教案-初一数学-因式分解2---公式法

合集下载

七年级数学下册 9.6因式分解(二)(第1课时)教案 苏科版

七年级数学下册 9.6因式分解(二)(第1课时)教案 苏科版

9.6乘法公式再认识--- ( 教案)——因式分解(二)第1课时班级____________姓名____________学号___________备课时间: 主备人:一、教学目标:1. 使学生进一步理解因式分解的意义.2. 使学生理解平方差公式的意义,弄清公式的形式和特征.3. 会运用平方差公式分解因式.4. 通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力.5. 感受整式乘法和分解因式矛盾的对立统一观点.6. 培养学生积极主动参与探索的意识以及观察能力.7. 感悟换元的思想方法.说明以前学习运用公式法分解因式,主要的评价手段是能否牢记公式的特点,在运用公式解题时过分地追求问题的熟练和技巧,无形之中影响了学生学习数学的兴趣和信心.现在我们试图先通过对具体的数字运算或简单图形的面积计算让学生对公式有一个感性认识,让学生在与同伴交流中思考、感悟,使学生内心产生解决问题的欲望,从而进一步上升到理性认识.这种设计更符合学生从“特殊到一般”、从“具体到抽象”的认知特点.二、教学重点、难点:1. 理解平方差公式的意义,弄清公式的形式和特征.2. 会运用平方差公式对某些多项式进行分解因式三、教具、学具:投影仪、条件较好的使用多媒体演示四、教学过程:(一)设置情景:情景1:小组讨论:992-1是100的整数倍吗?你是怎样想的?说明:学生可能直接计算出结果,应予以肯定.在这儿可以设计系列问题予以引导:1.判断某个数是否是另一个数的整数倍可以怎么判断?如:12是3的整数倍吗?(学生知道就是把12分解因数.)2.类似地要判断992-1是100的整数倍呢?也可以想到尝试分解.3.992-1可以写成(99+1)(99-1)吗?为什么可以这么写?9992-1可以吗?4.a 2-1可以写成(a+1)(a -1)吗?5.a 2-4可以写成乘积形式吗?你认为可以写成什么样子呢?6.a 2-b 2呢?情景2:和老师比一比,看谁算的又快又准确:572-562 962-952 (2517)2-(258)2说明:算式的设计要体现出运用分解计算的简便性,以激发学生的好奇心和求知欲. 问:为什么你们没有老师算的快呢?你想知道老师是怎么计算的吗?思考:在以上的这些算式中,你发现他们有什么共同点?用自己的语言说一说. 情景3:计算图中的阴影部分面积(用a 、b 的代数式表示)问题一:整体计算可以怎样表示?问题二:分割成如图两部分可以怎样计算?问题三:比较两种计算的结果你有什么发现?说明:学生可能先分割再整体得出:(a+b)(a -b)=a 2-b 2 (1)也有的是先整体再分割得出 a 2-b 2=(a+b)(a -b) (2) 两种形式加以比较进一步明确整式乘法和因式分解的关系.思考:1.对于(1)式从左边到右边的变形叫什么?2.对于(2)式从左边到右边的变形叫什么?3.我们已经学习提公因式法分解因式.在(2)式的左边有公因式吗?但它写成右边的形式是分解因式吗?可见,没有公因式的某些多项式也可以用别的方法分解. (二)平方差公式的特征辨析:把乘法公式(a+b)(a -b)=a 2-b 2反过来得:a 2-b 2=(a+b)(a -b)我们可以运用这个公式对某些多项式进行分解因式.这种方法叫运用平方差公式法.[议一议]: 下列多项式可以用平方差公式分解吗?(1)x 2-y 2 (2)x 2+y 2 (3)-x 2-y 2(4)-x 2+y 2 (5)64-a 2 (6)4x 2-9y 2说明:这里是学生自主辨析公式特点的好机会,一定让学生自己讨论,只要能辨别哪些能用公式就可以,教师在具体使用时,可以先出示前面4道题,为了降低难度可以先把第5题写为82-a 2然后改写成64-a 2形式,让学生体会转化的数学思想.对于最后一题若学生对幂的运算较生疏,可以适当补充练习,如:填空:4a 2=( )294b 2=( )2 x 2y 2=( )2.进而让学生自己体会公式中的a 与b 可以表示一个数,也可以表示一个式子,渗透换元的思想方法.最后,教师可以用简练的语言总结平方差公式的特点:1.