电力机车的传动控制技术
HXD2电力机车电传动系统和机车网络控制系统培训教材【范本模板】

HXD2型电力机车电传动系统培训教材1 交流电传动系统简介1。
1系统概述HXD2型电力机车交流电传动系统主要是由网侧电路、主变压器、牵引变流器、牵引电机及网络控制系统等部分组成。
交流电传动系统主要器件及其所在位置如图1—1所示。
图1—1 电传动系统主要器件及其位置机车主电路均采用轴控方式,交—直—交变流技术对牵引电机进行牵引和制动特性控制。
每台机车由两节车组成,设有四台变流柜,每台变流柜装有独立的两台变流器,每台变流器由IGBT模块组成的四象限变流器和逆变器组成,对该轴进行控制。
每节车的轴二、轴三变流器中间回路给辅助变流器提供电源。
整个系统采用绞线式列车总线(WTB)和多功能车辆总线(MVB)的形式实现对外通讯。
图1—2 牵引系统电气原理图1。
2 系统主要技术参数机车功率发挥基本要求:机车功率与网压关系如图1—3所示。
图1—3 八轴机车技术规范轮周功率发挥曲线图机车牵引力、制动力参数机车起动牵引力(0~5km/h速度范围内半磨耗的轮周平均牵引力) ≥760kN机车持续制牵引力≥532kN最大再生制动力(车钩处)461kN最大再生制动力开始线性下降的速度≤15km/h再生制动力线性下降至0的速度≤5km/h恒功率速度范围:牵引65~120km/h再生制动75~120km/h图1—4 机车牵引制动特性曲线轮轴参数轨距 1435mm轴式 2(B0-B0)机车整备重量 2x100 t轴荷重 25t机车轮周牵引功率(持续制)≥9600kW机车轮周再生制动功率(持续制) ≥9600kW额定牵引货物质量 1万吨车轮直径 1200(半磨耗)传动比 120/22.牵引系统介绍2。
1网侧电路网侧电路如图1-5所示,由1 台受电弓AP,1 台高压隔离开关QS—HV,1 个高压电压互感器TF1-PP,1台主断路器QF(M),1 台高压接地开关QS-GHV,1 台避雷器F1,1 个高压电流互感器TFI-QL(M),主变压器原边绕组AX,1 个接地侧电流互感器TFI—CE 和4 个回流装置,以及1 台高压连接器QF—HV 组成。
列车电力传动与控制第1章交-直流传动技术

动、交-直流传动两个阶段。直-直流传动机车因技术原因已 被淘汰,交-直流传动机车/动车组技术成熟、性能可靠,保 有量很大,仍在许多国家、地区作为主型机车继续服役。 对于直流传动电力机车/EMU,没有经过直-直流传动阶 段,只经历了交-直流传动阶段。由于采用整流调压电路结构、 形式不同,先后经历了调压开关与二极管组合的有级调压、
3
3
110KV/50Hz
发电厂
升压站
地区变电所
牵引变电所
25kV/50Hz
A
25kV/50Hz 分相绝缘节
B
回流线 钢轨
图1–1 电力牵引系统组成
弓等高压电器,将接触网上 25kV/50Hz 单相交流电导入机车 内牵引变压器一次绕组,电流流过一次侧绕组,经车体接地装
臵与钢轨、回流线联结,与牵引变电所形成高压供电回路。同
本章主要介绍电力机车、EMU的直流传动系统,围绕基 本组成、牵引与制动等主要方面,进行系统分析。
2018/2/12 6
1.1 电力牵引传动系统的组成
电力牵引系统是由牵引供电部分和牵引动力装臵两大部分
组成,包括从牵引变电所到列车受电弓在内的供电部分和牵引
动力装臵的传动系统。牵引动力装臵主要指电力机车、电动车 组(EMU)。电力牵引系统组成如图1-1所示。一般习惯上以
2018/2/12 4
电力传动与控制
入交流传动时代,新造机车/动车组全部采用交流传动系统,
其交流传动机车、动车组的应用已很成熟。我国目前在线运
用的机车绝大多数属于交-直流传动机车。交流传动机车、 动车组在我国还处于起步发展阶段。我国曾研发了个别车型 的交流传动机车,但由于受关键技术、成本等因素制约,只 在机车型谱里占了一个位臵,没有形成批量。当前正在引进 的和谐系列机车、动车组均采用交流传动系统,这将确定了 我国牵引动力的发展方向,必然是走交流传动之路。 直流电力传动技术(机车)的发展概略为:
