2020年7月全国自考高等数学(工专)试题及答案解析
2020年7月全国网络教育统考《高等数学B》试卷及参考答案(5套)

试卷1 一、一选择题1..A.正确B.不正确答案:B2.函数在点处可导.A.正确B.不正确答案:A3.函数在内连续.A.正确B.不正确答案:B4.函数的定义域为.A.正确B.不正确答案:A二、二选择题5.是有界函数.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:B8..A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.是微分方程的解.A.正确B.不正确答案:A三、三选择题11.极限().A.B.C.D.答案:B12.不定积分( ).A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:D14.定积分=().A.B.C.D.答案:A15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:C16.设函数,则().A.B.C.D.答案:A四、四选择题17.曲线在点处切线的方程为().A.B.C.D.答案:B18.定积分=().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:A20.不定积分().A.B.C.D.答案:C试卷2 一、一选择题1.函数在处可导.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处连续.A.正确B.不正确答案:A4.函数的定义域为.A.正确B.不正确答案:B二、二选择题5.是周期函数.A.正确B.不正确答案:A6..A.正确B.不正确答案:A7.设函数,则.A.正确B.不正确答案:B8.是微分方程的解.A.正确B.不正确答案:B9.设函数,则.A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:B三、三选择题11.极限().A.B.C.D.答案:A12.设函数,则().A.B.C.D.答案:B13.不定积分().A.B.C.D.答案:C14.定积分=().A.B.C.D.答案:C15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:B16.设函数,则().A.B.C.D.答案:D四、四选择题17.微分方程的通解是().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:A19.不定积分().A.B.C.D.答案:D20.定积分=().A.B.C.D.答案:B试卷3 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.函数在内连续.A.正确B.不正确答案:B3.定积分.A.正确B.不正确答案:A4.函数在点处可导.A.正确B.不正确答案:B二、二选择题5.不是一阶微分方程.A.正确B.不正确答案:B6.设函数, 则.A.正确B.不正确答案:B7.是奇函数.A.正确B.不正确答案:A8.设函数,则.A.正确B.不正确答案:A9..A.正确B.不正确答案:B10.是函数的一个原函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:B12.不定积分().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:A14.定积分=().A.B.C.D.答案:B15.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C16.极限().A.B.C.D.答案:D四、四选择题17.定积分=().A.B.C.D.答案:D18.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:A19.微分方程的通解是().A.B.C.D.答案:B20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷4 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处可导.A.正确B.不正确答案:B4.函数在点处连续.A.正确B.不正确答案:A二、二选择题5.设函数, 则.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.是偶函数.A.正确B.不正确答案:B8.不是一阶微分方程.A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:A三、三选择题11.不定积分().A.B.C.D.答案:C12.设函数,则().A.B.C.D.答案:A13.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:B14.定积分=().A.B.C.D.