左边特征是:二项式,每项都是平方的形式,两项的符号相反.2.右边特征是:两个二项式的积,一个是左边两项的底数之和,另一个是这两个底数之差.3.在乘法公式中,平方差是指计算的结果,在分解因式时,平方差是指要分解的多项式.(三)例题教学例1 把下列多项式分解因式:(1) 36-25x 2 (2) 16a 2-9b 2分析:观察是否符合平方差公式的形式,应引导学生把36、25x 2、16a 2、9b 2改写成62、(5x)2、(4a)2和(3b)2形式,能否准确的改写是本题的关键.解: 36-25x 2=62-(5x)2=(6+5x)(6-5x)16a 2-9b 2=(4a)2-(3b)2=(4a+3b)(4a -3b)说明: (1)对于多项式中的两部分不是明显的平方形式,应先变形为平方形式,再运用公式分解,以免出现16a 2-9b 2=(16a+9b)(16a -9b)的错误.(2)在此还要提醒防止出现分解后又乘开的现象,这是旧知识的“倒摄作用”所引起的现象.例2 如图,求圆环形绿化区的面积.解: 352π-152π=π(352-152)=(35+15)(35-15)π=50×20π=1000π(m2)这个绿化区的面积是1000πm2说明:在这里列出算式后可以让学生自己讨论怎么计算,要让学生解释他的解法,可能解释为逆运用乘法结合律,也可能解释为合并同类项,都要予以肯定,在这儿不要怕浪费时间,通过比较得出上述解法和前一节的提取公因式是一致的,从而为分解因式的一般步骤打下伏笔,即:先提公因式,再运用公式.例3 把下列多项式分解因式:1. (x+p)2-(x+q)22. 9(a+b)2-4(a-b)2分析:在这里,尤其要重视对运用平方差公式前的多项式观察和心算,而后是进行变形.这一点在这儿尤为重要.解: (x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q)9(a+b)2-4(a-b)2=[3(a+b)]2-[2(a-b)]2=[3(a+b)+2(a-b)] [3(a+b)-2(a-b)]=(5a+b)(a+5b)说明:设计本题的目的是让学生加深平方差公式中的a、b不仅可以表示数字、单项式,也可以是多项式,进一步渗透整体、换元的思想.例4.(供选择)观察下列算式回答问题:32-1=852-1=24=8×372-1=48=8×692-1=80=8×10………问:根据上述的式子,你发现了什么?你能用自己的语言表达你所发现的结论吗?你能用数学式子来说明你的结论是正确的吗?解: 任意一个奇数的平方与1的差是8的整数倍.(2n+1)2-1 =[(2n+1)+1][(2n+1)-1]= (2n+2)·2n=2(n+1)·2n=4n(n+1)因为n 是整数,所以n 、n+1是两个连续的整数,而两个连续的整数一定有一个是偶数,即n(n+1)是2的倍数,因此4n(n+1)是8的倍数.(四)练习1.下列分解因式是否正确:(1)-x 2-y 2=(x+y)(x -y)(2)9-25a 2=(3+25a)(3+25b)(3)-4a 2+9b 2=(-2a+3b)(-2a -3b)2.把下列各式分解因式:(1) 36-x 2 (2) a 2-91b 2 (3) x 2-16y 2(4) x 2y 2-z 2 (5) (x+2)2-9 (6)(x+a)2-(y+b)2(7) 25(a+b)2-4(a -b)2 (8) 0.25(x+y)2-0.81(x -y)23.在边长为16.4cm 的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积.4.已知x 2-y 2=-1 , x+y=21,求x -y 的值.(五)小结学生自己说出通过本节课的学习进一步理解了整式的乘法与因式分解的关系.能用自己的语言说出平方差公式的特点.能体会出公式中的字母a 、b 不仅可以表示数字,而且可以是单项式、多项式.(六)作业1.课本P95习题9.6第一题.2.课本P95习题9.6第二题.3.课本P95习题9.6第六题的第一题选做利用因式分解计算:(1)22200120031001(2)(1-221)(1-231)(1-241)…(1-291)(1-2101)(3)已知:4m+n=90,2m -3n=10,求(m+2n)2-(3m -n)2的值.。