机电传动控制概述

多电机拖动——一台生产机械的各个运动部件分别由不同的电 动机来拖动。
实例:汽车上的电(动)机
• 汽车上的电(动)机广泛分布于汽车的发动机、底盘、 车身三大部位及附件中
• 汽车附件上的电(动)机,应用于吸尘器、充气机、 气泵、抛光机、电动座椅按摩器等装置
二.机电传动控制系统的发展 控制系统的发展伴随控制器件的发展而发展。随着功率器件、
放大器件的不断更新,机电传动控制系统的发展日新月异,它主要 经历了四个阶段:
1.继电器—接触器控制:出现在20世纪初,它仅借助于简单 的接触器.器与继电器,实现对控制对象的启动、停车以及有级调 速等控制,它的控制速度慢,控制精度差;
机械制造自动化高级阶段是走向设计、制造一体化,即利用计算机辅助设计(CAD)与计算机辅助制造(CAM)形成产品设计和制造
过程的完整系统,对产品构思和设计直到装配、试验和质量管理这一全过程实现自动化。
汽车车身部件上的电(动)机,使用在中央门锁装置、电动后视镜、自动升降天线、电动天窗、自动前灯、电动汽车座椅调整器、电
二、机电传动控制的任务 ➢ 将电能转换为机械能; ➢ 实现生产机械的启动、停止以及速度的调节; ➢ 完成各种生产工艺过程的要求; ➢ 保证生产过程的正常进行。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是要使生产设备、生产 线、车间乃至整个工厂都实现自动化。
从狭义上讲,则指控制电动机驱动生产机械,实现生产产品数 量的增加(效率)、质量的提高(精度)、生产成本的降低、工人 劳动条件的改善以及能量的合理利用等。
电传动控制原理第四章相控电力机车a课件

辅助控制策略通过调节机车的辅助设 备,如空调、照明、门窗等,提高机 车的舒适性和便利性。
04
CATALOGUE
相控电力机车的实验与验证
实验平台搭建
01
02
03
实验设备选择
根据相控电力机车的特性 和实验需求,选择合适的 实验设备和测试仪器。
实验环境搭建
建立模拟电力机车运行环 境的实验平台,包括电源 、信号发生器、数据采集 系统等。
实验结果验证与评估
实验结果对比
将实验结果与理论预测进行对比 ,验证相控电力机车的性能和行
为是否符合预期。
误差分析
分析实验结果与理论预测之间的误 差,找出误差来源,并提出改进措 施。
实验评估
根据实验结果和误差分析,对相控 电力机车的性能和行为进行评估, 为进一步优化设计提供依据。
05
CATALOGUE
安全防护措施
确保实验平台的安全性, 采取必要的防护措施,如 接地、过流保护等。
实验数据采集与分析
数据采集系统设置
配置数据采集系统,包括 传感器、信号调理电路、 数据采集卡等,确保能够 准确采集所需数据。
数据采集过程
在实验过程中,实时采集 电力机车的运行数据,如 电流、电压、速度等。
数据处理与分析
对采集到的数据进行处理 、分析和可视化,以便更 好地理解相控电力机车的 性能和行为。
国际市场
随着技术的不断进步和市场的扩大, 相控电力机车有望在国际市场上取得 更大的成功。
THANKS
感谢观看
牵引控制策略是相控电力机车 控制策略的重要组成部分,它 的主要目标是实现机车的牵引 力控制。
牵引控制策略通过调节机车的 输入电压和电流,实现对机车 牵引力的精确控制。
我国机车电传动技术的发展

我国机车电传动技术的发展
机车电传动技术是指用电力来驱动机车的一种技术。
我国在机车电传动技术方面的发展可以分为以下几个阶段:
第一阶段是20世纪50年代到60年代,这一时期主要采用的是直流电机驱动,由于技术限制,机车功率和速度都较低。
其中最著名的是中国第一代电力机车——“东方红1号”,它于1958年投入使用,最大功率为1,200千瓦,最高时速为80公里。
第二阶段是70年代到80年代,这一时期我国开始引进国外的交流电机驱动技术,如日本的三菱公司和美国的通用电气公司。
这种技术可以实现高功率和高速,同时也更加节能。
其中最著名的是中国第二代电力机车——“和谐号”系列,它于1999年开始研制,最大功率为9,600千瓦,最高时速为350公里。
