论述蓄热式换热器主要设计步骤

合集下载

填充床蓄热式热交换器的设计计算

填充床蓄热式热交换器的设计计算

填充床蓄热式热交换器的设计计算Ξ李朝祥(华东冶金学院)摘 要 依据混合扩散模型,在热交换器温度前沿扩展分析和热交换器换热效率评价的基础上,建立了保证热交换器效率最高的前提条件〔1〕。

在此条件下,热交换器的结构参数不是由热交换面积求得,而是由保证换热效率最高的约束条件直接求得。

关键词 蓄热 填充床 热交换 计算THE DESIGN CALCU LATION OF FI LL ING BE DREGENERATIVE HEAT EXCHANGERLi Chaoxiang(East China University of Metallurgy)Abstract According to the dispersion2concentric model,the premise condition to keep the highest effi2 ciency of the heat exchanger was established,based on the analysis of temperature front enlarging and the evaluation of the efficiency of heat exchanger.On this condition,the structural parameter of the heat exchanger was calculated not according to the heat exchanging areas but directly according to the re2 striction condition to hold the highest efficiency of the heat exchanger.K eyw ords regenerative filling bed heat exchanging calculation1 前言蓄热式热交换器的设计任务,主要是根据热交换理论,针对给定的热工应用条件,设计出满足特定要求的蓄热式热交换器。

热交换器计算及设计

热交换器计算及设计
校核性热力计算
针对现成的热交换器,目的在于确定流体的出 口温度,并了解该换热器在各种工况下的性能 变化,判断能否完成非设计工况下的换热任务
热交换器热力计算核心参数
传热面积 &传热量
热流体出 冷流体入 口温度 口温度
热流体入 口温度
冷流体出 口温度
热力计算的核心在于寻找上面五个物理量之间的关系
换热器设计基本关系式
制糖造纸工业中的蒸发器等等 化工、航天、机械制造、食品、医药行业中。。
凝汽式燃煤电厂生产过程
凝汽部分换热过程
低压加热器
除氧器换热过程
高压加热器
省煤器
过热器
空预器
对换热器的基本要求
满足工艺要求,热交换强度高,热损失小 工艺结构在工作温度压力下不易遭到破坏,
制造简单,维修方便,运行可靠 设备紧凑(对于航天、余热利用、大型设
按照传送热量的方法:间壁式、混合 式、蓄热式(回热式)、流体耦合间 接式等
按照流动方向的分类
a. 顺流 b. 逆流 c. 交叉流(错流) d. 总趋势为逆流的四次
错流 e. 总趋势为顺流的四次
错流 f. 混流式:先顺后逆平
行流 g. 混流式:先逆后顺的
串联混和流
按照热量传输方式划分
间壁式换热器 冷流体和热流体之
该类型热交换器的管子常用直管(蛇管)或螺旋弯管(盘 管)组成传热面,将管子沉浸在液体的容器或池内
多用于液体预热器、蒸发器或气体冷却、冷凝 管外液体中的传热以自然对流方式进行,传热系数低,体
积大,但是结构简单、制造、修理、清洗方便。
沉浸蛇管换热
管式热交换器类型
-喷淋式热交换器
该类型热交换器将冷却水 直接喷淋到管子外表面使 管内的热流体冷却或冷凝