因式分解教案-2

因式分解教案-2

因式分解教案有关因式分解教案4篇因式分解教案篇1学习目标1、学会用公式法因式法分解2、综合运用提取公式法、公式法分解因式学习重难点重点:完全平方公式分解因式.难点:综合运用两种公式法因式分解自学过程设计完全平方公式:完全平方公式的逆运用:做一做:1.(1)16x2-8x+_______=(4x-1)2;(2)_______+6x+9=(x+3)2;(3)16x2+_______+9y2=(4x+3y)2;(4)(a-b)2-2(a-b)+1=(______-1)2.2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,•可用完全平方公式因式分解的是_________(填序号)3.下列因式分解正确的是( )A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)24.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+15.计算:20062-40102006+20052=___________________.6.若x+y=1,则 x2+xy+ y2的值是_________________.想一想你还有哪些地方不是很懂?请写出来。

________________________________________________________________________ ____________ 预习展示一:1.判别下列各式是不是完全平方式.2、把下列各式因式分解:(1)-x2+4xy-4y2(2)3ax2+6axy+3ay2(3)(2x+y)2-6(2x+y)+9应用探究:1、用简便方法计算49.92+9.98 +0.12拓展提高:(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2(2)4x2+y2-4xy-12x+6y+9=0求x、y关系(3)分解因式:m4+4教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。

因式分解教案6篇

因式分解教案6篇

因式分解教案6篇在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

教案要怎么写呢?下面是精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。

因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么2、教学实例:学案示例3、课堂练习:学案作业4、课堂:5、板书:6、课堂作业:学案作业7、教学反思:因式分解教案篇2一、教材分析1、教材的地位与作用“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解公式法教案

因式分解公式法教案

因式分解公式法教案教案题目:因式分解公式法教学目标:1. 能够掌握因式分解公式法的原理和基础知识2. 能够运用因式分解公式法解决简单的数学问题3. 能够理解因式分解公式法在数学实际问题中的作用教学内容:1. 因式分解的定义与形式2. 因式分解的基本原理3. 因式分解的基本公式教学过程:一、引入(5分钟)1. 引出本堂课的主题——因式分解公式法2. 通过学生平时的生活经验,询问学生是否有听说过因式分解以及它的作用二、讲解(30分钟)1. 因式分解的定义与形式因式分解指将一个整式分成若干个因式的乘积的过程。

在形式上,可以表示为:Ax^2+Bx+C = A(x-x_1)(x-x_2)式子中A,B,C,x_1,x_2都是常数。

2. 因式分解的基本原理因式分解要求将一个整式使用质因数或代数因式相乘的形式,展开成简单整式的乘积。

它的基本原理就是质因数分解和代数因式分解。

3. 因式分解的基本公式本节课所讲的因式分解公式有以下几个:(1)差的平方公式:a^2-b^2=(a-b)(a+b)(2)完全平方公式:a^2+2ab+b^2 = (a+b)^2及a^2-2ab+b^2 = (a-b)^2(3)二次三项式ax^2+bx+c=(mx+p)(nx+q)三、练习(15分钟)1. 练习应用差的平方公式、完全平方公式等进行因式分解的例题2. 练习应用二次三项式应用因式分解公式法解决实际问题四、总结(10分钟)1. 总结本节课所学的内容2. 阐述因式分解公式法在实际生活和数学问题中的作用五、作业布置(5分钟)1. 布置因式分解相关的题目作为课后作业2. 鼓励学生使用因式分解公式法解决生活中的有关问题教学方法:1. 讲授法2. 案例法3. 情景模拟法教学辅助手段:1. PowerPoint2. 黑板3. 教学视频教学评价:1. 学生的理解情况是否清晰2. 学生在练习过程中的解题能力是否提高3. 学生是否能够将所学知识运用到实际问题中去。

