高考数学二轮复习 第一部分 微专题强化练 专题26 函数与方程的思想、分类讨论的思想

合集下载

高三数学二轮专题复习(一)函数与方程思想、数形结合思想

高三数学二轮专题复习(一)函数与方程思想、数形结合思想

数学教学的最终目标,是要让学生会用数学的眼光观察现实世界,会用数学的思维思考现实世界.数学素养就是指学生学习数学应当达成的有特定意义的综合性能力,数学核心素养高于具体的数学知识技能,具有综合性、整体性和持久性,反映数学本质与数学思想,数学核心素养是数学思想方法在具体学习领域的表现.二轮复习中如果能自觉渗透数学思想,加强个人数学素养的培养,就会在复习中高屋建瓴,对整体复习起到引领和导向作用.函数与方程思想、数形结合思想一、函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题,常涉及不等式恒成立问题、比较大小问题.一般利用函数思想构造新函数,建立函数关系求解. 1.若0<x 1<x 2<1,则( ) A.21e e x x->ln x 2-ln x 1 B.21e e x x-<ln x 2-ln x 1 C.1221e >e xxx x D.1221e <e xxx x[答案] C[解析] 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y 1=e x 与y 2=1x 的图象(图略)可知两函数图象的交点的横坐标x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确; 设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0, ∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e >e xxx x ,故选C.2.已知定义在R 上的函数g (x )的导函数为g ′(x ),满足g ′(x )-g (x )<0,若函数g (x )的图象关于直线x =2对称,且g (4)=1,则不等式g (x )e x >1的解集为________.[答案] (-∞,0)[解析] ∵函数g (x )的图象关于直线x =2对称, ∴g (0)=g (4)=1. 设f (x )=g (x )ex ,则f ′(x )=g ′(x )e x -g (x )e x (e x )2=g ′(x )-g (x )e x .又g ′(x )-g (x )<0,∴f ′(x )<0, ∴f (x )在R 上单调递减.又f (0)=g (0)e0=1,∴f (x )>f (0),∴x <0.3.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,则x 的取值范围是__________________. [答案] (-∞,-1)∪(2,+∞)[解析] ∵t ∈[2,8],∴f (t )∈⎣⎡⎦⎤12,3. 问题转化为m (x -2)+(x -2)2>0恒成立, 当x =2时,不等式不成立,∴x ≠2. 令g (m )=m (x -2)+(x -2)2,m ∈⎣⎡⎦⎤12,3. 问题转化为g (m )在⎣⎡⎦⎤12,3上恒大于0, 则⎩⎪⎨⎪⎧ g ⎝⎛⎭⎫12>0,g (3)>0,即⎩⎪⎨⎪⎧12(x -2)+(x -2)2>0,3(x -2)+(x -2)2>0, 解得x >2或x <-1.4.若x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是______. [答案] [-6,-2][解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3.令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增, 此时有a ≤f (x )min =f (-1)=1+4-3-1=-2. 当x =0时,不等式恒成立. 当0<x ≤1时,a ≥x 2-4x -3x 3,则f (x )在(0,1]上单调递增,此时有a ≥f (x )max =f (1)=1-4-31=-6.综上,实数a 的取值范围是[-6,-2]. 二、函数与方程思想在数列中的应用数列的通项与前n 项和是自变量为正整数的函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数;等差数列或等比数列的基本量的计算一般化归为方程(组)来解决.5. 已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 等于( ) A.-23 B.-13 C.13 D.23[答案] D[解析] 设等差数列的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 10=a 1+9d =10,S 10=10a 1+10×92d =70,即⎩⎪⎨⎪⎧a 1+9d =10,2a 1+9d =14, 解得d =23.6.已知在数列{a n }中,前n 项和为S n ,且S n =n +23a n ,则a na n -1的最大值为( )A.-3B.-1C.3D.1 [答案] C[解析] 当n ≥2时,S n =n +23a n ,S n -1=n +13a n -1,两式作差可得a n =n +23a n -n +13a n -1,即a n a n -1=n +1n -1=1+2n -1. 由函数y =1+2x -1在(1,+∞)上是减函数,可得a n a n -1在n =2时取得最大值3.7.在等差数列{a n }中,若a 1<0,S n 为其前n 项和,且S 7=S 17,则S n 取最小值时n 的值为____. [答案] 12[解析] 由已知得, 等差数列{a n }的公差d >0, 设S n =f (n ),则f (n )为二次函数,又由f (7)=f (17)知,f (n )的图象开口向上,关于直线n =12对称, 故S n 取最小值时n 的值为12.8.设等差数列{a n }的前n 项和为S n ,若S 4=-2,S 6=3,则nS n 的最小值为________. [答案] -9[解析] 由⎩⎪⎨⎪⎧4a 1+6d =-2,6a 1+15d =3解得a 1=-2,d =1,所以S n =n 2-5n 2 ,故nS n =n 3-5n 22.