八年级数学圆的基本概念和性质PPT优秀课件

合集下载

初中 圆课件ppt课件

初中 圆课件ppt课件
利用切线作角平分线
利用切线的性质,可以过圆外一点作圆的切线,并利用切线作角 平分线。
05
圆的定理与证明
圆的定理
圆的定义
平面上所有与给定点(圆心)的距离等于给定长度(半径)的点 组成的图形。
圆ห้องสมุดไป่ตู้三点确定一个圆
不在同一直线上的三点可以确定一个唯一的圆,且该圆经过这三点 。
直径所对的圆周角是直角
圆的直径所对的圆周角是直角,即90度。
当直线与圆没有公共点时,该直线称为圆的离线 。
04
圆的切线与切线长
圆的切线定义与性质
圆的切线定义
切线与圆只有一个公共点,这个 公共点叫做切点。
切线的性质
切线到圆心的距离等于圆的半径 ,切线与半径垂直,切线与过切 点的半径有相同的斜率。
切线长的计算
切线长的定义
01
切线长是从圆心到切点的线段长度。
圆的面积的定义
圆的面积是指圆所占平面的大小 。
面积的计算公式
A = πr^2,其中A表示圆的面积, r表示圆的半径,π是一个常数约等 于3.14159。
面积的应用
面积的计算在日常生活和科学研究 中有着广泛的应用,例如计算圆的 面积可以帮助我们了解物体的尺寸 和大小。
周长与面积的关系
周长与面积的关系
在圆上任取一点,该点到圆心的距离都等于半径的长度。
03
圆是中心对称图形
将圆心与圆上任意一点连线,这条线段的中点也在圆心,因此圆关于圆
心对称。
圆的基本性质
01
02
03
04
直径是半径的两倍
在一个圆中,直径的长度是半 径的两倍。
弦与直径的关系
通过圆心的弦是直径,其他弦 与直径垂直平分。

初中圆 ppt课件

初中圆 ppt课件

作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。

圆的认识免费ppt课件

圆的认识免费ppt课件
对于任意两个相交的圆, 它们的交点满足两圆的方 程,因此可以用两圆的方 程解出交点坐标。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。

圆的认识ppt课件

圆的认识ppt课件
很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等

圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径

初中圆的ppt课件

初中圆的ppt课件

02 圆的性质和定理
圆周角定理பைடு நூலகம்
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹 弧之间的关系。
详细描述
圆周角定理指出,对于圆上的任意一个圆周角,它所对的弧 与其夹角的度数成比例。具体来说,如果一个圆周角是θ度, 它所对的弧是θ/180*π*r,其中r是圆的半径。
垂径定理
总结词
垂径定理是圆的另一个重要性质,它 描述了通过圆心的直径与圆周之间的 关系。
VS
详细描述
圆锥的侧面展开图是一个扇形,这个扇形 所在的圆就是圆锥的底面。通过这个关系 ,我们可以更好地理解圆锥的几何性质, 例如圆锥的侧面积和底面积之间的关系。 此外,这个关系也为我们提供了解决圆锥 问题的方法,例如求圆锥的表面积或体积 。
圆与圆柱的关系
总结词
圆与圆柱之间存在密切的关系,圆柱的侧面 展开图是一个矩形,而这个矩形的长和宽分 别是圆柱的高和底面圆的周长。
详细描述
圆柱的侧面展开图是一个矩形,这个矩形的 长等于圆柱的高,而宽等于圆柱底面圆的周 长。这个关系可以帮助我们理解圆柱的几何 性质,例如圆柱的侧面积和底面积之间的关 系。此外,这个关系也为我们提供了解决圆 柱问题的方法,例如求圆柱的侧面积或表面 积。
THANKS 感谢观看
初中圆的ppt课件
• 圆的基本概念 • 圆的性质和定理 • 圆的作图和计算 • 圆的在实际生活中的应用 • 圆的拓展知识
01 圆的基本概念
圆的基本定义
总结词
描述圆的定义
详细描述
圆是一个平面图形,由所有与固定点等距离的点组成。这个固定点称为圆心, 而这个等距离的长度称为半径。
圆的性质
总结词
描述圆的性质
周长计算的应用

圆的概念及性质 ppt课件

圆的概念及性质 ppt课件

圆中”,而所谓“等圆”,是指圆心不同,但半径相等的
圆,如“面积相等”“周长相等”的两个圆都是等圆.正确
理解这两个概念是避免出现错误的关键.
28.1 圆的概念及性质
方 ■方法:利用圆的定义证明多点共圆问题(数形结合)

这类问题一般是给出一个圆和另一个几何图形,判断几

巧 何图形上某些点是否在同一个圆上.解决此类问题时,可运
[答案] 解:连接 OC,如图,∵CE=AO,OA=OC,


题 ∴OC=EC,∴ ∠E = ∠1,∴∠2 =∠E+∠1 =2∠E,
型 ∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,

