生活中的立体图形含答案

合集下载

(最新)北师大版七年级数学上册《生活中的立体图形》试卷(附答案)

(最新)北师大版七年级数学上册《生活中的立体图形》试卷(附答案)
二.选择题
第1页 共4页
11.将下列几何体分类,柱体有: ,锥体有 (填序号) ;
12.长方体由_______________个面_______________条棱_______________个顶点;
13.半圆面绕直径旋转一周形成__________;
4. 围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)
5. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;
6. 圆柱、圆锥、球的共同点是_____________________________;
7.线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;
8. 圆可以分割成_____ 个扇形,每个扇形都是由___________________;
9. 从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;
10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有 ;
《生活中的立体图形》试卷
第1.1.1课时家庭作业 (生活中的立体图形1) 姓名 学习目标:
1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:
1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;
2.图形是由________,_________,________构成的;

生活中的立体图形含答案

生活中的立体图形含答案

1.生活中的立体图形一.选择题1.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )2.下列说法错误的是( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形3.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为 ( )A.2001B.2005C.2004D.20064.如图所示立体图形,是由____个面组成,面与面相交成____条线( )A.3,6B.4,5C.4,6D.5,7第4题 第5题5.如图,在一个棱长为6cm 的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有( )A .1个B .2个C .3个D .无数个二.填空题1.如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由( )个面围成的,其中正方形有( )个,长方形有( )个.第1题2.用一长20cm ,宽8cm 的纸片卷成(无重合部分)一个高为8cm 的圆柱,那么这个圆柱的底面圆的半径是( ),圆柱的体积是( )。

3.如图所示的几何体是由若干个棱长为1的正方体堆放而成的,则这个几何体的体积是( )。

第3题 第4题4.将棱长为1cm 的正方体组成如图所示的几何体,那么这个几何体的表面积是( )。

5.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个。

三.解答题1.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?2.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.答案一选择题1.D2.B3.B4.C5.D 解析:因为上面正方体的棱长不确定,所以根据正方体体积公式可知,上面正方体体积的可能值有无数个. 二填空题1.8,2,42.π10,π800 3.6 4.362cm 5.125 三解答题1.绿 蓝 黑(分析:红不与蓝、白、黄、黑相对,所以红与绿相对;黄不与白、黑、绿、红相对,黄必与蓝相对;剩下黑与白相对。

2024~2025学年七年级数学上册1.1生活中的立体图形第二课时课后练「含答案」

2024~2025学年七年级数学上册1.1生活中的立体图形第二课时课后练「含答案」

1.一个多面体有7个面,10个顶点,则它的棱数只能是()A.11B.13C.15D.172.中国扇文化有着深厚的文化底蕴;历来中国有“制扇王国”之称.如图,打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为()A.点动成线B.线动成面C.面动成体D.两点确定一条直线3.下面现象说明“线动成面”的是( )A.天空划过一道流星B.扔一块小石子,石子在空中飞行的路线C.旋转一扇门,门在空中运动的痕迹D.汽车雨刷在挡风玻璃上面画出的痕迹4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是( )A.B.C.D.6.将如图所示的长方形绕它的对角线所在直线旋转一周,形成的几何体是()A.B.C.D.7.一个七棱柱一共有条棱,有面,有个顶点.8.一个七棱柱有个面.9.(1)一张纸对折后,纸上会留下一道折痕,用数学知识可解释为;(2)夏夜,天上飞逝的流星形成一道亮光,用数学知识可解释为;(3)黑板擦在黑板上擦出一片干净的区域,用数学知识可解释为;(4)长方形绕它的一边在的直线旋转,形成一个圆柱,用数学知识可解释为.【分析】本题考查的是立体图形的基本知识,解题的关键是熟练掌握几何体的基本概念,根据多面体的顶点数+面数-棱数=2,即可解答.【详解】解:Q多面体有7个面,10个顶点,\棱数为:107215+-=,故选:C.2.B【分析】本题考查了线、面的关系,根据题意,结合线动成面的数学原理:某一条线在运动过程中留下的运动轨迹会组成一个平面图形,这个平面图形就是一个面,即可得出答案.熟练掌握线动成面的数学原理是解本题的关键.【详解】解:打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为线动成面,故选:B.3.D【分析】本题考查了点、线、面、体.根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.【详解】解:A、天空划过一道流星,说明“点动成线”,本选项不符合题意;B、扔一块小石子,石子在空中飞行的路线,说明“点动成线”,本选项不符合题意;C、旋转一扇门,门在空中运动的痕迹,说明“面动成体”,本选项不符合题意;D、汽车雨刷在挡风玻璃上面画出的痕迹,说明“线动成面”,本选项符合题意.故选:D.4.A【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.【详解】A.旋转一周可得本题的几何体,故选项正确,符合题意;B.旋转一周为两个圆锥结合体,故选项错误,不符合题意;C.旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D.旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A.【点睛】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.6.B【分析】根据矩形角度和顶点观察,绕对角线可得答案.【详解】解:通过观察可知,B图形的构造满足旋转结果.故选:B.【点睛】本题主要考查旋转的性质,认真观察旋转中心和线段、角度的特点是解题的关键.7.21 9 14【分析】本题考查了认识立体图形,是基础题,熟记棱柱的结构并以及七棱柱的特点是解题的关键.根据七棱柱的特点填空.【详解】解:一个七棱柱共有21条棱,9个面,14个顶点.故答案为:21,9,14.8.9【分析】本题考查了棱柱的面,一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱有9个面,故答案为:9.9.面与面相交得到线点动成线线动成面面动成体【分析】题目考查了点、线、面之间的动态关系,理解生活中的点、线、面关系是解题的关键.【详解】(1)一张纸对折后,纸上会留下一道折痕,用数学知识可解释为面与面相交得到线;故答案为:面与面相交得到线(2)夏夜,天上飞逝的流星形成一道亮光,用数学知识可解释为点动成线;故答案为:点动成线(3)黑板擦在黑板上擦出一片干净的区域,用数学知识可解释为线动成面;故答案为:线动成面(4)长方形绕它的一边所在的直线旋转,形成一个圆柱,用数学知识可解释为面动成体.故答案为:面动成体。