令f (x )=x 3-5x 22,则f ′(x )=32x 2-5x ,令f ′(x )=0,得x =0或x =103, ∴ f (x )在⎝⎛⎭⎫0,103上单调递减,在⎝⎛⎭⎫103,+∞上单调递增. 又∵n 是正整数,故当n =3时,nS n 取得最小值-9. 三、函数与方程思想在[解析]几何中的应用[解析]几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;求变量的取值范围和最值问题常转化为求函数的值域、最值,用函数的思想分析解答. 9.(2016·全国Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.8 [答案] B[解析] 不妨设抛物线C :y 2=2px (p >0),圆的方程设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5,点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,①点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,② 点D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上,∴5+⎝⎛⎭⎫p22=r 2,③ 联立①②③,解得p =4(负值舍去),即C 的焦点到准线的距离为p =4,故选B.10.如图,已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于P ,Q 两点,若∠P AQ =60°,且OQ →=3OP →,则双曲线C 的离心率为( )A.233B.72C.396D. 3[答案] B[解析] 因为∠P AQ =60°,|AP |=|AQ |, 所以|AP |=|AQ |=|PQ |,设|AQ |=2R , 又OQ →=3OP →,则|OP |=12|PQ |=R .双曲线C 的渐近线方程是y =ba x ,A (a ,0),所以点A 到直线y =bax 的距离d =⎪⎪⎪⎪b a ·a -0⎝⎛⎭⎫b a 2+(-1)2=aba 2+b 2,所以⎝ ⎛⎭⎪⎫ab a 2+b 22=(2R )2-R 2=3R 2,即a 2b 2=3R 2(a 2+b 2), 在△OQA 中,由余弦定理得,|OA |2=|OQ |2+|QA |2-2|OQ ||QA |cos 60°=(3R )2+(2R )2-2×3R ×2R ×12=7R 2=a 2.由⎩⎪⎨⎪⎧a 2b 2=3R 2(a 2+b 2),a 2=7R 2,得⎩⎪⎨⎪⎧a 2=7R 2,b 2=214R 2,所以双曲线C 的离心率为e =c a=c 2a 2=a 2+b 2a 2=1+b 2a2=1+214R 27R 2=72.11.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点.若ED →=6DF →,则k 的值为________. [答案] 23或38[解析] 依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.由ED →=6DF →知,x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由点D 在AB 上知x 0+2kx 0=2,得x 0=21+2k. 所以21+2k =1071+4k2,化简得24k 2-25k +6=0,解得k =23或k =38.12.已知直线l :y =k (x +1)与抛物线C :y 2=4x 交于不同的两点A ,B ,且以AB 为直径的圆过抛物线C 的焦点F ,则k =________. [答案]22或-22[解析] 点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2), 则y 1=k (x 1+1),y 2=k (x 2+1),当k =0时,l 与C 只有一个交点,不合题意,因此k ≠0. 将y =k (x +1)代入y 2=4x ,消去y ,得k 2x 2+2(k 2-2)x +k 2=0,① 依题意知,x 1,x 2是①的不相等的两个实根,则⎩⎨⎧Δ=4(k 2-2)2-4k 4>0, ②x 1+x 2=2(2-k 2)k2,x 1x 2=1.由以AB 为直径的圆过F ,得AF ⊥BF , 即k AF ·k BF =-1,所以y 1x 1-1·y 2x 2-1=-1,即x 1x 2+y 1y 2-(x 1+x 2)+1=0,所以x 1x 2+k 2(x 1+1)(x 2+1)-(x 1+x 2)+1=0, 所以(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+1+k 2=0,③把x 1+x 2=2(2-k 2)k 2,x 1x 2=1代入③得2k 2-1=0,解得k =±22, 经检验k =±22适合②式.综上所述,k =±22.一、数形结合思想在解方程或函数零点问题中的应用讨论方程的解(或函数零点)的问题一般可以构造两个函数,将方程解的个数转化为两条曲线的交点个数.构造函数时,要先对方程进行变形,尽量构造两个比较熟悉的函数. 1.(2018·咸阳模拟)函数f (x )=2x -1x 的零点个数为( )A.0B.1C.2D.3 [答案] B[解析] 在同一平面直角坐标系下,作出函数y 1=2x 和y 2=1x的图象,如图所示.函数f (x )=2x -1x 的零点个数等价于2x =1x 的根的个数,等价于函数y 1=2x 和y 2=1x图象的交点个数.由图可知只有一个交点,所以有一个零点.故选B.2.若关于x 的方程||x x +4=kx 2有四个不同的实数解,则k 的取值范围为________.[答案] ⎝⎛⎭⎫14,+∞[解析] x =0是方程的一个实数解;当x ≠0时,方程||x x +4=kx 2可化为1k =(x +4)|x |,x ≠-4,k ≠0,设f (x )=(x +4)|x |(x ≠-4且x ≠0),y =1k ,则两函数图象有三个非零交点.f (x )=(x +4)|x |=⎩⎪⎨⎪⎧x 2+4x ,x >0,-x 2-4x ,x <0,x ≠-4的大致图象如图所示,由图可得0<1k <4, 解得k >14.所以k 的取值范围为⎝⎛⎭⎫14,+∞. 3.