答案:D15.设函数,则().A.B.C.D.答案:A16.极限().A.B.C.D.答案:B四、四选择题17.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:B18.微分方程满足的特解是().A.B.C.D.答案:A19.定积分=().A.B.C.D.答案:D20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷5 一、一选择题1.函数在点处连续.A.正确B.不正确答案:A2.函数在处可导.A.正确B.不正确答案:A3.函数的定义域为.A.正确B.不正确答案:B4.定积分.A.正确B.不正确答案:B二、二选择题5.是可分离变量微分方程.A.正确B.不正确答案:A6..A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:A8.设函数, 则.A.正确B.不正确答案:B9.不定积分,其中为任意常数.A.正确B.不正确答案:B10.是奇函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:A12.定积分=().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:B14.极限().A.B.C.D.答案:B15.不定积分().A.B.C.D.答案:C16.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C四、四选择题17.定积分=().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:B19.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:C20.微分方程满足的特解是().A.B.C.D.答案:A。
自考高数试题及答案

自考高数试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. 2答案:B3. 函数 \( f(x) = e^x \) 的导数是:A. \( e^{-x} \)B. \( e^x \)C. \( \ln(e) \)D. \( \frac{1}{e^x} \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A5. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 是:A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:A6. 函数 \( y = \ln(x) \) 的图像通过点:A. (1, 0)B. (0, 1)C. (e, 1)D. (1, 1)答案:C7. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = A\sin(x) + B\cos(x) \)B. \( y = Ax + B \)C. \( y = Ae^x + Be^{-x} \)D. \( y = \ln(x) \)答案:A8. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处:A. 连续B. 可导C. 不连续D. 可微答案:C9. 函数 \( f(x) = x^3 - 3x \) 的零点是:A. 1B. -1C. 0D. 3答案:A10. 函数 \( y = x^2 \) 的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称答案:A二、填空题(每题3分,共30分)1. 函数 \( f(x) = x^2 - 6x + 5 \) 的最小值是 ________。
全国高等数学工专自考试题及答案解析.doc

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考试资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯全国 2019 年 7 月高等教育自学考试高等数学(工专)试题课程代码: 00022一、单项选择题(本大题共30 小题, 1— 20 每小题 1 分, 21— 30 每小题 2 分,共 40 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题 1 分,共 20 分)1.函数y x 2 4x 3 的定义域是()A. , 3B. ,C. ,1 , 3,D.( 1, 3)2.函数 y=xsinx+cos2x+1 是()A. 奇函数B. 偶函数C.周期函数D.非奇非偶函数3.数列有界是数列收敛的()A. 充分条件B. 必要条件C.充分必要条件D.无关条件4. lim(1 n) 3()n 3 5n 2 1nA.01C.16B. D.5 55.曲线 y=sinx 在点, 3 处的法线斜率是()3 23 1 2D. -2 A. B. C.32 26.