14.3.2《因式分解--公式法--完全平方公式》教案

14.3.2《因式分解--公式法--完全平方公式》教案

学科:数学授课教师:年级:八年级总第课时课题14.3.2《因式分解--公式法--完全平方公式》课时教学目标知识与技能用完全平方公式分解因式过程与方法1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.情感价值观通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图复习提问1、分解因式:(1)-a2+b2(2)2a-8a22、把下列各式分解因式.(1)a2+2ab+b2 (2)a2-2ab+b2思考解答复习引入完全平方公式1、把整式乘法的完全平方公式:(a+b)2=a2+2a b+b2(a-b)2=a2-2a b+b2反过来,得到:a2+2a b+b2=(a+b)2a2-2a b+b2=(a-b)2注:(1)形如a2±2a b+b2的式子叫做完全平方式,说出它们的特点。

(2)利用完全平方公式可以把形如完全平方式的多项式因式分解。

(3)上面两个公式用语言叙述为:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

尝试独立完成然后与同伴交流总结掌握完全平方公式分解因式特点例题练习1、分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y22、练习:P119页:练习:1、2:(1)--(4)3、分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+364、练习:P119页:练习:2:(5)(6)5下列多项式是不是完全平方式?为什么?(1)a2-2a+1 (2)a2-4a+4 (3)a2+2ab-b 2(4)a2+ab+b2(5)9a2-6a+1 (6)a2+a+1/4 思考动手板演归纳总结巩固知识因式分解的一般步骤1、把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1)44yx-;(2)33abba-;(3)22363ayaxyax++;(4)22)()(qxpx+-+;(5)4x2+20(x-x2)+25(1-x)22、分解因式的一般步骤:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到每个多项式因式不能再分解为止.3、练一练:把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;课堂小结1、完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

沪科版七年级下册数学精品教学课件-第8章-整式乘法与因式分解-公式法(2024版)

沪科版七年级下册数学精品教学课件-第8章-整式乘法与因式分解-公式法(2024版)

步骤
一提:公因式;
二套:公式;
三查:多项式的因式分解有没有 分解到不能再分解为止.
1. 下列多项式中能用平方差公式分解因式的是( D )
A.a2 + ( - b)2
B.5m2 - 20mn
C.- x2 - y2
D. - x2 + 9
2. 分解因式 ( 2x + 3 )2 - x2 的结果是( D )
A.3(x2 + 4x + 3)
B.3(x2 + 2x + 3)
C.(3x + 3)(x + 3)
x+y = 1①,
所以 x - y = -2②.
联立①②组成二元一次方程组,
解得
x y
3 2
1 2
.

方法总结:在与 x2-y2,x±y 有关的求代数式 或未知数的值的问题中,通常需先因式分解, 然后整体代入或联立方程组求值.
例3 计算下列各题: (1) 1012 - 992; (2) 53.52×4 46解.52:×(41.) 原式=(101+99)(101-99)=400.
因式吗? 是 a,b 两数的平方差的形式
平方差公式: 整式乘法
( a + b )( a - b ) = a2 - b2 a2 - b2 = ( a + b )( a - b )
因式分解
两个数的平方 差,等于这两 个数的和与这 两个数的差的 乘积.
辨一辨:下列多项式能否用平方差公式来分解因式,
为什么? (1)x2 + y2 (2)x2 - y2
解析:∵ 16 = (±4)2,∴ - m = 2×(±4),即 m = ±8.
方法总结:本题要熟练掌握完全平方公式的结构 特征,根据参数所在位置,结合公式,找出参数 与已知项之间的数量关系,从而求出参数的值. 计算过程中,要注意积的 2 倍的符号,避免漏解.

