第1讲 函数与方程思想

合集下载

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

第一部分 知识复习专题专题八 思想方法专题 第一讲 函数与方程思想一、选择题1. (2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sin x .当0≤x <π时,f(x)=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解析:由题意,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6=f ⎝⎛⎭⎫5π6+sin5π6+sin 11π6+sin 17π6=0+12-12+12=12.故选A. 答案:A2.设a >1,若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( )A .{a|1<a≤2}B .{a|a ≥2}C .{a|2≤a ≤3}D .{2,3}解析:依题意得y =a 3x ,当x ∈[a ,2a]时,y =a 3x ∈⎣⎡⎦⎤12a 2,a 2 [a ,a 2],因此有12a 2≥a ,又a >1,由此解得a≥2.故选B.答案:B3.对任意a ∈[-1,1],函数f(x)=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是( )A.{}x |1<x <3B.{}x |x <1或x >3C.{}x |1<x <2D.{}x |x <1或x >2解析:由f(x)=x 2+(a -4)x +4-2a>0得 a(x -2)+x 2-4x +4>0.令g(a)=a(x -2)+x 2-4x +4,由不等式f (x)>0恒成立,即g(a)>0在[-1,1]上恒成立.∴有⎩⎪⎨⎪⎧g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧-(x -2)+x 2-4x +4>0,(x -2)+x 2-4x +4>0. 解得x<1或x>3. 答案:B4.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,其一交点为P ,则|PF 2|=( )A.32B. 3C.72D .4 解析:如图,令|F 1P|=r 1,|F 2P|=r 2,那么⎩⎪⎨⎪⎧r 1+r 2=2a =4,r 22-r 21=(2c )2=12⎩⎪⎨⎪⎧r 1+r 2=4,r 2-r 1=3 r 2=72.答案:C5.(2014·大纲卷)奇函数f(x)的定义域为R ,若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A .-2B .-1C .0D .1解析:因为函数f(x)是奇函数,所以f (-x)=-f(x), 又因为f(x +2)是偶函数,则f(-x +2)=f(x +2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,f(8)=0,同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5);而f(5)=(3+2)=f(-3+2)=f(-1)=-f(1)=-1,f(9)=1,所以f(8)+f(9)=1.故选D.答案:D6.(2014·湖南卷)已知函数f(x)=x 2+e x -12(x <0)与g(x)=x 2+ln(x +a)图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫ -1e ,e D.⎝⎛⎭⎫-e ,1e解析:由题可得存在x 0∈(-∞,0)满足f(x 0)=g(-x 0) x 20+ex 0-12=(-x 0)2+ln(-x 0+a) ex 0-ln(-x 0+a)-12=0,令h(x)=e x -ln(-x +a)-12,因为函数y =e x 和y =-ln(-x +a)在定义域内都是单调递增的,所以函数h(x)=e x -ln(-x +a)-12在定义域内是单调递增的,又因为x 趋近于-∞时,函数h(x)<0且h(x)=0在(-∞,0)上有解(即函数h(x)有零点),所以h(0)=e 0-ln(0+a)-12>0 ln a <ln e a < e.故选B.答案:B二、填空题7.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.解析:令f(x)=(2-2-|x -2|)2,∵-|x -2|≤0,∴0<2-|x -2|≤1.∴f(x)∈[1,4).∵方程有实根, ∴1≤2+a<4,解得-1≤a<2. 答案:[-1,2)8. (2014·陕西卷)已知4a =2,lg x =a ,则x =________.解析:由4a =2得a =12,所以lg x =12,解得x =10.答案:10三、解答题9.已知函数f(x)(x∈R)满足f(x)=2bxax-1,a≠0,f(1)=1且使f(x)=2x成立的实数x只有一个,求函数f(x)的表达式.解析:∵f(x)=2bxax-1,f(1)=1,∴2ba-1=1.∴a=2b+1.又f(x)=2x,即2bxax-1=2x只有一个解,也就是2ax2-2(1+b)x=0(a≠0)只有一解.