蓄热式电暖器工艺流程

蓄热式电暖器工艺流程

蓄热式电暖器工艺流程
《蓄热式电暖器工艺流程》
蓄热式电暖器是一种通过将热能储存起来,然后释放到环境中来提供舒适温暖的电暖器。

其工艺流程主要包括原材料准备、制造工艺、组装和包装等环节。

首先在蓄热式电暖器的生产工艺中,原材料准备是至关重要的一环。

生产厂家需要选择高品质的热媒体材料和外壳材料,以保证电暖器的性能和安全性。

热媒体一般选用高效的蓄热材料,如蓄热石墨、蓄热陶瓷等,其热容量大、导热性好。

外壳材料一般选用金属材料,如铝合金、不锈钢等,以确保电暖器的耐久性和散热性。

接下来是制造工艺。

在制造过程中,首先需要将热媒体材料和加热元件组装在一起,形成一个整体的热储能单元。

然后,生产厂家需要对外壳进行加工,并在其中安装好热储能单元,使其能够有效地散热和辐射热能。

在加工过程中,需要保证每个环节的精准度和质量,以确保整个电暖器的性能和安全性。

接着是组装环节。

在组装过程中,将已制造好的各部件按照设计要求进行组装,包括连接线路、电源线和控制器等。

组装过程需要严格按照操作规程进行,以确保产品的质量和安全性。

最后是包装环节。

在包装过程中,生产厂家需要选择适当的包装材料,并按照标准要求进行包装,以确保产品在运输和储存过程中能够受到有效的保护。

通过以上工艺流程,《蓄热式电暖器工艺流程》呈现了蓄热式电暖器的生产过程及技术要求,全面展示了蓄热式电暖器的制造工艺。

换热器设计步骤

换热器设计步骤

换热器设计步骤换热器是用于传递热量的设备,广泛应用于工业生产和供暖系统中。

对于换热器的精确设计,需要经过一系列步骤才能得到最佳的设计方案。

下面是换热器精确设计的详细步骤:第一步:确定设计目标在进行换热器设计之前,需要明确设计目标。

这包括了热负荷、温度变化、流体属性以及安装条件等要求。

设计目标的明确可以为后续的设计提供指导。

第二步:收集原始数据为了进行精确的换热器设计,需要收集与设计有关的各种原始数据。

这些数据包括冷却剂的流量、温度和压力,以及被冷却物体的热负荷、温度和压力等信息。

此外,还需要收集流体的物性参数,如导热系数、比热容等。

第三步:确定换热方式根据实际需求和应用场景,确定合适的换热方式。

常见的换热方式包括对流换热、辐射换热和传导换热。

根据不同的热负荷和流体特性,选择最适合的换热方式。

第四步:统计设计条件根据收集的原始数据和所确定的换热方式,对设计条件进行统计和归纳。

这包括了流体的质量和能量平衡方程,换热面积和换热系数、传热功率、流体速度、压降等参数的计算。

第五步:选择换热器类型根据设计条件,选择合适的换热器类型。

常见的换热器类型包括管壳式换热器、板式换热器、螺旋板式换热器等。

选择合适的换热器类型可以满足设计要求,并保证换热器的经济性和可靠性。

第六步:进行换热器的初步设计根据所选择的换热器类型,进行初步的设计计算。

根据换热器的工作原理和结构特点,计算换热面积、流体通道的尺寸、流体速度和压降等参数。

这些计算可以通过数学模型、经验公式和实验数据等方法进行。

第七步:进行换热器的详细设计在初步设计的基础上,进行详细的设计计算和优化。

对换热器的结构参数进行精确调整和优化,满足热负荷的要求,并保证换热器的性能和可靠性。

这些计算包括了换热面积的计算、流体通道的设计、板/管束的选择、传热面积的计算和流体速度和压降的计算等。

第八步:进行换热器的安装调试在设计完成后,进行换热器的安装调试。

根据设计要求,进行换热器的安装和连接,并进行初步的运行测试。

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。

通过分析固定管板式换热器的设计条件,确定设计步骤。

对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。

对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。

绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。

同时要是设计的结构满足生产的需要,达到安全生产的要求。

通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。

关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。

1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。

蓄热式热交换器传热设计计算

蓄热式热交换器传热设计计算

第三章蓄热式热交换器传热设计计算由于蓄热式热交换器始终处于不稳定传热工况下工作,换热流体或传热面的温度都随时间和它的位置而变化,所以传热系数和传热量也随时间而变。

为了解决这一困难,在计算中常把加热期和冷却期合在一起作为一个循环周期来考虑,即传热系数为一个循环周期内的平均值。

这样,我们就可以像普通的间壁式热交换器那样进行设计计算。

蓄热式热交换器设计计算的基本方法为对数平均温差法,由于篇幅所限,本章仅根据这类热交换器因结构和工作情况的不同而导致的传热设计计算上的差异作一必要的阐述。

第一节传热系数对于回转型蓄热式热交换器,基于式(!"#)同时还应考虑到烟气、空气冲刷转子的份额不同(一般,烟气冲刷占$%&!,空气冲刷占$!&!,过渡区为!’(&!)及蓄热板表面积灰等因素,因而传热系数的计算式为)*!·+"$$,$-$.$,!-!,#$(%!·&)($"$)式中!———综合考虑烟气对蓄热板表面的灰污以及烟气和空气对传热面未能冲刷完全及漏风等因素对传热系数影响的利用系数,一般,!*&/%0&/1;+"———考虑低转速时不稳定导热影响的系数,其值主要与转速有关;,$、,!———分别为烟气、空气冲刷转子的份额,可表示为!"#!"!$#%"%#&"&!’#!’!$#%’%#&’&式中%、%"、%’———分别为总的、通过烟气和空气处的传热面积;&、&"、&’———分别为总的、烟气和空气的流通截面积。