因式分解教案4篇

因式分解教案4篇

因式分解教案4篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.2-4=()();3.2-2y+y2=()2.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究(1)下列各式从左到右的变形是否为因式分解:①(+1)(-1)=2-1;②a2-1+b2=(a+1)(a-1)+b2;③7-7=7(-1).(2)在下列括号里,填上适当的项,使等式成立.①92(______)+y2=(3+y)(_______);②2-4y+(_______)=(-_______)2.四、随堂练习,巩固深化课本练习.计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知下列从左到右的变形是否是因式分解,为什么?(1)22+4=2(2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)2+4y-y2=(+4y)-y2;(4)m(+y)=m+my;(5)2-2y+y2=(-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式42-和y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在42-中的公因式是,在y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法多项式42-86,16a3b2-4a3b2-8ab4各项的公因式是什么?提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学把-42yz-12y2z+4yz分解因式.解:-42yz-12y2z+4yz=-(42yz+12y2z-4yz)=-4yz(+3y-1)分解因式,3a2(-y)3-4b2(y-)2观察所给多项式可以找出公因式(y-)2或(-y)2,于是有两种变形,(-y)3=-(y-)3和(-y)2=(y-)2,从而得到下面两种分解方法.解法1:3a2(-y)3-4b2(y-)2=-3a2(y-)3-4b2(y-)2=-[(y-)23a2(y-)+4b2(y-)2]=-(y-)2 [3a2(y-)+4b2]=-(y-)2(3a2y-3a2+4b2)解法2:3a2(-y)3-4b2(y-)2=(-y)23a2(-y)-4b2(-y)2=(-y)2 [3a2(-y)-4b2]=(-y)2(3a2-3a2y-4b2)用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学把下列各式分解因式:(投影显示或板书)(1)2-9y2;(2)164-y4;(3)12a22-27b2y2;(4)(+2y)2-(-3y)2;(5)m2(16-y)+n2(y-16).在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.分四人小组,合作探究.解:(1)2-9y2=(+3y)(-3y);(2)164-y4=(42+y2)(42-y2)=(42+y2)(2+y)(2-y);(3)12a22-27b2y2=3(4a22-9b2y2)=3(2a+3by)(2a-3by);(4)(+2y)2-(-3y)2=[(+2y)+(-3y)][(+2y)-(-3y)] =5y (2-y);(5)m2(16-y)+n2(y-16)=(16-y)(m2-n2)=(16-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知1.分解因式:(1)-92+4y2;(2)(+3y)2-(-3y)2;(3) 2-0.01y2.因式分解教案篇2学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

用公式法进行因式分解-优课教案

用公式法进行因式分解-优课教案

用公式法进行因式分解【教学目标】(一)知识与技能1.知识目标:使学生了解平方差公式和完全平方公式的结构特点。

会用公式法分解因式。

2.能力目标:通过对平方差公式和完全平方公式的辨析,培养学生的观察能力。

(二)过程与方法1.在引导学生逆用乘法公式的过程中,培养学生逆向思维能力。

2.经历探索因式分解方法的过程,培养学生自主探索、发现问题的能力,通过猜测、推理、验证、归纳等步骤,发展学生的数学思维能力。

(三)情感态度与价值观通过公式法因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,在知识的应用过程中获得研究问题、解决问题的经验和方法。

【教学方法】引导发现,合作交流。

【教学重难点】正确熟练运用公式法分解因式,综合运用提公因式法和公式法分解因式。

【教学过程】(一)创设情境,引入新知让学生写出学过的两组乘法公式(a+b)(a-b)=a2-b2(a±b)2=a2±2ab+b2(二)师生互动,概括新知1.活动1:让学生把上面两个公式左右两边倒过来会出现什么情形可不可以用此来分解因式a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)2由多项式的乘法公式由右向左逆用,这样就又给我们提供了一种新的分解因式的方法——公式法。

运用这些公式可以将某些符合条件的多项式分解因式。

2.活动2:让学生观察、发现、交流、讨论下列问题:(1)公式有什么特点(2)用语言叙述公式。

(3)公式中的a、b可以表示什么(4)根据你对公式的理解,请举出几个用公式法分解因式的例子,并指出多项式中谁相当于公式中的a,谁相当于公式中的b以上问题,尽量让学生自主探索、交流发现,老师补充总结。

