导数练习题及答案

合集下载

(完整版)导数的经典练习题

(完整版)导数的经典练习题

导数经典练习题及详解答案1.函数y=x+2cosx在[0,2π]上取得最大值时,x的值为()A. 0 B.6πC.3πD.2π2.函数xxy ln=的单调递减区间是()A.),(1+∞-e B.),(1--∞e C.),0(1-e D.),(+∞e3.点P在曲线323+-=xxy上移动,设点P处切线倾斜角为α,则α的取值范围是()A.[0,2π] B.[0,2π)∪[43π,π)C.[43π,π)D.(2π,43π]4.已知函数()y xf x'=的图象如右图所示(其中'()f x()f x的导函数),下面四个图象中()y f x=是()5.对于函数12-=xy,下列结论中正确的是()A.y有极小值0,且0也是最小值 B.y有最小值0,但0不是极小值C.y有极小值0,但0不是最小值 D.0既不是极小值,也不是最小值6、若0)32(2=-⎰dxxxk,则k=( )A、 1B、 0C、 0或1D、以上都不对7.已知函数)2,2(),()()(πππ-∈-=xxfxfxf且当满足时,,sin)(xxxf+=则()A.)3()2()1(fff<<B.)1()3()2(fff<<DC .)1()2()3(f f f <<D .)2()1()3(f f f <<8.设函数ax x x f m +=)(的导函数12)(+='x x f ,则数列*)}()(1{N n n f ∈的前n 项和是 A .1+n n B .12++n n C .1-n n D .nn 1+ 9.设f(x)=31x 3+ax 2+5x+6在区间[1,3]上为单调函数,则实数a 的取值范围为( )A [-5,+∞B . (-∞ ,-3)C . (-∞ ,-3)∪[-5,+∞0D . [-5,5]10.函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x-1))(x f '<0,设a=f(0),b= f(21),c= f(3),则 ( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a11.曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形面积为 ( )A .19B .29C .13D .2312.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32B .34C .38D .31613.设()f x 是偶函数,若曲线()y f x =在点(1,(1))f 处的切线的斜率为1,则该曲线在(1,(1))f --处的切线的斜率为_________.14.已知曲线21x y xy ==与交于点P ,过P 点的两条切线与x 轴分别交于A ,B 两点,则 △ABP 的面积为 ;15.函数()y f x =在定义域3(,3)2-内可导,其图象如图,记()y f x =的导函数为/()y f x =, 则不等式/()0f x ≤的解集为_____________16.若函数 f(x)=ax x+2(a>0)在[1,+∞)上的最大值为33,则a 的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

导数的运算专项练习(含答案)

导数的运算专项练习(含答案)

导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。

导数练习题及答案

导数练习题及答案

导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

以下是导数练习题及答案,欢迎阅读。

一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

导数练习题及答案

导数练习题及答案

导数练习题及答案为了帮助学习者更好地理解与掌握导数的概念与计算方法,以下是一些导数练习题及其详细答案解析。

通过解题的过程,读者可以加深对导数的理解,并熟练掌握导数的计算技巧。

题目一:计算函数 f(x) = x^3 在点 x = 2 处的导数。

解答一:对 f(x) = x^3 进行求导,根据求导规则,可以得到:f'(x) = 3x^2计算 f'(2) 得到导数的值。

代入 x = 2:f'(2) = 3(2)^2 = 12因此,函数 f(x) = x^3 在点 x = 2 处的导数为 12。

题目二:计算函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数。

解答二:对 f(x) = 2x^2 + 3x - 5 进行求导,根据求导规则,可以得到:f'(x) = 4x + 3计算 f'(-1) 得到导数的值。

代入 x = -1:f'(-1) = 4(-1) + 3 = -1因此,函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数为 -1。