设 y=arcsinx+arccosx, 则 y′ =()A.02C.2 2B.x 2 x 2D.1 1 1 x 27.函数 f(x)=x 2+1 在0,1 上使拉格朗日中值定理结论成立的 c 是()A.11 1D.-1B. C.2 218.曲线 ye x2()A. 仅有垂直渐近线B. 仅有水平渐近线C.既有垂直渐近线又有水平渐近线D.无渐近线9.一条处处具有切线的连续曲线 y=f (x) 的上凹与下凹部分的分界点称为曲线的()A. 驻点B. 极大值点C.拐点D.极小值点10. ( 1+2x ) 3的原函数是( )A. 1(1 2x )4 B. (1 2x )48C. 1 (1 2x )4D. 6(1 2x )2411. 1()x 2 dx4A. arcsinxB. xCarcsin22C. ln xx 24D. ln xx 2 4 C12. 广义积分xe x 2 dx()1A.1B.12e2eC.eD.+∞13.2cos 3 xdx ()2A.2B.2C.44333D.314. 设物体以速度 v=t 2作直线运动, v 的单位为米 / 秒,物体从静止开始经过时间 T ( T>0 )秒后所走的路程为( )A.Tt 2米B. Tt 2 米C. T 3米D. T 3米23215. 直线x1y 2 z3位于平面()21A.x=1 内B.y=2 内C.z=3 内D.x-1=z-3 内16. 设函数 f (x,y)=(x 2-y 2)+arctg(xy 2),则 f x (1,0)()A.2B.1C.0D.-117. 函数 z 2x 2 y 2 在点( 0, 0)()2A. 取得最小值 2B. 取得最大值 2C.不取得极值D. 无法判断是否取极值18.区域(σ)为:x 2+y 2 -2x ≤ 0,二重积分x 2y 2 d 在极坐标下可化为累次积分 ()( )A.21 2d d B.22 cos2d d0 0C.22 cos2d dD.2cos2d d0 0219.级数1()n(nn11)A. 收敛B. 发散C.绝对收敛D. 无法判断敛散性20.微分方程 y2y 5y0 的通解为()A.y=C 1e x +C 2e -2xB.y=e -2x (C 1 cosx+C 2sinx)C.y=e x (C 1cos2x+C 2sin2x)D.y=e 2x (C 1cosx+C 2sinx)(二)(每小题 2 分,共 20 分)21.设 f (x )x 1)x,则 x=2 为 f (x) 的(2A. 可去间断点B. 连续点C.跳跃间断点D. 无穷间断点22.函数 y1 x 5 1x 3 单调减少的区间是()53A.[-1 , 1]B. ( -1, 0)C.( 0,1)D. ( 1, +∞)23.cos 3x sin xdx =( )A.1 c os 4 x C B.1 cos 4 x4 1 4 1C.cos 4 x CD.cos 4 x 4dy4()24.设 y 5+2y-x=0 ,则dxA. 5y 42B.125y 4C.1D.15y425y41325.设 f (x )x 1, x1,则 lim f (x ) ()2 x 2, x 1x 1A. 不存在B.-1C.0f (x 0 h)f (x 0 )(26.如果函数 f (x) 在点 x 0 可导,则 lim hhA. f (x 0 )B.f(x 0 )C.不存在27.曲线2x 2 3y 2 z 2 16x22y 2z2在 xoy 坐标平面上的投影方程为(12x 2 z 2 0x 2 z 2 A.B.0 xyx 2 y 2 4x 2 y 2 C.D.zxD.1 )D. f ( x 0 ))4428.用待定系数法求方程 y 3y 2y e 5x 的特解时,应设特解()A. y ae 5xB. y axe 5 xC. yax 2 e 5xD. y (ax b)e 5 x29.函数 f (x)1的麦克劳林级数为()1 2xA.2n x n , x 2B.( 2) n x n , x1n 0n2 C.2n x n , x 1D.2 n x n , x1 n 1n2dyy 2)30.微分方程y 4 是(dx xA. 一阶线性齐次方程B. 一阶线性非齐次方程C.二阶微分方程D.四阶非齐次微分方程二、计算题(本大题共7 小题,每小题 6 分,共 42 分)1 x3 x31.求 limx2 1 .x 1432.求xdx .1 x 4x a cost d 2 y33. 设y,求dy与dx2.b sin t dx34. 求 lim ln sin x 2 .x ( 2x )235. dysin x 的通解和满足初始条件y|x=0=1 的特解 .求微分方程dx36. 求x2 d ,其中区域(σ)由xy=1,y=x,x=2 所围成 .( )y37.将函数f (x ) 1x展开成 (x-3) 的幂级数 .三、应用和证明题(本大题共 3 小题,每小题 6 分,共 18 分)38. 设函数 f (x)=alnx+bx 2+x 在 x1=1 和 x2=2 都取得极值,试求出a, b 的值 ,并问此时 f (x) 在x1与 x2处取得极大值还是极小值?39. 一曲边梯形由 y=x 2-1, x 轴和直线 x=-1 ,x 1所围成 ,求此曲边梯形的面积 A. 240. 设 f (x , y)=x 4+y 4+4x 2y2验证: (1)f (tx , ty)=t 4f(x , y);(2) xf x yf y4f (x , y).5。