(三)合作交流,巩固新知1.例1:把下列各式进行因式分解(1)4x2-25(2)16a2-9b2分析:注意引导学生观察所给多项式的项数,每个项可以看成是什么“东西”的平方,使之与平方差公式进行对照,确认公式中的字母在每个题目中对应的数或式后,再用平方差公式进行因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、分解因式
(1) (2)
(3) (4)
六、课后作业:
1、多项式 分解因式的结果是( )
(A) (B) (C) (D)
2、下列多项式中,能用公式法进行因式分解的是( )
(A) (B) (C) (D)
3、 的结果为( )
A. B. C. D.
4、代数式 的公因式为( )
A. B. C. D.
5、 是一个完全平方式,那么 之值为( )
13、已知 求 的值.
14、把下列各式分解因式.
(1) ;(2) ;(3) ;
(4) ;(5) .
1、下列多项式能用平方差公式分解因式吗?如果可以,请分解因式:
(1) (2)
(3) (4)
(5) (6)
2、分解因式
(1) (2)
(3) (4)
(5) (6)
3、用简便的方法计算
(1) (2)
4、分解因式
(1) (2) (3) (4)
(5) (6) (7) (8)
四、完全平方公式
1、复习引入
1.判断下列各式从左到右的变形,是不是因式分解?如果是,说说运用了哪种方法?
2、探究新知
1.
上述运算从左到右,进行了__________的运算,
反之:
从左到右,叫做____________,这种方法也叫做公式法.
2.用语言叙述上面的公式:
这就是说,如果一个多项式能写成两个数的平方和加上(或减去)这两个数的积的两倍,那么就可以运用完全平方公式把它因式分解,它等于这两个数的和(或差)的平方。
例如:
3.我们把多项式 , 叫做完全平方式。
3、经典例题:
例1:分解因式
(1) (2)
(3) (4)
例2:分解因式
(1) (2)
归纳总结:1、遇到复杂的公式法,我们可以先提取公因式,再根据公式法进行因式分解:
趁热打铁:
五、课堂练习:
1、分解因式
(1) (2)
(3) (4)
2、分解因式
3、下列各多项式能否运用完全平方公式分解因式?
教师姓名
学生姓名
年 级
初一
上课时间
学 科
数学
课题名称
因式分解2----公式法
教学目标
1、回忆平方差公式和完全平方公式,理解逆用乘法公式的过程就是因式分解的公式法。
2、熟练运用公式法进行因式分解,注重先提取负号、整体法的应用
教学重难点
提取公因式法、公式法的灵活运用
1、 复习引入:
1、什么叫做分解因式?因式分解和整式乘法的区别?
(1)如果从左到右看,是一种什么变形?
什么叫因式分解?这种因式分解的方法叫什么?
(2)如果从右往左看,即x(x+1) =x2-x,是一种什么变形?
所以因式分解与整式乘法是两种互为相反的变形.
2.因式分解:
(1) ;
(2) ;
(3) .
二、利用平方差公式因式分解
你能将多项式 、 进行分解因式吗?
我们由乘法公式中的平方差公式 ,反过来将 分解因式,可得 。
答:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
平方差公式。
整式的乘法
4a2b(a-2b) = 4a3b-8a2b2
因式分解
区别:整式乘法:由几个整式的乘积的形式转化成一个多项式的形式.
因式分解:由一个多项式的形式转化成几个整式的乘积的形式.
2、思考1:对于等式x2-x = x(x-1)
A.40B. C. D.
6、填空: .
7、利用因式分解计算 .
8、分解因式: .分解因式: .
9、(1)运用公式法计算: .(2)用简便方法计算: .10、分解因式:(1) 源自2)11、把下列各式分解因式.
(1) ;(2) ;(3) ;(4) .
12、把下列各式分解因式.
(1) ;(2) ;
(3) ;(4) .
例2下列各式能否运用平方差公式分解因式?
归纳:可运用平方差公式进行因式分解的多项式特征是:
例3分解因式:
(3) (4)
例4在如图所示的圆环中,外圆半径R=9.5cm,内圆半径r=8.5cm,求圆环(阴影部分)的面积。
例5、试说明:若 是整数,则 能被8整除。
例6:运用简便方法计算
(1) (2)
课堂练习:
逆用乘法公式将一个多项式分解因式的方法叫做公式法。
由平方差公式反过来可得
这个公式叫做因式分解的平方差公式。
这就是说,如果一个多项式能够写成两个数的平方差形式,那么就可以运用平方差公式把它因式分解,它等于这两个数的和与这两个数的差的积。
例如, 中, 可以看做 , 可以看做 ,
这样
三、经典例题:
例1试用平方差公式对下列多项式进行因式分解:
相关文档
最新文档