对于阀门切换型蓄热式热交换器,由于蓄热体是格子砖,其蓄热能力及砖表面与内部温度之差等对传热的影响较大,所以每周期传热系数的计算式常表式为(#[")"!"*")’!’*’+"#$%],",!("’,#周期)(-,’)式中+———格子砖的平均比热;"———格子砖的容重;#———格子砖的厚度;$———格子砖的利用率;%———格子砖的温度变动系数。

蓄热式换热器

蓄热式换热器

5.2 与间壁式换热器的比较分析
5.2.2 换热器的热平衡及传热方程 (2)换热量Q可由热气体1与蓄 热体间的对流换热来表示
Principle and design of heat exchanger 2015
5.2 与间壁式换热器的比较分析
5.2.2 换热器的热平衡及传热方程 (3)换热量Q还可由冷气体2 与蓄热体间的对流换热来表示
Principle and design of heat exchanger 2015
5.2 与间壁式换热器的比较分析
5.2.2 换热器的热平衡及传热方程 (4)综合以上三式,可得蓄热式换热 器的传热系数计算式:
Principle and design of heat exchanger 2015
Principle and design of heat exchanger 2015
5.1 结构和工作原理
5.1.2 阀门切换型蓄热换热器
Principle and design of heat exchanger 2015
fuel 燃烧器 B
fuel
炉温 1350℃ 钢板 1250℃
排气 150℃
蓄热式
由于蓄热式换热器中,加热和冷却过程中的平均壁温不
等,使得蓄热式传热量仅为间壁式的(
)倍。
即由传热表面温度不稳定所造成。
Principle and design of heat exchanger 2015
5.2 与间壁式换热器的比较分析
5.2.2 换热器的热平衡及传热方程
当τ→0时,tw1与tw2的曲线将重合,
蓄热式烧嘴结构图
Principle and design of heat exchanger 2015

蓄热式换热器

蓄热式换热器

的直接混合来换热的。
引言
off
fuel
燃烧器 B
炉温 1350℃ 钢板 1250℃
on
fuel
蓄热室B
排气 150℃
air 切换阀
蓄热室A
主要内容及基本要求
蓄热式热交换器主要用于流量大的气-气热交换场合, 如动力、石油化工、冶金等工业中的余热利用和废热回收。
5.1 结构和工作原理 5.2 与间壁式换热器的比较 5.3 传热设计计算特点
2)除了在蓄热式换热器的冷、热气体进口处之外,冷热 气体的温度随时间呈周期性变化。
在蓄热式换热器高度方向上取某一A-A截面,在整个周期内, 该处蓄热材料及气体的温度按图所示情况变化。
5.1 结构和工作原理
5.1.2 阀门切换型蓄热换热器
fuel
fuel
燃烧器 B
炉温 1350℃
钢板 1250℃
排气 150℃
air 切换阀
阀门切换型蓄热式换热器
(a) 蓄热式烧嘴
(b)烧嘴转
蓄热燃烧原理图
空气 煤气
原理图
外置式单蓄热室结构图
砌筑尺寸 砌筑尺寸
内置式蓄热室结构图
外置式双蓄热室结构图
蓄热式烧嘴结构图
5.1 结构和工作原理
从玻璃加热池上 排出的高温烟气进入 蓄热格子体时的温度 约为1100~1300℃, 通过蓄热室后温度约 为400~600℃,进入 蓄热室的空气温度约 100~120℃,排出时 达到约900~1100℃, 然后进入加热池内供 燃油使用。
燃烧器 燃烧室
高炉热风炉结构图
5.1 结构和工作原理
5.1.1 回转式蓄热换热器
回转式换热器又叫再生蓄热式换热器, 主要由圆筒形蓄热体(常称转子)及风罩 两部分组成,分为转子回转型和外壳回转 型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档