已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解之和为________. [答案] -7[解析] 因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2.又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y 1=f (x )与y 2=|cos πx |的图象如图所示.由图象知关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的实数解有7个. 不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解的和为-4-2-1+0=-7. 4.(2018·石嘴山模拟)已知函数f (x )⎩⎪⎨⎪⎧x 4+1,x ≤1,ln x ,x >1,则方程f (x )=ax 恰有两个不同的实根时,实数a 的取值范围是________. [答案] ⎣⎡⎭⎫14,1e[解析] 画出函数f (x )的图象如图所示,由图可知,要使直线y =ax 与函数f (x )有两个交点,当y =ax 与y =x 4+1平行时,显然有两个交点,此时a =14.当a >14时,只需求出当直线y =ax和曲线y =ln x 相切时的斜率即可.由于相切时交点只有1个,故结合图象知,实数a 的取值范围是⎣⎡⎭⎫14,1e .二、数形结合思想在求解不等式或参数范围中的应用构建函数模型,分析函数的单调性并结合其图象特征研究量与量之间的大小关系、求参数的取值范围或解不等式.5.(2018·全国Ⅰ )设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)[答案] D[解析] 方法一 ①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧ x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D.方法二 ∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D.6.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是________. [答案] [2-1,+∞)[解析] 集合A 是圆x 2+(y -1)2=1上的点的集合,集合B 是不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的左下方),而当直线与圆相切时,有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是[2-1,+∞).7.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则实数a 的取值范围是________.[答案] ⎝⎛⎦⎤-∞,12 [解析] 作出y 1=|x -2a |和y 2=12x +a -1的简图,如图所示.依题意得⎩⎪⎨⎪⎧2a ≤2-2a ,a -1<0,故a ≤12.8.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2ax ,x ≥1,2ax -1,x <1,若存在两个不相等的实数x 1,x 2,使得f (x 1)=f (x 2),则实数a 的取值范围为________. [答案] [0,+∞)[解析] 根据题意知f (x )是一个分段函数,当x ≥1时,是一个开口向下的二次函数,对称轴方程为x=a;当x<1时,是一个一次函数.当a>1时,如图(1)所示,符合题意;当0≤a≤1时,如图(2)所示,符合题意;当a<0时,如图(3)所示,此时函数在R上单调递减,不满足题意.综上所述,可得a≥0.三、数形结合思想在[解析]几何中的应用在[解析]几何的解题过程中,通常要数形结合,挖掘题中所给的代数关系式和几何关系式,构建[解析]几何模型并应用模型的几何意义求最值或范围;常见的几何结构的代数形式主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.9.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4[答案] B[解析]根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m,因为∠APB=90°,连接OP,可知|OP|=12|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=5,所以|OP|max=|OC|+r=6,即m的最大值为6.10.设双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右顶点分别为A1,A2,左、右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P.若以A1A2为直径的圆与直线PF2相切,则双曲线C的离心率为()A. 2B.3C.2D. 5[答案] D[解析]如图所示,设以A1A2为直径的圆与直线PF2的切点为Q,连接OQ,则OQ⊥PF2.又PF1⊥PF2,O为F1F2的中点,所以|PF1|=2|OQ|=2a.又|PF2|-|PF1|=2a,所以|PF2|=4a.在Rt△F1PF2中,由|PF1|2+|PF2|2=|F1F2|2,得4a2+16a2=20a2=4c2,即e=ca= 5.11.已知抛物线的方程为x2=8y,F是其焦点,点A(-2,4),在此抛物线上求一点P,使△APF的周长最小,此时点P 的坐标为________. [答案] ⎝⎛⎭⎫-2,12 [解析] 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部, 如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ , 由抛物线的定义可知,△APF 的周长为|PF |+|P A |+|AF |=|PQ |+|P A |+|AF |≥|AQ |+|AF |≥|AB |+|AF |,当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |. 因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0), 代入x 2=8y ,得y 0=12.