自考数学试题及答案

自考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 计算极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. πD. 2答案:B3. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B4. 以下哪个选项是不定积分?A. ∫f(x)dxB. f(x)C. F(x)D. F'(x)答案:A5. 以下哪个选项是定积分?A. ∫f(x)dxB. ∫[a,b]f(x)dxC. f(x)D. F(x)答案:B二、填空题(每题3分,共15分)6. 函数f(x) = 2x - 3的反函数是________。
答案:f^(-1)(x) = (x + 3)/27. 函数f(x) = x^2 + 2x + 1的最小值是________。
答案:08. 函数f(x) = sin(x)的周期是________。
答案:2π9. 函数f(x) = e^x的导数是________。
答案:e^x10. 函数f(x) = ln(x)的定义域是________。
答案:(0, +∞)三、解答题(每题10分,共20分)11. 求函数f(x) = x^2 - 4x + 4的极值点。
答案:函数f(x) = x^2 - 4x + 4的极值点为x = 2,此时函数取得最小值0。
12. 计算定积分∫[0,1] x^2 dx。
答案:∫[0,1] x^2 dx = (1/3)x^3 | [0,1] = 1/3。
结束语:本套试题涵盖了自考数学的基本概念、运算法则和解题技巧,希望同学们通过练习能够加深对数学知识的理解,提高解题能力。
2020年7月全国自考试题及答案解析离散数学

1全国2018年7月自考试题离散数学课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P :他聪明,Q :他用功,命题“他虽聪明但不用功”的符号化正确的是( )A .⎤ P ∧QB .P ∧⎤ QC .P →⎤ QD .P ∨⎤ Q2.下面联结词运算不可交换的是( )A .∧B .→C .∨D .3.下列命题公式不是重言式的是( )A .Q →(P ∨Q )B .(P ∧Q )→PC .⎤(P ∧⎤ Q )∧(⎤ P ∨Q )D .(P →Q )(⎤ P ∨Q )4.下列等价式不正确的是( )A .)(Q )(P ))(Q )(P (x x x x x x x ∀∨∀⇔∨∀B .)(Q )(P ))(Q )(P (x x x x x x x ∀∧∀⇔∧∀C .)(Q )(P ))(Q )(P (x x x x x x x ∃∨∃⇔∨∃D .Q )(P )Q )(P (∧∀⇔∧∀x x x x5.设A (x ):x 是人,B (x ):x 犯错误,命题“没有不犯错误的人”符号化为( )A .))(B )(A (x x x ∧∀ B .⎤→∃)(A (x x ⎤ B (x ))C .⎤))(B )(A (x x x ∧∃D .⎤∧∃)(A (x x ⎤ B(x))6.设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)·f2(x)=0的解为()A.M∩N B.M∪NC.M⊕N D.M-N7.设A-B=∅,则有()A.B=∅B.B≠∅C.A⊆B D.A⊇B8.A,B是集合,P(A),P(B)为其幂集,且A∩B=∅,则P(A)∩P(B)为()A.∅B.{∅}C.{{∅}} D.{∅,{∅}}9.设集合A={1,2,3,……,10},下列定义的运算关于集合A是不封闭的是()A.x*y=max{x,y}B.x*y=min{x,y}C.x*y=GCD{x,y},即x,y的最大公约数D.x*y=LCM{x,y},即x,y的最小公倍数10.设H,K是群(G,ο)的子群,下面代数系统是(G,ο)的子群的是()A.(H∩K,ο) B.(H∪K,ο)C.(K-H,ο)D.(H-K,ο)11.设A={1,2,3,4,5},B={6,7,8,9,10},以下关系是从A到B的入射函数的是()A.f ={<1,8>,<3,9>,<4,10>,<2,6>,<5,7>}B.f ={<1,7>,<2,6>,<4,8>,<1,9>,<5,10>}C.f ={<1,6>,<2,7>,<4,9>,<3,8>}D.f ={<1,10>,<5,9>,<3,6>,<4,6>,<2,8>}12.设简单图G所有结点的度数之和为12,则G一定有()23A .3条边B .4条边C .5条边D .6条边13.下列不一定是树的是( )A .无回路的连通图B .有n 个结点,n-1条边的连通图C .每对结点之间都有通路的图D .连通但删去一条边则不连通的图14.下面关于关系R 的传递闭包t(R)的描述最确切的是( )A .t(R)是包含R 的二元关系B .t(R)是包含R 的最小传递关系C .t(R)是包含R 的一个传递关系D .t(R)是任何包含R 的传递关系15.欧拉回路是( )A .路径B .迹C .既是初级回路也是迹D .既非初级回路也非迹二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考高数工本试题及答案