∴Δ=[-2(1+b)]2-4×2a×0=0,即(1+b)2=0.得b=-1.∴a=-1.故f(x)=2xx+1.10.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB⊥BC,OA∥BC,且AB=BC=2OA=4 km,曲线OC段是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解析:以点O为原点,OA所在的直线为x轴,建立直角坐标系,设抛物线的方程为x2=2py,由C(2,4)代入得:p=1 2,所以曲线段OC的方程为:y=x2(x∈[0,2]).A(-2,0),B(-2,4),设P(x,x2)(x∈[0,2])在OC上,过P作PQ⊥AB于Q,PN ⊥BC于N,故PQ =2+x ,PN =4-x 2, 则矩形商业楼区的面积 S =(2+x)(4-x 2)(x ∈[0,2]).S =-x 3-2x 2+4x +8,令S′=-3x 2-4x +4=0得x =23或x =-2(舍去),当x ∈⎣⎡⎦⎤0,23时,S ′>0,S 是x 的增函数, 当x ∈⎣⎡⎦⎤23,2时,S ′<0,S 是x 的减函数, 所以当x =23时,S 取得最大值,此时PQ =2+x =83,PN =4-x 2=329,S max =83×329=25627(km 2).故该矩形商业楼区规划成长为329 km ,宽为83 km 时,用地面积最大为25627km 2.11.进入2007年以来,猪肉价格上涨,养猪所得利润比原来有所增加.某养殖户拟建一座平面图(如图所示)是矩形且面积为200平方米的猪舍养殖生猪,由于地形限制,猪舍的宽x 不少于5米,不多于a 米,如果该养殖户修建猪舍的地基平均每平方米需投入10元,房顶(房顶与地面形状相同)每平方米需投入15元,猪舍外面的四周墙壁每米需投入20元,中间四条隔墙每米需投入10元.问:当猪舍的宽x 定为多少时,该养殖户投入的资金最少?最少是多少元?解析:设该养殖户投入资金为y 元,易知猪舍的长为200x米, ∵y =200×10+200×15+⎝⎛⎭⎫2x +2×200x ×20+4x ×10=80⎝⎛⎭⎫x +100x +5 000(5≤x≤a), ∵函数f(x)=x +100x在[5,10]上单调递减,在[10,+∞)上单调递增, ∴当a≥10时,y min =6 600,此时x =10;当5≤a <10时,y min =80⎝⎛⎭⎫a +100a +5 000,此时x =a. ∴若a≥10米,猪舍的宽定为10米,该养殖户投入的资金最少是6 600元;若5≤a <10米,猪舍的宽就定为a 米,该养殖户投入的资金最少是[80⎝⎛⎭⎫a +100a +5 000]元.12.直线m :y =kx +1和双曲线x 2-y 2=1的左支交于A ,B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.解析:由⎩⎪⎨⎪⎧y =kx +1,x 2-y 2=1(x≤-1)消去y , 得(k 2-1)x 2+2kx +2=0.①(联立方程是解决交点问题的一般方法)因为直线m 与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根.所以⎩⎨⎧Δ=4k 2+8(1-k 2)>0,x 1+x 2=2k 1-k 2<0,x 1·x 2=-21-k2>0,解得1<k < 2.设M(x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22=k1-k2,y 0=kx 0+1=11-k 2.由P(-2,0),M ⎝⎛⎭⎫k 1-k 2,11-k 2,Q(0,b)三点共线,得出b =2-2k 2+k +2,……(构造出b 和k 的函数关系式)设f(k)=-2k 2+k +2=-2⎝⎛⎭⎫k -142+178,…(使函数更加清晰) 则f(k)在(1,2)上为减函数, ∴f(2)<f(k)<f(1),且f(k)≠0. ∴-(2-2)<f(k)<0或0<f(k)<1. ∴b <-2-2或b >2.∴b 的取值范围是(-∞,-2-2)∪(2,+∞).13.若关于x 的方程4x +a·2x +a +1=0有实数解,求实数a 的取值范围.解析:解法一 令2x =t(t >0),则原方程可化为 t 2+at +a +1=0,(*)问题转化为方程(*)在(0,+∞)上有实数解,求a 的取值范围. ①当方程(*)的根都在(0,+∞)上时,可得下式 ⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0⎩⎪⎨⎪⎧a≤2-22或a≥2+22,a <0,a >-1,即-1<a≤2-22,②当方程(*)的根一个在(0,+∞)上,另一根在(-∞,0]上时, 令f(t)=t 2+at +a +1得f(0)≤0,即a≤-1. 由①②知满足条件的a 的取值范围为 (-∞,2-22]. 解法二 令t =2x (t >0), 则原方程可化为t 2+at +a +1=0. 变形为a =-1+t 21+t =-(t 2-1)+21+t=-⎣⎡⎦⎤(t -1)+2t +1=-⎣⎡⎦⎤(t +1)+2t +1-2≤-(22-2)=2-2 2.当且仅当t =2-1时取等号. 所以a 的取值范围是(-∞,2-22).。

