单因素方差分析完整实例.doc
单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。
•水平:因素变化的各种状态或因素变化所分的等级或组别。
•单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。
设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。
样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。
第一节单因素方差分析演示文档

5.1.2 单因素方差分析的数学模型
进行单因素方差分析时,需要得到如表1所示 的数据结构.
▪
表1 单因素方差分析中数据结构
观测值(j) A1
1
x11
2
x12
… ni 平均值
…
x1n1 x1.
A因素(i)
A2 x21 x22 …
x 2n2 x 2.
… … … … …
Am xm1 xm2 …
x mn m xm.
(3) 在打开的“方差分析:单因素方差分析”对话框中, 输入“输入区域”:B2:D8,“分组方式”取默认的 “列”方式,选中“标志位于第一行”复选框,如图2 所示,单击“确定”按钮.
表中用A表示因素,A的m个取值称为m个水平分别用 A1,A2,…,Am表示,每个水平对应一个总体.
从不同水平(总体)中抽出的样本容量可以相同,也
可以不同.若不同水平抽出的样本容量相同则称为均衡 数据,否则称非均衡数据.
设xij表示第i个总体的第j个观测值(j = 1, 2, …,ni, i =
由于在实际中有充分的理由认为粮食产量服从正态 分布, 且在安排试验时, 除所关心的因素(这里是化肥)外, 其它试验条件总是尽可能做到一致.
这使我们可以认为每个总体的方差相同
即 Xi~N(i,σ2) i = 1, 2, 3
因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验
(2) 把同一化肥(A的同一水平)得到的粮食产量看作同 一总体抽得的样本,施用不同化肥得到的粮食产量视为 不同总体下抽得的样本,表中数据应看成从三个总体X1, X2,X3中分别抽了容量为6的样本的观测值.
推断甲乙丙三种化肥的肥效是否存在差异的问题, 就是要辨别粮食产量之间的差异主要是由随机误差造成 的,还是由不同化肥造成的,这一问题可归结为三个总 体是否有相同分布的讨论.
01.单因素方差分析(简洁版)

6、延伸阅读
单因素方差分析也可以通过Analyze > Compare Means > One-Way ANOVA进行,将ALT送入Dependent List框 中,将Group送入Factor框中,其结果与本例的操作是一样的。 单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指 标为连续变量。适用条件包括: 1)观测指标满足独立性; 2)各组观测指标均来自正态分布总体; 3)各组观测指标方差相等。 在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。
Tests of Between-Subjects Effects表格给出了方差分析的结果。 在方差齐的条件下,Group一行结果显示,F值=68.810, P(Sig.)<0.001。
Multiple Comparisons表格给出了部分方法的多重比较结果, 分别列出了每个组和其他组比较的均数的差值(Mean Difference (I-J))、标准误(Std. Error)、P值(Sig.)和均数 差值的95%置信区间(95% Confidence Interval)。检验水准α 设为0.05,组间差异有统计学意义的结果已用*标出。 不同多重比较方法的选择,需要结合研究设计和每个方法各自 的特点及适用条件。我们以Bonferroni法和Dunnett法的结果 为例,进行解读: (1)Bonferroni法结果显示,A组与B组的ALT水平相比,Mean Difference=-15.160 U/L,P(Sig.)<0.001;A组与C组相比, Mean Difference=1.133 U/L,P(Sig.)=1.000;B组与C组相 比,Mean Difference=16.293 U/L,P(Sig.)<0.001。
生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k
单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列
单因素试验的方差分析

实验二 单因素试验的方差分析
实验目的:1.掌握单因素实验方差分析的方法与步骤;
2.正确分析输出结果中的各参数,并得出正确结论。
实验内容:
采用四种不同产地的原料萘,按同样的工艺条件合成β—萘酚,测定所得产品的
熔点如表1所示,问原料萘的产地是否显著影响产品的熔点?
表2.1 不同产地原料萘合成β—萘酚的熔点℃
操作步骤:
1.excel 的工作表中输入如表1.1所示的的样本数据, 2.点击“工具—数据分析—方差分析:单因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A2:D5;分组方式,选择列;显著性水平α设置为0.1,如图
2.1所示。
图2.1 应用excel “数据分析”功能求单因素方差分析的有关参数
3.点击确定,输出参数的窗口如图2.2所示。
图2.2 应用excel“数据分析”功能求单因素方差分析的有关参数
结果分析:
(1)SUMMARY给出的是该因子各水平的扼要分析结果,包括各样本的容量、数据、样本均值和样本方差。
(2)在输出的方差分析表中,组间即“产地因子”;组内即指“误差”;SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。
由于P
值为0.231767>0.1,所以萘的产地对萘酚熔点无显著影响。
单因素试验的方差分析

=
2 2
=
2 s
2
;
(3)从每个总体中抽取的样本相互独立.
那么,要从已知数据中推断 s 个总体是否具有显著 的差异,就要比较各个总体的均值是否相等.设第 j 个总
体的均值为 j ,则要检验的假设为
H0 : 1 2 s , H1 : 1, 2 , , s不全相等.
(8-1)
单 因 素 A 具 有 s 个 水 平 A1, A2 , , As , 在 每 个 水 平
推进器 B
A1
B1
58.2 52.6
B2
56.2 41.2
B3
65.3 60.8
燃料 A
49.1 54.1 51.6 A2 42.8 50.5 48.4
60.1 70.9 39.2 A3 58.3 73.2 40.7
75.8 58.2 48.7 A4 71.5 51.0 41.4
这里的试验指标是射程,推进器和燃料是因素, 它们分别有 3 个、 4 个水平.这是一个双因素试验.试 验的目的在于考察在各种因素的各个水平下射程有 无显著的差异,即考察推进器和燃料这两个因素对射 程是否有显著的影响.
H1 : 1,2 ,
,
不全为0.
s
1.3 偏差平方和及其分解
定义 8.2 方和,其中
s nj
称 ST (Xij X )2 为样本的总偏差平 j 1 i1
称为样本的总均值.
1 s nj
X n j1 i1 X ij
s nj
定义 8.3 称 SE =
( Xij X .j )2 为样本的误差平方
差. SA 体现了各水平 Aj 的样本均值 X j 与总均值 X 之间
的差异,反映了样本之间的不同,它是由因素 A 的不同水 平效应的差异以及随机误差引起的.
02.单因素方差分析(详细版)