生活中的立体图形课后题(题目+答案)

生活中的立体图形课后题(题目+答案)
【答案】棱柱,圆锥分别是由5个,2个面围成的.除了圆锥有一个曲面,其他都是平面
【采分点】面的个数(4分)
【采分点】判断平曲面(2分)
【题干】2.你认为生活中有哪些几何体可以由平面图形旋转而得到?你能想象它们是由什么平面图形旋转而成的吗?举例说明.
【答案】比如:篮球是由圆旋转而成;圆锥形的沙堆是由三角形旋转而成;水杯是由四边形旋转而成的;易拉罐是由矩形旋转而成的;.
【答案】(1)圆柱体和长方体(2)圆柱体(3)圆柱体和圆锥(4)长方体和球
【采分点】每幅图(1.5分)
【题干】6.圆柱和棱柱有很多相同点,下面的这个几何体也有这样的相同点吗?
【答案】有,上下底面相同且平行;侧面展开是矩形.
【采分点】有(2分)
【采分点】相同点(4分)
【大题】习题1.2(每小题6分)
【题干】1.图中的棱柱,圆锥分别是由几个面围成的?他们分别是平的还是曲的?
【采分点】正确举例3个(6分)
【题干】3.下列几何体可以由平面图形绕其中一条直线旋转一周得到吗?
【答案】(1)(3)(4)可以由平面图形绕其中一条直线旋转一周得到
【采分点】(1)(3)(4)(6分)
【小题】(2)这个六棱柱的所有侧面的面积之和是多少?
【答案】侧面积之和:5×4×6=120cm2
【采分点】120cm2(4分)
【问答题】
【题干】3.将下列几何体分类,并说明理由.
正方体长方体球圆柱圆锥四棱柱三棱柱
【答案】这些几何体分别是正方体、长方体、球、圆柱、圆锥、四棱柱、三棱柱
可以分为柱体、锥体、球体三类;
【综合题】
【题干】2.一个六棱柱模型如图所示,它的底面边长都是5cm,侧棱长4cm观察这个模型,回答下列问题:

生活中的立体图形

生活中的立体图形

生活中的立体图形
(4)在上图中找出与地球类似的几何体?
答:墙上挂着的足球与地球类似。
认一认
说出下列几何体的名称
长方体
棱锥
三棱柱
正方体
棱台
五棱柱
认一认
说出下列几何体的名称
圆柱
圆锥
圆台