第三阶段是90年代至今,这一时期我国开始大力发展自主研发的机车电传动技术,如采用IGBT(绝缘栅双极性晶体管)的交流电机驱动技术,可以实现更高效率和更高可靠性。
其中最著名的是中国第三代电力机车——“复兴号”系列,它于2014年开始研制,最大功率为22,800千瓦,最高时速为400公里。
总的来说,我国机车电传动技术的发展经历了从直流电机驱动到交流电机驱动,再到自主研发的高效率、高可靠性技术的变化。
这些技术的发展不仅提高了机车
的功率和速度,也为我国铁路运输的安全和可靠性提供了有力支持。
重载货运电力机车电传动系统应用技术分析

元选择 标准屏蔽机柜 结构 ;布线方 面不仅严格选择接 地方式 且全部 采用标准 化布线作 业和测试作 业 , 提高 了产 品可靠 性 。 变流 器总体 选择 柜式 分区结构 , 成 形
屏 蔽罩 实现空 间电磁波 的吸收和反射 , 决 了空 间受 解 限条件 下强弱 电 的交错 干扰 问题 。 屏蔽罩 对空 间 电磁 波 的吸收损 耗为
化吸收 和再创新 的实施 , 促进 了 中国铁路牵 引动 力直
流到交 流的转化 , 实现 了重 载牵引技术 的跨 越式发展 。
移相 交错并联 , 在较 低 的开关频率 下大大 降低 输入 电
网 的谐 波 含量 。 3为 四重 化变 流器交错 并联原 理示 图 意图, 图4为机 车 电制 动工 况下变 压器 网侧 电流的仿 真 图形 , 明显 网侧 电流 得到 明显改善 。 很
构 , 电机 在机 车特 定 环境 条件 下 的功率 容量增 大 , 使 提高 了电机 的容积功 率密度 , 实现 牵引 电机 的免维护 使用 ;交 流电 机 的特 性也 提 升 了机 车 的空转 防 滑性 能。 通常电力机 车用异 步牵 引电机极数 可以选择 4 极或 6 , 际运 用中 , 极 电机 比6 极 实 4 极电机更优 。 在相 同转
2 4 牵 引 电机 .
2 交流 电传 动系统的应用特点
从能量 的利用效 率 、 功率等级 、 绿色节能等各方 面 比较 , 交流传动都具备很大 的优 势 , 已经成 为 目前 铁路
机 车 电传 动系统 的最佳 选择 方案 。
2 1 IB . G T的应 用
交 流牵 引 电机 由于取 消 了直 流 电机 的换 向器 结
3、交直电力机车

成都机务段职教科
成都机务段职教科
第三章 电力机车概述
一、电力机车的基本组成:
主电路部分 电气 部分 电力机车
:高电压、大电流
压缩机
(升弓压缩机)外均
辅助电路部分:380V、220V交流、除辅助
为三相异步电动机
控制电路部分:110V直流 机械部分:车体、转向架、车体支撑装置、牵引缓冲装置。 空气管路部分:风源系统、辅助管路系统、控制管路系统、
交—直电力机车的传动控制
梁成鹰
成都机务段职教科
第一部分 交直电力机车传动
交流电气化线路 交直电力机车(直流车) 电力机车主电路系统
成都机务段职教科
交流电气化铁路
一、电气化铁路基本组成:
牵引网
牵引供电装置 变电所 电力机车
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
1、改变牵引电机端电压UD : 可通过改变一次侧、二次侧电压的方式进行有 级调速(调压开关)或利用晶闸管整流元件,通 过改变晶闸管移相角(触发角)的方法改变整流 输出电压,从而进行平滑无级调速。
2、改变磁通量ф : 即磁削弱调速,也称励磁调节。
成都机务段职教科
二、交直、交直型电力机车基本工作原理:
成都机务段职教科
1、中抽式全波整流(图a)
工作原理: 当变压器二次侧电压正半周a点高电位时: a→VD1→PK→M→O,此时VD2承受反向电压 而截止。 当变压器二次侧电压负半周b点高电位时: b点→Vd2→PK→M→0,此时VD1反向截止。
成都机务段职教科
轨电车采用。
成都机务段职教科
2、交—直传动:
hxd3型电力机车的传动原理

hxd3型电力机车的传动原理Hxd3型电力机车是一种常见的铁路机车,其传动原理是指机车如何将电能转化为机械能,并传递到车轮上,使机车能够牵引车辆行驶。