题目三:计算函数 f(x) = e^x 在点 x = 1 处的导数。

解答三:对 f(x) = e^x 进行求导,根据求导规则,可以得到:f'(x) = e^x计算 f'(1) 得到导数的值。

代入 x = 1:f'(1) = e^1 = e因此,函数 f(x) = e^x 在点 x = 1 处的导数为 e。

题目四:计算函数 f(x) = ln(x) 在点 x = 3 处的导数。

解答四:对 f(x) = ln(x) 进行求导,根据求导规则,可以得到:f'(x) = 1/x计算 f'(3) 得到导数的值。

代入 x = 3:f'(3) = 1/3因此,函数 f(x) = ln(x) 在点 x = 3 处的导数为 1/3。

通过以上导数练习题的解答,读者可以进一步掌握导数的概念与计算方法。

导数的练习题及答案

导数的练习题及答案

导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。

掌握导数的概念对于解决各种数学和物理问题至关重要。

在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。

练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。

解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。

在这个例子中,我们可以使用直接求导的方法来计算导数。

首先,我们对每一项使用求导法则。

对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。

然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。

所以,$f'(x) = 6x^2 - 10x + 3$。

接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。

将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。

所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。

练习题二:求函数 $y = e^x \sin(x)$ 的导数。

解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。

首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。

然后,我们求出每个函数的导数。

对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。

根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数练习题及答案
导数是微积分的初步知识,是研究函数,解决实际问题的有力
工具。以下是导数练习题及答案,欢送阅读。
1.函数在某一点的导数是( )
A.在该点的函数值的增量与自变量的增量的比
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率
[答案] C
[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无
限趋近的常数,故应选C.
2.如果质点A按照规律s=3t2运动,那么在t0=3时的瞬时
速度为( )
A.6 B.18
C.54 D.81
[答案] B
[解析] ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332
=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.
当Δt→0时,ΔsΔt→18,故应选B.
3.y=x2在x=1处的导数为( )
A.2x B.2
C.2+Δx D.1
[答案] B
[解析] ∵f(x)=x2,x=1,
∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2
∴ΔyΔx=2+Δx
当Δx→0时,ΔyΔx→2
∴f′(1)=2,故应选B.
4.一质点做直线运动,假设它所经过的路程与时间的关系为
s(t)=4t2-3(s(t)的单位:m,t的单位:s),那么t=5时的瞬时
速度为( )
A.37 B.38
C.39 D.40
[答案] D
[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,
∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故
应选D.
5.函数y=f(x),那么以下说法错误的选项是( )
A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量
B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx
之间的平均变化率
C.f(x)在x0处的导数记为y′
D.f(x)在x0处的导数记为f′(x0)
[答案] C
[解析] 由导数的定义可知C错误.故应选C.
6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )
A.f′(x0)=f(x0+Δx)-f(x0)
B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]
C.f′(x0)=f(x0+Δx)-f(x0)Δx
D.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx
[答案] D
[解析] 由导数的定义知D正确.故应选D.
7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬
时变化率等于( )
A.4a B.2a+b
C.b D.4a+b
[答案] D
[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx
=4a+b+aΔx,
∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=
4a+b.故应选D.
8.如果一个函数的瞬时变化率处处为0,那么这个函数的图象
是( )
A.圆 B.抛物线
C.椭圆 D.直线
[答案] D
[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直
线,故应选D.
9.一物体作直线运动,其位移s与时间t的关系是s=3t-
t2,那么物体的初速度为( )
A.0 B.3
C.-2 D.3-2t
[答案] B
[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,
∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.
10.设f(x)=1x,那么limx→a f(x)-f(a)x-a等于( )
A.-1a B.2a
C.-1a2 D.1a2
[答案] C
[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a
=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.
11.函数y=f(x)在x=x0处的导数为11,那么
limΔx→0f(x0-Δx)-f(x0)Δx=;
limx→x0 f(x)-f(x0)2(x0-x)=.
[答案] -11,-112
[解析] limΔx→0 f(x0-Δx)-f(x0)Δx
=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;
limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)
-f(x0)Δx
=-12f′(x0)=-112.
12.函数y=x+1x在x=1处的导数是.
[答案] 0
[解析] ∵Δy=1+Δx+11+Δx-1+11
=Δx-1+1Δx+1=(Δx)2Δx+1,
∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.
13.函数f(x)=ax+4,假设f′(2)=2,那么a等于.
[答案] 2
[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,
∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.
14.f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)
=-2,那么limx→3 2x-3f(x)x-3的值是.
[答案] 8
[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)
-3f(3)x-3
=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.
由于f(3)=2,上式可化为
limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-
2)=8.
15.设f(x)=x2,求f′(x0),f′(-1),f′(2).
[解析] 由导数定义有f′(x0)
=limΔx→0 f(x0+Δx)-f(x0)Δx
=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+
Δx)Δx=2x0,
16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度
是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求
枪弹射出枪口时的瞬时速度.
[解析] 位移公式为s=12at2
∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2
∴ΔsΔt=at0+12aΔt,
∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,
a=5.0×105m/s2,t0=1.6×10-3s,
∴at0=800m/s.
所以枪弹射出枪口时的瞬时速度为800m/s.
17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一
点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).
[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx
=(1+Δx)2+3-12-3Δx=2+Δx.
(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx
=limΔx→0 (2+Δx)=2.
18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?假设
有,求出来,假设没有,说明理由.
[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)
Δy=f(0+Δx)-f(0)=f(Δx)
=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)
∴limx→0+ ΔyΔx=limΔx→0+ (1+Δx)=1,
limΔx→0- ΔyΔx=limΔx→0- (-1-Δx)=-1,
∵limΔx→0- ΔyΔx≠limΔx→0+ ΔyΔx,∴Δx→0时,
ΔyΔx无极限.
∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可
导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋
近于0)

相关文档
最新文档