破 ∴∠E+2∠E=75°,∴∠E=25°.
28.1 圆的概念及性质
变式衍生 如图,OA 是⊙O 的半径,B 为 OA 上一点


题 (且不与点 O,A 重合),过点 B 作 OA 的垂线交⊙O 于
型 点 C.以 OB,BC 为边作矩形 OBCD,连接 BD.若 BD=10

破 ,BC=8,则 AB 的长为 ______.
4
28.1 圆的概念及性质
易 ■判断“等弧”忽略在“在同圆或等圆中”

例 下列说法错误的是 (




续表
优弧
大于半圆的弧(用三个点表示,如图中的
ABC,读作“弧 ABC”)叫做优弧

劣弧
图示
小于半圆的弧(如图中的AC,读作“弧
AC”)叫做劣弧
28.1 圆的概念及性质






续表
能够完全重合的两个圆叫做等圆

圆的基本概念和性质PPT课件

圆的基本概念和性质PPT课件
第14页/共19页
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。

圆 初中数学 课件ppt课件ppt

圆 初中数学 课件ppt课件ppt

Part
03
圆的计算
圆的周长计算
01
周长是圆上所有点距离圆心的长 度之和
02
圆的周长计算公式为 C = 2πr, 其中 C 表示圆的周长,π 是一个 常数约等于3.14159,r 表示圆的 半径。
圆的面积计算
面积是圆所占平面的大小
圆的面积计算公式为 A = πr^2,其中 A 表示圆的面积,π 是一个常数约等于3.14159,r 表示圆的半 径。
当两个圆心之间的距离大 于两个圆的半径之和时, 两个圆外离。
圆的投影
投影的定义
投影的应用
投影是指将一个物体放在光源前,在 平面上形成的影子。
在几何图形中,投影常常用于确定物 体在平面上的位置和大小。
投影的性质
投影的大小与物体的形状、大小、角 度和光源的位置有关。
THANKS
感谢您的观看
圆周角定理是圆的基本性质之一,它描述了圆周角与圆心角 之间的关系。
圆周角定理指出,在同圆或等圆中,同弧或等弧所对的圆周 角相等,并ห้องสมุดไป่ตู้都等于该弧所对圆心角的一半。这个定理在证 明圆的性质和定理时经常用到,是初中数学中非常重要的知 识点之一。
垂径定理
垂径定理是圆的一个重要性质,它描述了通过圆心的直径与圆的交点与圆周上点的关系 。
餐具设计
碗和盘子通常设计为圆形 ,因为这样可以最大化容 量并方便使用。
管道设计
圆形管道在输送流体时更 为顺畅,减少了阻力。
圆在几何图形中的应用
STEP 02
确定位置关系
STEP 01
定义其他图形
圆是许多其他几何图形的 基础,如椭圆、弧形和扇 形。
STEP 03
计算面积和周长
圆的面积和周长的计算公 式是基础数学知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在两张半透明的纸上,分别画出半径相等的⊙O1,⊙ O2及 相等的两条弦AB,CD.把两张纸叠放在一起,使⊙O1与⊙ O2 重合,固定圆心,将一张纸绕圆心旋转适当的角度,使
弦AB和弦CD重合.
A
B
O1
C
O2 D
你能发现哪两条弧重合,他们是等弧吗? 1.在等圆中,如果两条弧相等,那么它们所对的弦相等吗? 2.在同圆中,相等的弦所对的弧相等吗?等弧所对的弦呢?
A
B
点A与点B重合,AE与BE重合,A C , A D 分别与 B C 、B D 重合.D
C
AE=BE, ADBD , ACBC
即直径CD平分弦AB,并且平分 A B 及 A C B
我们就得到下面的定理:
垂直于弦的直径平分弦,并且平 分弦所对的两条弧.
·O
E
A
B
D
如图,⊙O的直径CD交弦AB(不是直径)于点 E , AE=BE. 1.你认为与垂直吗?为什么?
解: O EA B
A E1A B184 22
在 R t A O E 中
A
E
B
·
O
A O 2 O E 2 A E 2
A O O E 2 A E 2 = 3 2 + 4 2 = 5 c m
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E,求证四边形ABOE是正方形.
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
2.你认为 A D 与 B D ,A C 与 B C 分别具有什么样的关系?
和同学说说你的结论和理由.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
这个定理也叫垂径定理,利用这 个定理,你能平分一条弧吗?
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm, 求⊙O的半径.
在同圆或等圆中,相等的弧所对的弦相等; 相等的弦所对的优弧和劣弧分别相等.
如图,在⊙O中,CD是直径, AB为弦,且CD⊥AB,垂足为E.
将⊙O沿CD所在的直线对折,哪些线段重合,哪些弧重合?由此你能 得出什么结论?
C
线段: AE=BE
弧: A CB C ,A D B D
·O
E
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
证明: O E A C O D A B A B A C
O E A 9 0 E A D 9 0 O D A 9 0
∴四边形ADOE为矩形, A E1A C ∵AC=AB
∴ AE=AD ∴ 四边形ADOE为正方形.
E
·O
A
D
B
赵洲桥的半径是多少?
问题 :你知道赵洲桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度 (弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你 能求出赵洲桥主桥拱的半径吗?
相关文档
最新文档