故使△APF 的周长最小的点P 的坐标为⎝⎛⎭⎫-2,12. 12.已知P 是直线l :3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________. [答案] 2 2[解析] 连接PC ,由题意知圆的圆心C (1,1),半径为1,从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,Rt △P AC 的面积S △P AC =12|PA ||AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P从左上、右下两个方向向中间运动时,S四边形P ACB变小,显然,当点P到达一个最特殊的位置,即CP垂直于直线l时,S四边形P ACB有唯一的最小值,此时|PC|=|3×1+4×1+8|32+42=3,从而|P A|=|PC|2-|AC|2=22,所以(S四边形P ACB)min=2×12×|P A|×|AC|=2 2.1.(2018·咸阳模拟)已知定义在R上的函数f(x)的导函数为f′(x),且f(x)+f′(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为()A.a<bB.a>bC.a=bD.无法确定[答案] A[解析]令g(x)=e x f(x)-e x,则g ′(x )=e x [f (x )+f ′(x )-1]>0, 即g (x )在R 上为增函数. 所以g (3)>g (2), 即e 3f (3)-e 3>e 2f (2)-e 2,整理得e[f (3)-1]>f (2)-1,即a <b .2.(2018·宣城调研)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( )A.f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14B.f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32 C.f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14 D.f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14 [答案] C[解析] 因为f (x +2)=-f (x )=f (-x ),所以函数f (x )的图象关于直线x =1对称,又T =4,作图,由图知f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14.3.在三棱锥A -BCD 中,△ABC 为等边三角形,AB =23,∠BDC =90°,二面角A -BC -D 的大小为150°,则三棱锥A -BCD 的外接球的表面积为( ) A.7π B.12π C.16π D.28π [答案] D[解析] 满足题意的三棱锥A -BCD 如图所示,设三棱锥A -BCD 的外接球的球心为O ,半径为R ,△BCD ,△ABC 的外接圆的圆心分别为O 1,O 2,可知O ,O 1,O 2在同一平面内,由二面角A -BC -D 的大小为150°,得∠OO 1O 2=150°-90°=60°.依题意,可得△BCD ,△ABC 的外接圆的半径分别为 r 1=BC 2=232=3,r 2=23×sin 60°×23=2,所以⎩⎪⎨⎪⎧R 2=OO 21+r 21,R 2=OO 22+r 22,sin ∠OO 1O 2=OO2OO1,即⎩⎪⎨⎪⎧R 2=OO 21+3,R 2=OO 22+4,OO 2=32OO 1,解得R =7,所以三棱锥A -BCD 的外接球的表面积为4πR 2=28π.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作直线y =-ba x 的垂线,垂足为A ,交双曲线左支于B 点,若FB →=2F A →,则该双曲线的离心率为( ) A. 3 B.2 C. 5 D.7 [答案] C[解析] 设F (c ,0),则直线AB 的方程为y =a b (x -c ),代入双曲线渐近线方程y =-ba x ,得A ⎝⎛⎭⎫a 2c ,-ab c .由FB →=2F A →,可得B ⎝ ⎛⎭⎪⎫2a 2-c 2c ,-2ab c ,把B 点坐标代入x 2a 2-y 2b 2=1,得(2a 2-c 2)2a 2c 2-4a 2c2=1,∴c 2=5a 2, ∴离心率e =ca= 5.5.记实数x 1,x 2,…,x n 中最小数为min{x 1,x 2,…,x n },则定义在区间[0,+∞)上的函数f (x )=min{x 2+1,x +3,13-x }的最大值为( ) A.5 B.6 C.8 D.10 [答案] C[解析] 在同一坐标系中作出三个函数y 1=x 2+1,y 2=x +3,y 3=13-x 的图象如图.由图可知,在实数集R 上,min{x 2+1,x +3,13-x }为y 2=x +3上A 点下方的射线,抛物线AB 之间的部分,线段BC 与直线y 3=13-x 在点C 下方的部分的组合体.显然,在区间[0,+∞)上,在C 点时,y =min{x 2+1,x +3,13-x }取得最大值.解方程组⎩⎪⎨⎪⎧y 2=x +3,y 3=13-x ,得点C (5,8).所以f (x )max =8.6.已知函数f (x )=|lg(x -1)|,若1<a <b 且f (a )=f (b ),则a +2b 的取值范围为( ) A.(3+22,+∞) B.[3+22,+∞) C.(6,+∞) D.[6,+∞)[答案] C[解析] 由图象可知b >2,1<a <2,∴-lg(a -1)=lg(b -1), 则a =b b -1, 则a +2b =b b -1+2b =2b 2-b b -1=2(b -1)2+3(b -1)+1b -1=2(b -1)+1b -1+3,由对勾函数的性质知,当b ∈⎝⎛⎭⎫22+1,+∞时,f (b )=2(b -1)+1b -1+3单调递增, ∵b >2,∴a +2b =bb -1+2b >6.7.(2018·东莞模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≥1,x 2-3x +2,x <1,若不等式f (x )≥mx 恒成立,则实数m的取值范围为( ) A.