研究者想知道,CWWS得分的高低是否取决于体力活 动的时间,即coping_stress变量的平均得分是否随着 group变量的不同而不同(部分数据如右图)
2021/5/23
2
2、对问题的分析
研究者想分析不同group间的coping_stress得分差异,可以采用单因素方差分析。 单因素方差分析适用于2种类型的研究设计: 1)判断3个及以上独立的组间均数是否存在差异; 2)判断前后变化的差值是否存在差异。
的方法,同LSD法类似在多组间进行两个独立样本t检验,但是采
用2了02B1/o5/n2f3erroni法进行校正。
19
5.2 一般线性模型(GLM procedure)求效应量(偏η2) (1)点击Analyze > General Linear Model > Univariate...
出现Univariate对话框:
如果使用偏度和峰度(skewness and kurtosis)进行正态性判断, 则保留Display模块内的默认选项Both或者选择Statistics。
(6) 点击OK,输出结果。
9
根据如下输出的箱线图,判断每个组别内是否存在异常值。
2021/5/23
10
SPSS中将距离箱子边缘超过1.5倍箱身长度的数 据点定义为异常值,以圆点表示;
2021/5/23
如果样本量大于50,推荐使用正态Q-Q图等图形方法进行正态判 断,因为当样本量较大时,Shapiro-Wilk检验会把稍稍偏离正态 分布的数据也标记为有统计学差异,即数据不服从正态分布。
13
如果数据不服从正态分布,可以有如下4种方法进行处理:
(1) 数据转换:对转换后呈正态分布的数据进行单因素方差分析。当各组因变量的分布形状相同时,正态转换才有可能成 功。对于一些常见的分布,有特定的转换形式,但是对于转换后数据的结果解释可能比较复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素方差分析完整实例.doc
单因素方差分析是统计学中常用的分析方法之一,用于比较结果在一个分类变量(即因素)的不同组别之间的差异。
下面将通过一个实例来介绍单因素方差分析的具体应用。
实例介绍:
某公司招聘了25名新员工,并在这些员工入职一个月后进行了一次工作满意度调查。
调查结果显示,他们对公司的工作满意度总体得分为80分,但是有些员工对公司的工作并不满意。
公司希望了解员工的不满意来源,并查看不同部门、教育程度和薪水水平对工作满意度是否有影响。
公司收集了员工的部门、教育程度和薪水水平等信息,并对这些因素对工作满意度的影响进行了单因素方差分析。
实例步骤:
1.数据整理
首先,将员工的部门、教育程度和薪水水平等信息整理成表格形式。
随机抽取10名员工的数据如下:
| 员工编号 | 部门 | 教育程度 | 薪水水平 | 工作满意度得分 |
| :------: | :--: | :------: | :------: | :------------: |
| 1 | A | 大学 | 高薪 | 85 |
| 2 | B | 高中 | 中薪 | 83 |
| 3 | C | 硕士 | 中薪 | 78 |
| 4 | A | 高中 | 低薪 | 77 |
| 5 | B | 大学 | 高薪 | 93 |
| 6 | C | 大学 | 中薪 | 80 |
| 7 | A | 高中 | 中薪 | 72 |
| 8 | B | 大学 | 中薪 | 85 |
| 9 | C | 硕士 | 高薪 | 89 |
| 10 | A | 高中 | 高薪 | 75 |
2.数据分析
进行单因素方差分析时需要分别计算各组数据的均值和方差。
2.1 计算各组均值
首先,按照不同部门计算均值:
| 部门 | 员工数 | 工作满意度均值 |
| :--: | :----: | :------------: |
| A | 4 | 77.25 |
| B | 3 | 87.00 |
| C | 3 | 82.33 |
| 总计 | 10 | 82.00 |
由上述计算结果可得出不同因素组别的均值。
计算各组方差用来衡量各组数据之间的差异,以判断数据是否具有统计学意义。
同理,我们可以按照部门、教育程度和薪水水平计算方差,并得到表格如下:
2.3 计算平均方差
平均方差是各个组别方差的平均值,可以用来衡量不同组别之间的总体差异。
根据上述计算结果,我们可以算出平均方差为43.68。
2.4 计算F值和P值
F值和P值可以帮助我们判断不同组别的差异是否有统计学意义。
计算F值得公式如下:
F = 组间平均方差/组内平均方差
根据我们的计算结果可知,组间平均方差为48.22,组内平均方差为43.68,故F值为1.102。
计算P值可以使用统计软件或查表的方式,这里我们采取查表的方式。
根据给定的自由度(自由度为2、9),我们可以在F分布表上找到相应的临界值为3.10。
根据上述计算可知,F值小于临界值,故可以认为不同组别之间的差异没有统计学意义。
因此,我们无法得出部门、教育程度和薪水水平对工作满意度是否有影响的结论。
3.数据结论
在实际应用中,我们需要根据具体情况选择合适的分析方法,逐步排除其他因素的干扰,从而得出较为准确的结论。