下面将详细介绍hxd3型电力机车的传动原理。
Hxd3型电力机车的传动系统主要由电机、变速器、齿轮传动和轮轴传动组成。
电力机车的动力来源于电机。
电机是通过电能转化为机械能的装置,它可以将电能转化为旋转力,推动机车的运动。
在hxd3型电力机车中,电机一般采用交流异步电动机,通过电力系统供给电能,并控制电机的运转速度。
变速器在电力机车的传动中起到调节转速和扭矩的作用。
变速器是一种能够改变输出轴转速和扭矩的装置。
在hxd3型电力机车中,变速器一般采用油压式变速器,通过控制油流的大小和方向,调节电机输出的转速和扭矩,以适应不同的运行需求。
齿轮传动是电力机车传动系统中的重要组成部分。
它通过一系列的齿轮配合,将电机的旋转力传递到车轮上,实现机车的牵引作用。
在hxd3型电力机车中,齿轮传动一般采用多级齿轮传动,通过不同齿轮的配比,实现不同转速和扭矩的输出。
同时,齿轮传动还具有增加传动效率、减小传动误差和降低噪音的作用。
轮轴传动是电力机车传动系统的最后一环,它将齿轮传动的力量传递到车轮上,使机车能够牵引车辆行驶。
在hxd3型电力机车中,轮轴传动通常采用直接连接的方式,即将电机输出的动力通过齿轮传递到轮轴上,再由轮轴传递到车轮上,最终实现机车的牵引作用。
hxd3型电力机车的传动原理是通过电机、变速器、齿轮传动和轮轴传动等组成部分,将电能转化为机械能,并传递到车轮上,实现机车的牵引作用。
这一传动系统不仅能够提供足够的动力和扭矩,还能够适应不同的运行需求,并具有较高的传动效率和可靠性。
通过不断的技术改进和创新,hxd3型电力机车的传动系统将会更加先进和高效,为铁路运输提供更好的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:近年来, 为了适应“提速、重载”的要求, 功率大、性能技术先进的新型国产内燃、电力机车的投人运用, 成为我国铁路运输的主要牵引动力。
自1995年以来, 我国铁路机车迅速更新换代, 不仅蒸汽机车迅速退出历史舞台, 而且国产第一代内燃机车和第二代内燃机车的早期产品也批量报废, 国产第一代电力机车早期产品已开始批量报废, 第二代国产电力机车正通过大修改造为第三代相控电力机车。
近年来, 大批量生产的是适应“提速、重载”的第三代内燃、电力机车, 并在积极研制第四代新型内燃、电力机车。
本文简要介绍了机车电力传动形式的转变历程,回顾了交流传动的发展历史,揭示出电力电子技术与电传动技术的密切关系,重点阐述了我国电力牵引技术的发展与现状,并展望了以交流传动技术为方向的我国铁路机车车辆装备制造业的发展前景。
关键词:电力机车传动,控制技术,发展与现状。
目录1.电力传动形式的转变 (3)2.交流传动技术 (3)2.1 交流传动技术的发展 (3)2.2交流传动技术的原理简介 (5)3.我国机车电传动技术的发展 (6)3.1 第一代电力机车控制技术 (6)3.2 第二代电力机车控制技术 (7)3.3 第三代电力机车控制技术 (8)4.展望 (10)参考文献: (11)1.电力传动形式的转变从很早的年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。
1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。
1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。
这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。
1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。
1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。
大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。