[-3-22,-3+22] B.[-3+22,0] C.[-3-22,0]D.(-∞,-3-22]∪[-3+22,+∞) [答案] C[解析] 函数f (x )及y =mx 的图象如图所示,由图象可知,当m >0时,不等式f (x )≥mx 不恒成立,设过原点的直线与函数f (x )=x 2-3x +2(x <1)相切于点A (x 0,x 20-3x 0+2),因为f ′(x 0)=2x 0-3,所以该切线方程为y -(x 20-3x 0+2)=(2x 0-3)(x -x 0),因为该切线过原点,所以-(x 20-3x 0+2)=-x 0(2x 0-3),解得x 0=-2,即该切线的斜率k =-22-3.由图象得-22-3 ≤m ≤0.故选C.8.(2018·德阳诊断)已知函数f (x )=3x -13x +1+x +sin x ,若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立,则实数k 的取值范围是( ) A.(-1,+∞) B.(3,+∞) C.(0,+∞) D.(-∞,-1)[答案] A[解析] 由题意知函数f (x )=3x -13x +1+x +sin x 的定义域为R ,f (-x )=3-x -13-x +1+(-x )+sin(-x )=-⎝ ⎛⎭⎪⎫3x -13x +1+x +sin x =-f (x ),即函数f (x )为奇函数,且f ′(x )=2ln 3·3x(3x +1)2+1+cos x >0在R 上恒成立,即函数f (x )在R 上单调递增.若∃x 0∈[-2,1],使得f (x 20+x 0)+f (x 0-k )<0成立, 即f (x 20+x 0)<-f (x 0-k ),所以f (x 20+x 0)<f (k -x 0),即x 20+x 0<k -x 0,则问题转化为∃x 0∈[-2,1],k >x 20+2x 0,令g (x )=x 2+2x ,x ∈[-2,1].则k >g (x )min =g (-1)=-1故实数k 的取值范围是(-1,+∞).9.已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________.[答案] 2 3[解析] 如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h .则其侧棱长为l =⎝⎛⎭⎫2a 22+h 2=16h+h 2. 令f (h )=16h +h 2,则f ′(h )=-16h 2+2h =2h 3-16h 2,令f ′(h )=0,解得h =2.当h ∈(0,2)时,f ′(h )<0,f (h )单调递减;当h ∈(2,+∞)时,f ′(h )>0,f (h )单调递增, 所以当h =2时,f (h )取得最小值f (2)=162+22=12,故l min =12=2 3.10.若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. [答案] (0,2)[解析] 由f (x )=|2x -2|-b 有两个零点, 可得|2x -2|=b 有两个不等的实根,从而可得函数y 1=|2x -2|的图象与函数y 2=b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2.11.已知椭圆C 1:x 29+y 24=1和圆C 2:x 2+(y +1)2=r 2 (r >0),若两条曲线没有公共点,则r 的取值范围是______________. [答案] (0,1)∪⎝⎛⎭⎫3305,+∞ [解析] 方法一 联立C 1和C 2的方程,消去x , 得到关于y 的方程-54y 2+2y +10-r 2=0,①方程①可变形为r 2=-54y 2+2y +10,把r 2=-54y 2+2y +10看作关于y 的函数.由椭圆C 1可知,-2≤y ≤2,因此,求使圆C 2与椭圆C 1有公共点的r 的集合,等价于在定义域为y ∈[-2,2]的情况下,求函数r 2=f (y )=-54y 2+2y +10的值域.由f (-2)=1,f (2)=9,f ⎝⎛⎭⎫45=545,可得f (y )的值域为⎣⎡⎦⎤1,545,即r ∈⎣⎡⎦⎤1,3305, 它的补集就是圆C 2与椭圆C 1没有公共点的r 的集合,因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝⎛⎭⎫3305,+∞.方法二 联立C 1和C 2的方程消去x ,得到关于y 的方程-54y 2+2y +10-r 2=0.①两条曲线没有公共点,等价于方程-54y 2+2y +10-r 2=0要么没有实数根,要么有两个根y 1,y 2∉[-2,2].若没有实数根,则Δ=4-4×⎝⎛⎭⎫-54×(10-r 2)<0, 解得r >3305或r <-3305⎝⎛⎭⎫由于r >0,则r <-3305舍去. 若两个根y 1,y 2∉[-2,2],设φ(y )=-54y 2+2y +10-r 2,其图象的对称轴方程为y =45∈[-2,2].则⎩⎪⎨⎪⎧φ(2)=9-r 2>0,φ(-2)=1-r 2>0,又r >0,解得0<r <1.因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝⎛⎭⎫3305,+∞.12.若关于x 的不等式e x-x 22-1-⎝⎛⎭⎫a -94x ≥0在⎣⎡⎭⎫12,+∞上恰成立,则实数a 的取值集合为________. [答案] {2e}[解析] 关于x 的不等式e x -x22-1-⎝⎛⎭⎫a -94x ≥0在⎣⎡⎭⎫12,+∞上恰成立⇔函数g (x )=e x-x 22-1x在⎣⎡⎭⎫12,+∞上的值域为⎣⎡⎭⎫a -94,+∞. 因为g ′(x )=e x(x -1)-x 22+1x2, 令φ(x )=e x(x -1)-x 22+1,x ∈⎣⎡⎭⎫12,+∞, 则φ′(x )=x (e x -1). 因为x ≥12,所以φ′(x )>0,故φ(x )在⎣⎡⎭⎫12,+∞上单调递增,所以φ(x )≥φ⎝⎛⎭⎫12=78-e2>0. 因此g ′(x )>0,故g (x )在⎣⎡⎭⎫12,+∞上单调递增, 则g (x )≥g ⎝⎛⎭⎫12=12e -18-112=2e -94,所以a -94=2e -94,解得a =2e ,所以a 的取值集合为{2e}.。