自考高数工本试题及答案自考高等数学(工本)试题及答案一、选择题(每题2分,共10分)1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 微积分基本定理指出,若函数f(x)在区间[a, b]上连续,则定积分∫[a, b] f(x) dx等于()。
A. f(a) + f(b)B. f(a) - f(b)C. f(x)在[a, b]上的最大值D. f(x)在[a, b]上的某个值答案:D3. 曲线y = x^2在点(1, 1)处的切线斜率是()。
A. 0B. 1C. 2D. 3答案:C4. 以下哪个选项不是二阶常系数线性微分方程的特征方程()。
A. r^2 + 1 = 0B. r^2 - 1 = 0C. r^2 + 4r + 3 = 0D. r^2 - 4 = 0答案:C5. 函数f(x) = ln(x)的值域是()。
A. (-∞, 0)B. (0, ∞)C. (-∞, ∞)D. [0, ∞)答案:B二、填空题(每题3分,共15分)6. 极限lim (x→0) [x^2 sin(1/x)] = _______。
答案:07. 函数f(x) = x^3 - 6x^2 + 9x + 2的拐点是_______。
答案:(3, 24)8. 根据定积分的性质,若∫[a, b] f(x) dx = 5,且f(x)在区间[a,b]上非负,则∫[a, b] x f(x) dx = _______。
答案:≤59. 微分方程y'' - 2y' + y = 0的通解是_______。
答案:y = C1 * e^r1x + C2 * e^r2x,其中r1, r2是特征方程r^2 - 2r + 1 = 0的根。
10. 利用分部积分法计算∫x e^x dx的结果是_______。
答案:x e^x - e^x + C三、解答题(共75分)11. (15分)计算定积分∫[0, 1] x^2 dx,并说明其几何意义。
自考高数试题及答案

自考高数试题及答案一、选择题(本题共10分,每题1分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3xD. x^2 + 3x答案:A2. 极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. ∞答案:B3. 定积分∫(0,1) x^2 dx的值是()A. 1/3B. 1/2C. 1/4D. 1/6答案:C4. 微分方程y'' - y' - 2y = 0的通解是()A. y = e^x + e^(-x)B. y = e^(2x) + e^(-2x)C. y = e^x + e^(-x) + xD. y = e^(2x) + e^(-2x) + x答案:A5. 矩阵A = [1, 2; 3, 4]的行列式值是()A. 2B. -2C. 7D. -7答案:C二、填空题(本题共10分,每题2分)6. 函数f(x) = x^2 - 6x + 8的极值点是______。
答案:37. 函数y = ln(x)的导数是______。
答案:1/x8. 曲线y = x^3 - 3x + 1在点(1, -1)处的切线斜率是______。
答案:39. 函数y = sin(x) + cos(x)的周期是______。
答案:2π10. 矩阵B = [1, 0; 0, 1]的逆矩阵是______。
答案:[1, 0; 0, 1]三、解答题(本题共30分,每题15分)11. 求函数f(x) = x^3 - 3x^2 + 2在区间[-2, 2]上的最大值和最小值。
答案:函数f(x) = x^3 - 3x^2 + 2的导数为f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或 x = 2。
在区间[-2, 2]上,当x = -2时,f(x) = 2;当x = 2时,f(x) = -2;当x = 0时,f(x) = 2。
2020年7月全国自考试题及答案解析离散数学

