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外知识点4 确定圆的条件过三点的圆不在同一直线上的三个点确定一个圆。

圆的基本概念和性质PPT课件

圆的基本概念和性质PPT课件
第14页/共19页
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。

文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。

1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。

圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。

2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。

(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。

(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。

(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。

3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。

(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。

(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。

(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。

(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。

4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。

(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。

综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。

通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。

深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。

专题:圆形相关的二级结论及推导-讲解(最全、最经典)

专题:圆形相关的二级结论及推导-讲解(最全、最经典)

专题:圆形相关的二级结论及推导-讲解
(最全、最经典)
圆形作为几何学的基础,有很多重要结论和推导。

本文将为您总结和讲解圆形相关的二级结论和推导,以帮助您更好地理解和掌握。

1.圆的基本性质
圆是指平面上所有点到圆心的距离相等的点的集合。

圆的基本性质包括:
- 圆的直径是圆上任意两点之间的最长距离,且等于圆的半径的两倍。

- 圆心角是指圆心所在的角,它的度数等于圆弧所对的圆心角的一半。

- 弧长是指圆上的一段弧的长度。

圆弧所对的圆心角越大,对应的弧长也越大。

2.切线与切点
- 切线是指与圆相切的直线。

切点是切线与圆相交的点。

- 在圆上,切线与切点之间满足垂直关系。

即切线与半径的夹
角为直角。

3.正多边形外接圆的性质
- 正 $n$ 边形是指有 $n$ 条边长度相等,内角为 $\frac{(n-
2)×180^\circ}{n}$ 的多边形。

- 正 $n$ 边形外接圆的半径长为 $R =
\frac{a}{2sin\frac{180^\circ}{n}}$,其中$a$ 为正$n$ 边形的边长。

- 正 $n$ 边形外接圆的周长长为$C = 2πR =
a×n×sin\frac{180^\circ}{n}$。

4.圆锥曲线
- 圆锥曲线是指在圆锥上切割的曲线。

圆锥曲线包括四种类型:圆、椭圆、抛物线和双曲线。

- 圆锥曲线的方程可以表示为二次方程
$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$。

这些是关于圆形相关的二级结论和推导的基本内容,希望对您有所帮助。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

人教版 九年级数学 圆及其基本性质讲义 (含解析)

人教版 九年级数学 圆及其基本性质讲义 (含解析)

第8讲圆及其基本性质知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习圆及其基本性质,重点掌握圆的有关概念,能够对相关概念进行辨析,其次理解与圆有关的性质、定理及其推论,着重学习圆心角与弧、弦的关系以及圆周角定理,能够利用相关定理及推论进行解题,本章是中考重点内容之一,也是历年常考难点知识点之一,希望同学们认真学习,为后面的学习奠定良好的基础。

知识梳理讲解用时:25分钟圆的相关概念(1)圆的定义①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径,以O点为圆心的圆,记作“①O”,读作“圆O”;①圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)半径:联结圆心和圆上任意一点的线段叫做圆的半径;(3)直径:经过圆心,并与圆两端相交的线段叫做圆的直径;(4)圆心角:以圆心为顶点并且两边都和圆相交的角叫做圆心角;(5)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角;(6)弧:圆上任意两点之间的部分叫做圆弧,简称弧;(7)半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆;(8)优弧:大于半圆的弧叫做优弧;课堂精讲精练【例题1】下列说法错误的是()。

A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【答案】B【解析】本题考查了与圆有关的概念,A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确,故选:B.讲解用时:3分钟解题思路:根据直径的定义对A进行判断;根据等弧的定义对B进行判断;根据等圆的定义对C进行判断;根据半圆和等弧的定义对D进行判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本概念和性质—知识讲解(基础)
【学习目标】
1.知识目标:在探索过程中认识圆,理解圆的本质属性;
2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;
3.情感目标:通过圆的学习养成学生之间合作的习惯.
【要点梳理】
要点一、圆的定义及性质
1.圆的定义
(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
②圆是一条封闭曲线.
(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
要点诠释:
①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.
2.圆的性质
①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;
②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.
要点诠释:
①圆有无数条对称轴;
②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.
3.两圆的性质
两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).
要点二、与圆有关的概念
1.弦
弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
弦心距:圆心到弦的距离叫做弦心距.
要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点诠释:
①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点诠释:
①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等.
【典型例题】
类型一、圆的定义
1.(2020秋•邳州市校级月考)如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.
【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.
【答案与解析】
证明:如图所示,取BC的中点F,连接DF,EF.
∵BD,CE是△ABC的高,
∴△BCD和△BCE都是直角三角形.
∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,
∴DF=EF=BF=CF.
∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.
【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:
【变式】下列命题中,正确的个数是()
⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;
⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.
A.1个
B.2个
C.3个
D.4个
【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.
类型二、圆及有关概念
2.判断题(对的打√,错的打×,并说明理由)
①半圆是弧,但弧不一定是半圆;()
②弦是直径;()
③长度相等的两段弧是等弧;()
④直径是圆中最长的弦.()
【答案】①√②×③×④√.
【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.
【总结升华】理解弦与直径的关系,等弧的定义.
举一反三:
【变式】(2020•长宁区一模)下列说法中,结论错误的是()
A.直径相等的两个圆是等圆
B.长度相等的两条弧是等弧
C.圆中最长的弦是直径
D.一条弦把圆分成两条弧,这两条弧可能是等弧
【答案】B.
提示:A 、直径相等的两个圆是等圆,正确,不符合题意;
B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;
C 、圆中最长的弦是直径,正确,不符合题意;
D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,
故选:B .
3.直角三角形的三个顶点在⊙O 上,则圆心O 在
.
【答案】斜边的中点.
【解析】根据圆的定义知圆心O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.
【总结升华】圆心到圆上各点的距离相等.4.判断正误:有 AB 、 CD , AB 的长度为3cm, CD 的长度为3cm,则 AB 与 CD
是等弧.【答案】错误.
【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.
【总结升华】在同圆或等圆中,长度相等的弧才是等弧.
举一反三:
【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.
甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.
乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧
AmB ,中
的劣弧 CD
,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?
【答案】弧的大小的比较只能是在同圆或等圆中进行.乙的观点正确.
类型三、圆的对称性
5.已知:如图,两个以O 为圆心的同心圆中,大圆的弦AB 交小圆于C,D.求证:AC=BD.
【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,
所以AM=BM,CM=DM,
故AC=BD.
【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.。

相关文档
最新文档