高考数学二轮专题复习课件:第1讲函数与方程思想(共24张PPT)

高考数学二轮专题复习课件:第1讲函数与方程思想(共24张PPT)

|OA|2=|OQ|2+|QA|2-2|OQ||QA|·cos 60°
=(3R)2+(2R)2-2×3R×2R×12=7R2=a2.
由aa22=b2=7R32R,2a2+b2,
a2=7R2, 得b2=241R2,
所以双曲线 C 的离心率为
e=ac= ac22= a2+a2b2= 1+ba22

1+2471RR22= 27.
• 解析几何中求斜率、截距、半径、点的坐标、离心率等几何量 经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以 通过转化为一元二次方程,利用判别式进行解决;求变量的取值范 围和最值问题常转化为求函数的值域、最值,用函数的思想分析解
答.
谢谢观看
成立,则a的取值范围是 直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;
∴g(t)的最小值为2-2ln 2,即f(x)的最小值为2-2ln 2,
()
• A.(-∞,-2ln 2) A.(-∞,-2ln 2)
设g(t)=et-2t,
B.(-∞,ln 2)
B.(-∞,ln 2)
∴8=2px0,①
点 A(x0,2 2)在圆 x2+y2=r2 上,
∴x20+8=r2,②
点 Dp2,
5在圆 x2+y2=r2 上,
∴5+p22=r2,③ 联立①②③,解得 p=4(负值舍去),
即 C 的焦点到准线的距离为 p=4.故选 B.
(2)因为∠PAQ=60°,|AP|=|AQ|,
直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;
b 设t=ln x+x,则t∈R, 所以点 A 到直线 y=ax 的距离 d= ∴g(t)的最小值为2-2ln 2,即f(x)的最小值为2-2ln 2,

高考数学二轮专题辅导 函数与方程思想

高考数学二轮专题辅导 函数与方程思想

2008高考数学二轮专题辅导 函数与方程思想一.知识探究:函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x)=0的解就是函数y =f (x)的图像与x 轴的交点的横坐标,函数y =f (x)也可以看作二元方程f (x )-y =0通过方程进行研究。

就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。

许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题;2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。

方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。

函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nb ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 一 函数与方程思想

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 一 函数与方程思想

m≤-
3或
2
m≥
23,
因此实数 m 的取值范围是
-∞,-
3∪
2
3 2
,
+

.
-12-
命题热点一 命题热点二 命题热点三 命题热点四
解法二 不等式化为 f(x-1)+4f(m)-f ������ +4m2f(x)≥0,
������
即(x-1)2-1+4m2-4-
������ 2 ������ 2
+1+4m2x
命题热点一 命题热点二 命题热点三 命题热点四
(1)证明: Fn(x)=fn(x)-2=1+x+x2+…+xn-2,
则 Fn(1)=n-1>0,
Fn
1 2
=1+1 +
2
1
2
+…+
1
������
-2
2
2
1-
=
1 ������ +1
2
1-12
-2=-21������
<0,
所以 Fn(x)在
1 2
,1
内至少存在一个零点.
(1)证明:函数 Fn(x)=fn(x)-2 在区间
1 2
,1
内有且仅有一个零点(记为
xn),且
xn=12
+
1 2
������������������+1;
(2)设有一个与上述等比数列的首项、末项、项数分别相同的等
差数列,其各项和为gn(x),比较fn(x)和gn(x)的大小,并加以证明.
-17-
-6-
命题热点一 命题热点二 命题热点三 命题热点四