1全国2018年7月自考试题离散数学课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P :他聪明,Q :他用功,命题“他虽聪明但不用功”的符号化正确的是( )A .⎤ P ∧QB .P ∧⎤ QC .P →⎤ QD .P ∨⎤ Q2.下面联结词运算不可交换的是( )A .∧B .→C .∨D .3.下列命题公式不是重言式的是( )A .Q →(P ∨Q )B .(P ∧Q )→PC .⎤(P ∧⎤ Q )∧(⎤ P ∨Q )D .(P →Q )(⎤ P ∨Q )4.下列等价式不正确的是( )A .)(Q )(P ))(Q )(P (x x x x x x x ∀∨∀⇔∨∀B .)(Q )(P ))(Q )(P (x x x x x x x ∀∧∀⇔∧∀C .)(Q )(P ))(Q )(P (x x x x x x x ∃∨∃⇔∨∃D .Q )(P )Q )(P (∧∀⇔∧∀x x x x5.设A (x ):x 是人,B (x ):x 犯错误,命题“没有不犯错误的人”符号化为( )A .))(B )(A (x x x ∧∀ B .⎤→∃)(A (x x ⎤ B (x ))C .⎤))(B )(A (x x x ∧∃D .⎤∧∃)(A (x x ⎤ B(x))6.设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)·f2(x)=0的解为()A.M∩N B.M∪NC.M⊕N D.M-N7.设A-B=∅,则有()A.B=∅B.B≠∅C.A⊆B D.A⊇B8.A,B是集合,P(A),P(B)为其幂集,且A∩B=∅,则P(A)∩P(B)为()A.∅B.{∅}C.{{∅}} D.{∅,{∅}}9.设集合A={1,2,3,……,10},下列定义的运算关于集合A是不封闭的是()A.x*y=max{x,y}B.x*y=min{x,y}C.x*y=GCD{x,y},即x,y的最大公约数D.x*y=LCM{x,y},即x,y的最小公倍数10.设H,K是群(G,ο)的子群,下面代数系统是(G,ο)的子群的是()A.(H∩K,ο) B.(H∪K,ο)C.(K-H,ο)D.(H-K,ο)11.设A={1,2,3,4,5},B={6,7,8,9,10},以下关系是从A到B的入射函数的是()A.f ={<1,8>,<3,9>,<4,10>,<2,6>,<5,7>}B.f ={<1,7>,<2,6>,<4,8>,<1,9>,<5,10>}C.f ={<1,6>,<2,7>,<4,9>,<3,8>}D.f ={<1,10>,<5,9>,<3,6>,<4,6>,<2,8>}12.设简单图G所有结点的度数之和为12,则G一定有()23A .3条边B .4条边C .5条边D .6条边13.下列不一定是树的是( )A .无回路的连通图B .有n 个结点,n-1条边的连通图C .每对结点之间都有通路的图D .连通但删去一条边则不连通的图14.下面关于关系R 的传递闭包t(R)的描述最确切的是( )A .t(R)是包含R 的二元关系B .t(R)是包含R 的最小传递关系C .t(R)是包含R 的一个传递关系D .t(R)是任何包含R 的传递关系15.欧拉回路是( )A .路径B .迹C .既是初级回路也是迹D .既非初级回路也非迹二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
全国2018年7月高等教育自学考试
高等数学(工专)试题
课程代码:00022
一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分)
1.函数f(x)=arcsin 23
x -的定义域是( )
A .(-1,1)
B .[1,5]
C .(-∞,0)
D .(2,4)
2.函数y=是121
2x x +-( )
A .奇函数
B .偶函数
C .周期函数
D .非奇非偶函数
3.函数f(x)=|sinx|的周期是( ) A .2π B .π23
C .π
D .
4
π 4.=→x
2x
arcsin lim 0x ( )
A .∞
B .不存在
C .0
D .2
1
5.f(x)在点x 0可导是f(x)在点x 0可微的( ) A .充分条件 B .必要条件 C .充分必要条件
D .无关条件
6.曲线y=e x 上点(0,1)处的切线方程为( ) A .y-1=e x ·x B .y=x-1 C .y-1=-x
D .y=x+1
7.设y=arcsinx 2,则dy=( )
2
A .
dx x
1x 24
- B .
4
x
1x 2-
C .
dx x
1x 24
+ D .
4
x
1x 2+
8.设⎩
⎨⎧==2
t y t 2x ,则=dy dx ( ) A .t B .t 1
C .2t
D .2
9.函数f(x)=x 2+1的单调减区间是( ) A .(-∞,0] B .(0,+∞) C .(-∞,+∞)
D .(-1,+∞)
10.函数y=x-ln(1+x 2)的极值是( ) A .0 B .1-ln2 C .-1-ln2
D .不存在
11.曲线y=1+
2
)2x (x 36+( )
A .只有一条水平渐近线
B .只有一条垂直渐近线
C .有一条水平渐近线及一条垂直渐近线
D .无渐近线
12.曲线y=2
x 2
e -的拐点有( )
A .0个
B .2个
C .3个
D .4个
13.某运动物体的速度函数为υ(t )=sec 2t ·tgt ,则路程与时间的关系为( )
A .-t tg 212
B .