函数与方程思想

函数与方程思想

=,求正整数1000【课堂练习】2.已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题: ① 存在实数k ,使得方程恰有2个不同的实根;② 存在实数k ,使得方程恰有4个不同的实根;③ 存在实数k ,使得方程恰有5个不同的实根;④ 存在实数k ,使得方程恰有8个不同的实根.其中真命题的序号是 .1.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根。

其中假命题的个数是 ( )A . 0B . 1C . 2D . 42.如果函数y ax b x =++21的最大值是4,最小值是-1,求实数a 、b 的值。

解:课后作业总结回顾3.已知函数的定义域和值域都是(其图像如下图所示),函数.定义:当且时,称是方程的一个实数根.则方程的所有不同实数根的个数是 .4.已知()()20,f x ax bx c a =++≠且方程()f x x =无实数根,下列命题:① 方程x x f f =)]([也一定没有实数根;② 若0>a ,则不等式x x f f >)]([对一切实数x 都成立;③ 若0<a ,则必存在实数0x ,使00)]([x x f f >;④ 若0=++c b a ,则不等式x x f f <)]([对一切实数x 都成立。

其中正确命题的序号是 .已知,若关于的方程有实根,则的取值范围是 .6.(普陀区一模文理科14) 已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 .)(x f y =]1,1[-],[,sin )(ππ-∈=x x x g ])1,1[(0)(11-∈=x x f ]),[()(212ππ-∈=x x x g 2x 0))((=x g f 0))((=x g f a ∈R x 2104x x a a ++-+=a。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

高三数学复习学案:第1讲 函数与方程思想

高三数学复习学案:第1讲 函数与方程思想

函数与方程是中学数学的重要概念,它们之间有着密切的联系.函数与方程的思想是中学数学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,是历年高考的重点和热点.1.函数的思想用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题使问题获得解决.函数思想是对函数概念的本质认识.2.方程的思想在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.题型二 函数与方程思想在方程问题中的应用例2 如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.变式训练 已知方程9x -2·3x +(3k -1)=0有两个实根,求实数k 的取值范围.题型三 函数与方程思想在不等式问题中的应用例3 已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有的实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.变式训练 设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围.第1讲 函数与方程思想(推荐时间:60分钟)一、填空题1.双曲线x 29-y 216=1的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为________.2.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是________.3.已知向量a =(3,2),b =(-6,1),而(λa +b )⊥(a -λb ),则实数λ=__________.4.方程m +1-x =x 有解,则m 的最大值为________.5.已知R 上的减函数y =f (x )的图象过P (-2,3)、Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.6.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为__________.7.若关于x 的方程4cos x -cos 2x +m -3=0恒有实数解,则实数m 的取值范围是________.8.已知函数f (x )=(x -a )(x -b )-2,其中a <b ,且α,β(α<β)是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系为________.9.已知等差数列{a n }共有10项,其奇数项的和为15,偶数项的和为30,则它的公差d =________.10.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是__________.11.若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是____________.12.已知函数f (x )=⎩⎨⎧-x 2, -3≤x ≤3,x 2-6,x <-3或x >3,若0<m <n ,且f (m )=f (n ),则mn 2的取值范围是________.二、解答题13.设P (x ,y )是椭圆x 24+y 22=1上的动点,定点M (12,0),求动点P 到定点M 距离的最大值与最小值.14.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }前n 项和S n 的最大值.15.已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.是否存在实数m ,n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.。