直棱柱与斜棱柱
直棱柱
斜棱柱
注:本书只讨论直棱柱,简称棱柱。
立体图形分类
圆柱
柱体 棱柱
三棱柱 四棱柱
五棱柱
锥体
都有两个底 面,且上、 下两相底面
底面是多边形; 形状和大小
侧面是平面; 完全一样。
有多个顶点。
想一想?
如何将几何体分类?
一、根据柱、锥、台、球来分,分 成四类,即柱体、锥体、台体、球体。
二、根据组成的面是曲的还是平的 分成两类。
练一练
1.将下列几何体分类,并说明理由。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
练一练
2.指出下列几何体的名称,并加以归类。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
点、线、面
图形是由点、线、面组成的 点动成线,线动成面,面动成体
图形名称 顶点数
棱数
面数
曲面还直面
三棱柱
6
四棱柱
8
三棱锥
4
四棱锥
5
圆柱
0
圆锥
1
球体
09512 Nhomakorabea6
6
4

《生活中的立体图形》知识全解

《生活中的立体图形》知识全解

1.1 生活中的立体图形新知概览:知识要点课标要求中考考点生活中常见几何体的基本特征及其分类认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类识别柱体、锥体、球体棱柱的特征知道常见几何体的特征求棱柱的棱数,面数图形的构成要素认识点、线、面,理解“点动成线、线动成面、面动成体”探索平面图形旋转的旋转体知识全解知识点1生活中常见几何体的基本特征及其分类知识衔接:几何图形包括立体图形和平面图形.1.平面图形:数学上所说的平面没有边界,可以向四面八方无限延伸.如果一个图形的各个部分都在同一个平面内,那么这个图形是平面图形,常见的平面图形有三角形、正方形、长方形、平行四边形、梯形、圆等.2.如图1—1—1我们学过长方体,正方体等称为立体图形,这样的几何图形上的点不都在在同一平面内.长方体正方体知识详解:(1)几何体的分类:(2)几何体的基本特征:体是由面围成的;面有两种,平面和曲面.①柱体的相同点是上下两个面完全相同.不同点是圆柱的底面是圆,侧面是一个曲面,直棱柱底面是多边形,侧面都是长方形;②锥体相同点是都有一个顶点.不同点是圆锥的底面是一个圆,侧面是一个曲面,棱锥的底面是一个多边形,侧面都是三角形;③球体由一个曲面围成.知识警示:(1)立体图形是由一个或几个面围成的,如:球是有一个面围成的,而长方体是由六个面围成的,组成棱柱和棱锥的面都是平的,而组成圆锥、圆柱、球的面都是曲的.(2)我们直研究直棱柱,不作特殊说明,棱柱都指直棱柱;(3)长方体、正方体是棱柱;(4)几何体的分类可按“有无顶点”、“有无曲面”等不同的标准来区分.【试练例题1】如图1—1—2所示,请分别指出下列物体的形状分别类似于哪种几何体.思路导引:观察实物轮廓、分析轮廓特征、抽象几何体.直棱柱柱体棱柱圆柱锥体棱锥几何体圆锥球体斜棱柱1—1—2解:茶叶盒类似棱柱;地球仪类似球体;魔方类似棱柱;字典类似棱柱;金字塔类似棱锥;彩笔类似棱柱.方法:由实物的形状想象几何体是一个观察、体验、抽象的过程,解决此类问题应从实物的轮廓特征入手,抽象出几何体,进而确定是哪种几何体,即“有物悟形”、“由形命名”.【试练例题2】如图1—1—3将下列几何体进行分类,并说明理由.思路导引:把几何体进行分类,一定要注意根据不同的分类标准,分类情况不尽相同,切记不要混淆分类标准,分类要做到不重不漏.解:如一类是(1)(2)(4)(5)是柱体,另一类(3)(7)是椎体,第三类(6)是球体;或一类是(1)(4)(5)(7),有平面围成,另一类(2)(3)(6),有曲面参与围成.方法:几何体分类,先确定分类标准,按有无曲面来分较常用,在此标准下几何体可分为多面体(围成几何体的面都是平面)和旋转体(由平面图形旋转形成,围成几何体的面有曲面).