高考数学二轮复习 第一部分 微专题强化练 专题26 函数与方程的思想、分类讨论的思想课件

高考数学二轮复习 第一部分 微专题强化练 专题26 函数与方程的思想、分类讨论的思想课件
• [立意与点拨] 考查向量共线和方程思想的应用;利用共线 条件列方程求解.
[答案]
1 2
[解析] 因为向量 λa+b 与 a+2b 平行,所以 λa+b=k(a
+2b),则λ1==k2,k, 所以 λ=12.
• 考例2 (文)函数f(x)=ax3+3x2+3x(a≠0).
• (1)讨论f(x)的单调性;
(1)证明:函数 Fn(x)=fn(x)-2 在12,1内有且仅有一个零点 (记为 xn),且 xn=12+12xnn+1;
(2)设有一个与上述等比数列的首项、末项、项数分别相同 的等差数列,其各项和为 gn(x),比较 fn(x)和 gn(x)的大小,并加 以证明.
• [立意与点拨] 考查等比数列、函数的零点、利用导数研究 函数的性质及函数思想、转化思想、分类讨论思想;解答本 题第(1)问可转化为函数在区间端点值异号且函数单调,第 (2)问建立辅助函数h(x)=fn(x)-gn(x),通过数列求和、导 数研究h(x)的符号来比较大小.
当 x∈(x2,x1)时 f′(x)<0,故 f(x)在(x2,x1)是减函数; 若 a<0,则当 x∈(-∞,x1)或(x2,+∞)时 f′(x)<0,故 f(x) 分别在(-∞,x1),(x2,+∞)上是减函数; 当 x∈(x1,x2)时 f ′(x)>0,故 f(x)在(x1,x2)上是增函数.
若 x>1,h′(x)<xn-1+2xn-1+…+nxn-1-nn2+1xn-1 =nn2+1xn-1-nn2+1xn-1=0, 所以 h(x)在(0,1)上递增,在(1,+∞)上递减, 所以 h(x)<h(1)=0,即 fn(x)<gn(x). 综上所述,当 x=1 时,fn(x)=gn(x); 当 x≠1 时,fn(x)<gn(x).

近年高考数学二轮复习第一部分方法、思想解读专题对点练2函数与方程思想、数形结合思想文(2021年整

近年高考数学二轮复习第一部分方法、思想解读专题对点练2函数与方程思想、数形结合思想文(2021年整

2019版高考数学二轮复习第一部分方法、思想解读专题对点练2 函数与方程思想、数形结合思想文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学二轮复习第一部分方法、思想解读专题对点练2 函数与方程思想、数形结合思想文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学二轮复习第一部分方法、思想解读专题对点练2 函数与方程思想、数形结合思想文的全部内容。

专题对点练2 函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A。

{a|1<a≤2} B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2。

若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A。

B。

C。

D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A。

(1,) B。

[0,2]C。

[1,2)D。

[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf’(x)+2f(x)>0,则不等式的解集为()A.{x|x>—2 011}B.{x|x<-2 011}C.{x|-2 016〈x〈—2 011}D。

{x|-2 011〈x<0}5.对任意a∈[—1,1],函数f(x)=x2+(a-4)x+4—2a的值总大于零,则x的取值范围是()A。

{x|1<x<3} B.{x|x〈1或x〉3}C.{x|1〈x<2}D.{x|x〈1或x>2}6.抛物线y2=2px(p〉0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A。

高考数学二轮复习第一部分一函数与方程思想课件

高考数学二轮复习第一部分一函数与方程思想课件

12/11/2021
6
突破点一
突破点二
突破点三
突破点四
(方法二)因为f(x)=1-2sin2x+2sin x,
设t=sin x,又x∈(0,π),所以sin x∈(0,1],即t∈(0,1].
则y=1-2t2+2t=-2t2+2t+1(t∈(0,1]).
如图,作出函数y=-2t2+2t+1的图象.
导函数,则关于x的不等式exf(x)>ex-1的解集是( C )
A.(-∞,0)∪(1,+∞) B.(-∞,-1)∪(0,+∞)
C.(0,+∞)
D.(-∞,-1)∪(1,+∞)
12/11/2021
12
突破点一
突破点二
突破点三
突破点四
分析推理(1)首先根据对数函数的单调性确定集合A,然后以m为
变量构造与不等式对应的函数,根据函数的图象和性质确定参数所
12/11/2021
2
高考命题聚焦
素养思想诠释
1.函数与方程思想的含义
(1)函数思想是用运动和变化的观点分析和研究数学中的数量关
系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数
的图象和性质去分析问题、转化问题,从而使问题获得解决的思想
方法.
(2)方程思想就是分析数学问题中变量间的等量关系,建立方程或
数列之间的关系,通过构造相应的函数,转化为函数问题求解.
12/11/2021
20
突破点一
突破点二
突破点三
突破点四
即时巩固3已知数列{an},其前n项和为Sn.当n≥2时,都有2an=an-1
+an+1,且S5=0,S6=3.