高中数学竞赛专题一函数与方程思想

高中数学竞赛专题一函数与方程思想

高中数学竞赛专题一函数与方程思想函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。

函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路.和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。

一、考点回顾函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。

比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。

高考数学:专题七 第一讲 函数与方程思想配套限时规范训练

高考数学:专题七 第一讲 函数与方程思想配套限时规范训练
2.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=3,这时a的取值的集合为()
A.{a|1<a≤2}B.{a|a≥2}
C.{a|2≤a≤3}D.{2,3}
3.(2012·浙江)设a>0,b>0,则下列命题正确的是()
A.若2a+2a=2b+3b,则a>b
所以x1x2+y1y2=0,而y1y2=x1x2-(x1+x2)+1,
所以2x1x2-(x1+x2)+1=0.
由即(a2+b2)x2-2a2x+a2(1-b2)=0.
又直线与椭圆相交于两点,所以Δ=(-2a2)2-4(a2+b2)·a2(1-b2)>0,整理得a2b2(a2+b2-1)>0,即a2+b2>1.
12.若数列{an}的通项公式为an=×n-3×n+n(其中n∈N*),且该数列中最大的项为am,则m=______.
三、解答题
13.已知直线y=-x+1与椭圆+=1(a>b>0)相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈,求a的最大值.
14.(2012·山东)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
A.B.2C.4D.8
6.定义在R上的偶函数f(x)在[0,+∞)上递增,f=0,则满足f(logx)>0的x的取值范围是()
A.(0,+∞)B.(0,)∪(2,+∞)
C.(0,)∪(,2)D.
7.设函数f(x)=x3+sinx,若0≤θ≤时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是()
A.(0,1)B.(-∞,0)
C.(-∞,1)D.