【试练例题3】如图1—1—4所示,陀螺是由下面哪两个几何体组合而成的()A. 长方体和圆锥 B. 长方形和三角形C. 圆和三角形 D. 圆柱和圆锥1—1—41—1—3思路导引:根据立体图形的特征对图进行分析知:该图上部分是圆柱,下部分是圆锥.解:D.方法:先判断原几何体是曲面还是平面围成,再判断是否能分割为柱体、锥体还是球体.知识点2棱柱的相关概念及特征知识衔接:1.在小学里我们认识了六种常见的几何体,它们分别是长方体、正方体、圆柱、圆锥和球体.2.我们通过学习,已知道圆柱的侧面展开图是长方形.知识详解:(1)在棱柱里,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线交做侧棱,棱柱的所有侧棱都相等.棱柱的上、下底面是相同的图形,都是多边形,侧面都是长方形.(2)棱柱的特征是:①有两个面互相平行;②其余各面都是平行四边形;③每相邻两个四边形的公共边互相平行.知识警示:一般地,n棱柱有2n个顶点,3n条棱(其中有n条是侧棱),(n+2)个面(2个底面,n个侧面).【试练例题4】如图1—1—5所示棱柱(1)这个棱柱的底面是____________边形.(2)这个棱柱有____________个侧面,侧面的形状是____________边形.1—1—5 (3)侧面的个数与底面的边数____________.(填“相等”或“不相等”)(4)这个棱柱有____________条侧棱,一共有____________条棱.(5)如果CC′=3 cm,那么BB′=____________cm.思路导引(1)观察图形,易知此棱柱为三棱柱;所以底面是3边形,这个棱柱有3个侧面,侧面形状是四边形;利用棱柱侧棱都相等,可求得BB′.答案:1.(1)三(2)3 四(3)相等(4)3 9 (5)3.方法:结合图形解决棱柱的问题,知识就显得较为容易.知识点3棱柱的分类知识详解:人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……知识警示:(1)底面是n边形的棱柱称为n棱柱,长方体和正方体都是四棱柱.(2)正方体的六个面形状、大小都相同,都是正方形,正方体的12条棱都相等.【试练例题5】如图1—1—6请说出下面物体是哪种棱柱.思路导引根据棱柱的分类,观察这几个棱柱的底面,分别是三角形、四边形、六边形,所以这几个物体分别是:三棱柱、四棱柱、六棱柱.答案:三棱柱、四棱柱、六棱柱.方法:判断棱柱的种类,我们可以看棱柱底面是几边形,即可判断其是几棱柱.知识点4图形的构成要素知识详解:1.几何图形都是由点、线、面、体组成的.(1)点是构成图形的基本元素,是线与线相交的地方,即线与线相交成点.点无大小之分,只有位置之别;(2)线无粗细,可以有长度,它可分为直线、曲线,面与面相交成线;(3)面无厚薄,可分为平面、曲面.平面是向四周无限延伸的.2.用运动观点看几何基本图形之间的关系:点动成线,线动成面,面动成体.如:流星可以看作一个点,它划破夜空,就形成了线;直升飞机的螺旋桨快速旋转形成了一个圆面,这可以说线动成面;三角板绕它的一条直角边旋转一周,形成一个圆锥体.点动成线,线动成面,面动成体,这样就组合成了各种各样的几何图形,形成了1—1—6丰富多彩的图形世界.知识警示:(1)线、面、体都是由点组成的,即点是构成图形的基本元素;(2)面与面的交线可能是直线,也可能是曲线;(3)点是最简单的几何图形.【试练例题6】用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.如图1—1—7绕虚线旋转得到的几何体是()思路导引:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱,结合实际生活经验此题易解.解:D.方法:长方形绕其一边所在直线旋转一周形成了一个圆柱; 半圆绕其直径所在直线旋转一周形成球;三角形形绕其一边所在直线旋转一周形成圆锥.1—1—7A B C D。