【高中数学课件】高三二轮复习-函数与方程的思想方法ppt课件

【高中数学课件】高三二轮复习-函数与方程的思想方法ppt课件
5. 等差、等比数列中,通项公式、前n项和的公式, 都可以看成n的函数,数列问题也可以用函数方法 解决。 2020/8/6
考题分析
【例1】建造一个容积为8m,深为2m的长方体无 盖水池,如果池底和池壁的造价每平方米分别为 120元和80元,则水池的最低造价为1__7__6__0__元__。
【略解】
【分析】已知了一个积式,考虑能否由其它已知得到 一个和式,再用方程思想求解?
A ,C 5
4 12
a8,b46,c434
2020/8/6
考题分析
【例4】 设 f(x)lg12x 4xa ,如果当x∈(-∞,1]
3
时f(x)有意义,求实数a的取值范围。
【分析】当x∈(-∞,1]时f(x)有意义的函数问题,转 化为 12x4x a0在x∈(-∞,1]上恒成立的不等式问题。
设长x,则宽 4 ,
x 造价y=4×120+4x×80+
1
6 x
×80
≥1760,
答:1760元。
2020/8/6
考题分析
【例2】 设等差数列{an}的前n项的和为S,已知 a3=12,S12>0,S13<0 。 ① 求公差d的取值范围; ②指出S1、S2、…、S12中哪一个值最大,并说明理由。 【分析】 ①问利用公式an与Sn建立不等式,容易求 解d的范围;②问利用Sn是n的二次函数,将S中哪 一个值最大,变成求二次函数中n为何值时Sn取最大 值的函数最值问题。
x0或 x1
2020/8/6
规律方法 总结
2020/8/6
2020/8/6
天马行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632
一般地,函数思想是构造函数从而利用函数的性质 解题,经常利用的性质是:f(x)、f 1 ( x ) 的单调性、 奇偶性、周期性、最大值和最小值、图像变换等, 要求我们熟练掌握的是一次函数、二次函数、幂函 数、指数函数、对数函数、三角函数的具体特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
走向高考 · 数 学
高考二轮总复习
路漫漫其修远兮 吾将上下而求索
第一部分
微专题强化练
第一部分 二 增分指导练
26(文24) 函数与方程的思想、 分类讨论的思想
1 考向分析 2 考题引路 3 强化训练
考向分析
1.通过函数的零点、函数的最值、方程根的个数及分类 讨论,考查函数与方程的关系及应用.
(1)证明:函数 Fn(x)=fn(x)-2 在12,1内有且仅有一个零点 (记为 xn),且 xn=12+12xnn+1;
(2)设有一个与上述等比数列的首项、末项、项数分别相同 的等差数列,其各项和为 gn(x),比较 fn(x)和 gn(x)的大小,并加 以证明.
[立意与点拨] 考查等比数列、函数的零点、利用导数研 究函数的性质及函数思想、转化思想、分类讨论思想;解答本 题第(1)问可转化为函数在区间端点值异号且函数单调,第(2)
[立意与点拨] 考查导数的运算,导数在研究函数中的应
用和分类讨论思想;(1)由f′(x)为二次函数借助判别式确定 其单调区间;(2)由f(x)的单调性建立关于a的不等式求解.
[解析] (1)f′(x)=3ax2+6x+3,f′(x)=0 的判别式 Δ=
36(1-a).
①若 a≥1,则 Δ≤0,因此 f′(x)≥0,且 f′(x)=0 当且仅
当 x∈(x2,x1)时 f′(x)<0,故 f(x)在(x2,x1)是减函数; 若 a<0,则当 x∈(-∞,x1)或(x2,+∞)时 f′(x)<0,故 f(x) 分别在(-∞,x1),(x2,+∞)上是减函数; 当 x∈(x1,x2)时 f ′(x)>0,故 f(x)在(x1,x2)上是增函数.
(2)当 a>0,x>0 时,f′(x)=3ax2+6x+3>0,故当 a>0 时, f(x)在区间(1,2)是增函数.
当 a<0 时,f(x)在区间(1,2)时是增函数当且仅当 f′(1)≥0 且 f′(2)≥0,解得-54≤a<0.
综上,a 的取值范围是[-54,0)∪(0,+∞).
(理)(2015·陕西理,21)设 fn(x)是等比数列 1,x,x2,…,xn 的各项和,其中 x>0,n∈N,n≥2.
问建立辅助函数h(x)=fn(x)-gn(x),通过数列求和、导数研 究h(x)的符号来比较大小.
当 a=1,x=-1,故此时 f(x)在 R 上是增函数.
②由于 a≠0,故当 a<1 时,f′(x)=0 有两个根:
x1=-1+a
1-a,x2=-1-a
1-a .
若 0<a<1,则当 x∈(-∞,x2)或 x∈(x1,+∞)时 f′(x)>0, f(x)分别在(-∞,x2),(x1,+∞)是增函数;
2.通过函数、数列、平面向量、三角、不等式、面积与 体积计算及解析几何等知识考查方程思想的应用.
3.通过数学概念、公式、性质、定理的限制条件、几何 图形的形状、位置关系,含参数的讨论等考查分类讨论思想的 应用.
考题引路
考例1 (2015·新课标Ⅱ理,13)设向量a,b不平行,向 量λa+b与a+2b平行,则实数λ=________.
[立意与点拨] 考查向量共线和方程思想的应用;利用共 线条件列方程求解.
[答案]
1 2
[解析] 因为向量 λa+b 与 a+2b 平行,所以 λa+b=k(a
+2b),则λ1==k2,k, 所以 λ=12.
考例2 (文)函数f(x)=ax3+3x2+3x(a≠0). (1)讨论f(x)的单调性; (2)若f(x)在区间(1,2)是增函数,求a的取值ቤተ መጻሕፍቲ ባይዱ围.
相关文档
最新文档