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等.
第1讲 函数与方程思想 思想概述 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.
方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转化问题,使问题得以解决. 方法一 运用函数相关概念的本质解题
在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有:求函数的定义域、解析式、最值,研究函数的性质.
例1 若函数f (x )=⎩⎪⎨⎪⎧
-x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则实数a 的取值范围为( )
A .(0,1)
B.⎣⎡⎭⎫13,1
C.⎝⎛⎭⎫13,1
D.⎝⎛⎭
⎫0,13 思路分析 先求出f (x )=a x 是减函数时a 的范围→满足-0+3a ≥a 0时a 的范围→取交集 答案 B
解析 ∵函数f (x )是R 上的减函数,
∴⎩
⎪⎨⎪⎧
0<a <1,3a ≥a 0,解得13≤a <1. ∴实数a 的取值范围为⎣⎡⎭⎫13,1.故选B.
批注 在函数的第一段中,虽然没有x =0,但当x =0时,本段函数有意义,故可求出其对应的“函数值”,且这个值是本段的“最小值”,为了保证函数是减函数,这个“最小值”应不小于第二段的最大值,即f (0),这是解题的一个易忽视点.究其原因,就是未把分段函数看成是一个函数,一个整体.
解答本题,首先要明确分段函数和减函数这两个概念的本质,分段函数是一个函数,根据减函数的定义,两段函数都是减函数,但这不足以说明整个函数是减函数,还要保证在两段的衔接处呈减的趋势,这一点往往容易被忽视.
方法二 利用函数性质求解方程问题
函数与方程相互联系,借助函数的性质可以解决方程解的个数及参数取值范围的问题. 例2 (1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )
A .a >2b
B .a <2b
C .a >b 2
D .a <b 2 答案 B
解析 由指数和对数的运算性质可得
2a +log 2a =4b +2log 4b =22b +log 2b .
令f (x )=2x +log 2x ,
则f (x )在(0,+∞)上单调递增,
又∵22b +log 2b <22b +log 2b +1=22b +log 22b ,
∴2a +log 2a <22b +log 22b ,
即f (a )<f (2b ),∴a <2b .
(2)设x ,y 为实数,满足(x -1)3+2 020(x -1)=-1,(y -1)3+2 020(y -1)=1,则x +y =________.
思路分析 观察两方程形式特征→借助函数f (t )=t 3+2 020t 的单调性、奇偶性→f (x -1)=f (1-y )→求出x +y
答案 2
解析 令f (t )=t 3+2 020t ,则f (t )为奇函数且在R 上是增函数.
由f (x -1)=-1=-f (y -1)=f (1-y ),
可得x -1=1-y ,∴x +y =2.
批注 通过方程的特征构造函数,利用函数性质寻求变量间的关系.
例3 已知a ,b 为不全为0的实数,求证:方程3ax 2+2bx -(a +b )=0在(0,1)内至少有一个实数根.
思路分析 方程至少有一个根→函数至少有一个零点→零点存在性定理
证明 若a =0,则b ≠0,此时方程的根为x =12
, 所以f (x )在(0,1)内有一个零点;
当a ≠0时,令f (x )=3ax 2+2bx -(a +b ).
(1)若a (a +b )<0,
则f (0)f ⎝⎛⎭⎫12=-(a +b )⎝⎛⎭⎫-14a =14a ·(a +b )<0,
所以f (x )在⎝⎛⎭
⎫0,12内有一个零点. (2)若a (a +b )≥0,则f ⎝⎛⎭⎫12f (1)=-14
a (2a +
b )= -14a 2-14
a (a +
b )<0, 所以f (x )在⎝⎛⎭⎫12,1内有一个零点.
综上,原方程在(0,1)内至少有一个实数根.
函数与方程的相互转化:对于方程f (x )=0,可利用函数y =f (x )的图象和性质求解问题. 方法三 构造函数解决一些数学问题
在一些数学问题的研究中,可以通过建立函数关系式,把要研究的问题转化为函数的性
质,达到化繁为简,化难为易的效果.
例4 求使不等式2x -1>m (x 2-1)对于|m |≤2的一切实数m 都成立的x 的取值范围. 思路分析 恒成立问题→函数最值问题→构造关于m 的一次函数
解 构造函数f (m )=(x 2-1)m -(2x -1),m ∈[-2,2],
f (m )<0在m ∈[-2,2]上恒成立⇔⎩⎨⎧ f (-2)<0,f (2)<0
⇔⎩⎪⎨⎪⎧ -2(x 2-1)-(2x -1)<0,2(x 2-1)-(2x -1)<0⇔⎩⎪⎨⎪⎧
2x 2+2x -3>0,2x 2-2x -1<0 ⇔7-12<x <3+12
. 所以x 的取值范围是⎝ ⎛⎭⎪⎫7-12
,3+12. 例5 如图,已知在△ABC 中,∠C =90°,P A ⊥平面ABC ,AE ⊥PB 于点E ,AF ⊥PC 于点F ,AP =AB =2,∠AEF =θ,当θ变化时,求三棱锥P -AEF 体积的最大值.
思路分析 思路分析 求V P -AEF 的最值→用θ表示V P -AEF ,构造函数→求函数的最值 解 因为P A ⊥平面ABC ,BC ⊂平面ABC ,所以P A ⊥BC ,
又BC ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,
所以BC ⊥平面P AC ,
而AF ⊂平面P AC ,所以BC ⊥AF .
又因为AF ⊥PC ,PC ∩BC =C ,PC ,BC ⊂平面PBC ,
所以AF ⊥平面PBC ,
而EF ⊂平面PBC ,所以AF ⊥EF .
所以EF 是AE 在平面PBC 内的射影.
因为AE ⊥PB ,所以EF ⊥PB ,
又AE ∩EF =E ,AE ,EF ⊂平面AEF ,
所以PB ⊥平面AEF ,所以PE ⊥平面AEF .
在Rt △P AB 中,因为AP =AB =2,AE ⊥PB ,
所以PE =2,AE =2,AF =2sin θ,EF =2cos θ.
V P -AEF =13S △AEF ·PE =13×12×2sin θ·2cos θ×2=26
sin 2θ. 因为0<θ<π2
,所以0<2θ<π. 所以当2θ=π2,即θ=π4
时,sin 2θ取得最大值1, 则V P -AEF 取得最大值26
. 批注 θ的变化是由AC ,BC 的变化引起的.三棱锥P -AEF 的高PE 为定值,只要S △AEF 最大即可.
在构造函数求解数学问题的过程中,要确定合适的变量,揭示函数关系,使问题明晰化.。

相关文档
最新文档