北师大版七年级上册第一章《生活中的立体图形》测评练习含答案

北师大版七年级上册第一章《生活中的立体图形》测评练习含答案

北师大版七年级上册第一章《生活中的立体图形》测评练习班级:___________姓名:___________一.选择题。

1.下列几何体中与其余三个不属于同一类几何体的是()A.B.C.D.2.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.下列几何体中,属于柱体的有()A.1个B.2个C.3个D.4个5.下列几何体中,面的个数最少的是()A.B.C.D.6.一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、24 7.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个8.下列说法中,正确的是()A.棱柱的侧面可以是正方形,也可以是三角形B.一个几何体的表面不可能只由曲面组成C.棱柱的各个面面积都相等D.圆锥是由平面和曲面组成的几何体二.填空题。

9.五棱柱有条棱.10.一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.11.用一段长30cm的铁丝恰好做一个长方体的框架,长、宽、高的比是3:2:1.则这个框架的长比高多厘米.12.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.13.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n 等分,如果得到各面都没有涂色的小正方体125个,那么n的值为.参考答案一.选择题1.【解答】解:正方体,圆柱和四棱柱都是柱体,只有C选项是锥体.故选:C.2.【解答】解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.3.【解答】解:第一、二、四、七个几何体是棱柱共4个,故选:C.4.【解答】解:第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个,故选:B.5.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.6.【解答】解:一个六棱柱的顶点个数是12,棱的条数是18,面的个数是8.故选:B.7.【解答】解:①柱体包括圆柱、棱柱;∴柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,错误;④长方体符合柱体的条件,一定是柱体,正确;⑤正棱柱的侧面一定是长方形,正确;∴正确有①②④⑤共4个.故选:C.8.【解答】解:A、棱柱的侧面是矩形,故选项A原说法错误;B、球的表面是曲面,故选项B原说法错误;C、棱柱的侧棱都相等,侧棱与底棱不一定相等,故选项C原说法错误;D、圆锥的侧面是曲面,底面是平面,故选项D原说法正确;故选:D.二.填空题9.【解答】解:五棱柱有侧棱5条,底面上的棱5×2=10条,所以,共有5+10=15条.故答案为:15.10.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.11.【解答】解:一条长、宽、高的和:30÷4=(厘米),总份数:3+2+1=6,长:×=(厘米),高:×=(厘米),所以这个框架的长比高多:﹣==2.5(厘米).故答案为:2.5.12.【解答】解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.13.【解答】解:由已知规律可推断:正方体的棱n等分时,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7。

北师版七年级上1.1生活中的立体图形同步习题有答案和解析

北师版七年级上1.1生活中的立体图形同步习题有答案和解析

第一章丰富的图形世界1生活中的立体图形第1课时生活中的立体图形预习要点:1.写出下列几何体名称。

2.在下图中标出六棱柱的顶点、侧棱、侧面和底面3.在棱柱中,相邻两个面的交线叫做,相邻两个侧面的交线叫做,棱柱的所有长都相等,棱柱的上、下底面的形状相同。

侧面的形状都是。

4.长方体、正方体都是棱柱,棱往可以分为和,的侧面是长方形。

5.(2019•丽水)下列图形中,属于立体图形的是()A.B.C.D.6.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③7.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱8.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球9.六棱柱有面.10.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有.11.若一直棱柱有10个顶点,那么它共有条棱.同步小题12道一.选择题1.下列几何图形是立体图形的是()A.扇形B.长方形C.正方体D.圆2.下面的几何体中,属于棱柱的有()A.1个B.2个C.3个D.4个3.下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4.下列几何图形中,属于圆锥的是()A.B.C.D.5.三棱柱的顶点个数是()A.3 B.4 C.5 D.66.下列说法不正确的是()A.长方体与正方体都有六个面B.圆锥的底面是圆C.棱柱的上下底面是完全相同的图形D.五棱柱有五个面,五条棱二.填空题7.下列图形中,是柱体的有.(填序号)8.如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为.9.一个棱柱的棱数恰是其面数的2倍,则这个棱柱的顶点个数是.10.若一个直棱柱共有12个顶点,所有侧棱长的和等于60,则每条侧棱的长为.三.解答题11.将下列几何体与它的名称连接起来.12.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.第2课时图形变换预习要点:1.图形是由点、线、面构成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C
D
1.生活中的立体图形
一.选择题
1.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选
出来()
2.下列说法错误的是()
A.长方体、正方体都是棱柱
B.三棱柱的侧面是三角形
C.直六棱柱有六个侧面、侧面为长方形
D.球体的三种视图均为同样大小的图形
3.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()
4.如图所示立体图形,是由____个面组成,面与面相交成____条线( )
,6 ,5 ,6 ,7
第4题第5题
5.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()
A.1个B.2个 C.3个D.无数个
二.填空题
1.如图所示的几何体是由一个正方体截去
4
1
后而形成的,这个几何体是由()个面围成的,其中正方形有()个,长方形有()个.
第1题
2.用一长20cm,宽8cm的纸片卷成(无重合部分)一个高为
8cm的圆柱,那么这个圆柱的底面圆的半径是(),圆柱的体积是()。

3.如图所示的几何体是由若干个棱长为1的正方体堆放而成的,则这个几何体的体积是()。

第3题第4题
4.将棱长为1cm的正方体组成如图所示的几何体,那么这个几何体的表面积是()。

5.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个。

三.解答题
1.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?
2.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.
答案
一选择题
解析:因为上面正方体的棱长不确定,所以根据正方体体积公式可知,上面正方体体积的可能值有无数个.
二填空题
,2,4 2.π10,π
800 2cm 三解答题
1.绿 蓝 黑(分析:红不与蓝、白、黄、黑相对,所以红与绿相对;黄不与白、黑、绿、红相对,黄必与蓝相对;剩下黑与白相对。


因为六个面上是连续的六个整数,而已知有16、19、20,所以有两种可能16、17、18、19、20、21或15、16、17、。

相关文档
最新文档