C t tg 2
12+
C .t sec 21
2
D .C t sec 3
1
3+
14.已知f(x)=⎰
='+2
x
2)1(f ,dt t 2则( )
A .-3
B .63-
C .36-
D .3
15.广义积分
⎰
-1
1
2
dx x 1( )
3
A .收敛于-2
B .收敛于2
C .发散
D .的敛散性不能确定
16.设z=xtg(x+y),则dz|(π,0)=( ) A .dx+dy
B .π(dx+dy)
C .π(dx-dy)
D .-π(dx+dy)
17.直线轴的夹角为与oz 2z
1y 1x =-=( )
A .90°
B .60°
C .45°
D .30°
18.若区域(σ)为:(x-1)2+y 2≤1,则二重积分
⎰⎰
σσ+)
(22d y x 化为极坐标下的累次积分应为( )
A .
⎰⎰π
θθρρ20cos 20d d B .
⎰⎰
π
π
-θθρρ22
cos 202d d C .
⎰⎰
πθρρ0
10
2d d
D .
⎰⎰
πθ
θρρ0cos 20
2d d
19.与点P (3,2,1)关于xoz 坐标平面对称的点的坐标为( ) A .(3,-2,1) B .(-3,2,1) C .(3,2,-1)
D .(-3,-2,1)
20.微分方程xy ″+2y ′+x 2y=0是( ) A .一阶线性微分方程 B .三阶线性微分方程 C .二阶线性微分方程
D .三阶非线性微分方程
(二)(每小题2分,共20分)
21.=+∞→x
x )1x x (lim ( )
A .e
B .1
C .e 1
D .-e
22.=--→a
x a
cos x cos lim
a x ( )
A .sina
B .-sina
C .不存在
D .∞
23.设f(x)=(x-1)(x-2)2(x-3)3,则f ′(1)=( ) A .8 B .6 C .0
D .-8
4
24.一物体以速度υ=3t 2+2t (米/秒)作直线运动,则它在t=0到t=3秒一段时间内速度的平均值为( ) A .12米/秒 B .15.5米/秒 C .24米/秒
D .36米/秒
25.已知⎰
-=-=+-a
a
a 4
dx )x sin 1x 2(则( )
A .-2
B .2
C .2
3
D .4
26.曲线y 2=x,y=x,y=3所围图形的面积是( )
A .
()⎰-3
12
dy y y B .
()⎰-31dx x x C .()⎰-1
2dy y y
D .()dy y y 3
2
⎰-
27.曲面z=x 2+y 2与平面y+z=1的交线在xoy 坐标平面上的投影曲线为( ) A .椭圆 B .抛物线 C .双曲线
D .圆
28.设区域(σ)为:0≤x ≤1,-1≤y ≤1,则=σ⎰⎰
σ)
(2yd x ( )
A .-1
B .0
C .1
D .2 29.用待定系数法求微分方程y ″+2y ′-8y=2x 2+3的特解y 时应设特解( )
A .y =x(ax 2+bx+c)
B .y =ax 2+c
C .y =ax 2+bx+c
D .y =x(bx+c)
30.级数
∑
∞
=1
n n
!
n x 的收敛区间为( ) A .(-∞,0) B .(-1,1) C .(-∞,+∞)
D .(0,+∞)
二、计算题(本大题共7小题,每小题6分,共42分)
31.求x 22
x e x lim +∞→.
32.设y=ln(1+x 2),求y ″(0). 33.求⎰
.xdx sin 3
34.判别级数
∑∞
=1
n n
2
4
n 的敛散性.
5
35.计算
⎰
π+20
2.dx x
sin 1x cos
36.求方程4y ″+4y ′+y=0满足初始条件y(0)=2,y ′(0)=0的特解.
37.设u=y ϕ(x 2-y 2),其中y ≠0,ϕ(t )可导,求y u
x u ∂∂∂∂和.
三、应用和证明题(本大题共3小题,每小题6分,共18分) 38.求f(x)=x 3-x 在[0,2]上的最大值与最小值.
39.求由圆柱面x 2+y 2=1,平面y+z=2,坐标平面z=0所围立体在第一卦限(x ≥0,y ≥0,z ≥0)部分的体积V.
40.证明:当x>0时,1+.x 1x 2
1
+>。