1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。
随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。
2.交流传动技术2.1 交流传动技术的发展交流电动机作为牵引电动机使用, 具有独特的优越性:(1)交流电动机体积小、质量轻、功率大。
体积小, 解决了安装空间的限制问题;质量轻, 减小了机车转向架的簧下质量,改善了轮轨作用力,适应了高速的需要;功率大, 解决了高速所必需的动力问题。
(2)交流电动机保持恒定大功率的速度范围宽,有利于实现客货通用型机车。
(3)交流电动机无换向器,消除了电刷与换向器磨耗,提高了可靠性,也降低了制造和维修成本。
(4)异步交流电动机具有优异的牵引性能,陡峭的自然特性有利于提高粘着利用,能更好地发挥牵引力。
虽然交流电动机,尤其是异步电动机具有上述优势, 但在上世纪70年前,由于直流电机控制的简便性,以及电力电子技术仅具备整流晶闸管器件和完善的整流技术,交流传动无法与直流传动相媲美。
随着快速晶闸管的出现,采用异步牵引电机、快速晶闸管变流机组、电流--滑差控制方法的交流传动系统的DE-2500内燃机车问世了,交流传动在牵引领域展现出前所未有的活力。
从此,机车车辆装备进人了新时代。
1983年,世界首批5台BR120型大功率干线交流传动电力机车,赢得了德国联邦铁路的认可。
BR120机车在系统设计、总体布置、参数选择与优化规则、电路结构方面以及在主要部件,如卧式主变压器、牵引变流器、牵引电动机、空心轴万向节传动装置、辅助变流器等的设计和制造方面, 成功地进行了尝试, 奠定了当代交流机车设计和运行的基本模式。
交流传动系统不仅能充分发挥了交流电动机的优越性,而且采用新技术后,带来了新的优势:(1)机车采用四象限脉冲变流器,大大减少了供电网的电流谐波分量, 改善了供电品质,解除了对通信、信号的干扰;(2)交流传动机车可使供电网获得近似于1的功率因数, 从而减小了供电网损耗,再生制动时还可以向电网反馈品质良好的电能,节能效果显著;(3)机车向前/向后、牵引/制动操纵无需位置转换开关即可进行主电路的转换, 电路简单, 可靠性高。
西方发达国家投入巨资研发轨道交通交流传动系统, 经过30年的研发、考核、技术更新, 已完成了机车车辆直流传动向交流传动的产业转换。
TGV、新干线、ICE已经成为铁路现代化和国家综合实力的标志之一。
交流传动成为铁路实现高速和重载的唯一选择和发展方向。
在这发展过程中,电力电子器件的发展是交流传动技术进步的物质基础。
第一代机车采用快速晶闸管,变流机组复杂、效率较低、可靠性和可维修性等均不理想。
随着大功率GTO器件的诞生, 上世纪80 年代中后期被迅速应用于大功率交流传动机车动车, 技术性能又有新的提高。
进入上世纪90年代,中高压IGBT 相继问世,器件品质进一步提高,变流机组又开始更新换代。
与此同时, 控制策略的发展是交流传动技术进步的理论基础。
先后研究、应用了晶闸管移相整流控制、PWM控制、四象限脉冲整流控制、磁场定向控制、直接转矩控制等方法。
微电子、信息技术等为交流传动技术进步提供了现代控制手段。
从过去复杂的模拟--数字电路实现简单的控制功能,进人现代网络化控制、小型化及模块化结构。
微计算机和微处理器品质不断提升,由8位进步到32位、64位,由定点运算进步到浮点运算,处理能力大幅提升,构筑了以高速数字信号处理器为核心的实时控制器。
由此可见,电力电子技术这门综合学科对牵引动力交流传动系统的发展产生了强大的推动力。
2.2交流传动技术的原理简介交直流传动电力机车是采用直流供电,,由直流或脉流串励电动机牵引的机车。
其优点是串励电动机具有“软特性”,在电源电压一定时, 电动机的转速和转矩中随着负载阻力的变化而自行调节,特别适合机车牵引特性的要求。
其缺点是电机结构复杂,用铜多、重量大、维修不便,且由于换向器能力限制, 负载大时易环火,故无法进一步提高电机功率。
交流传动电力机车是采用交流供电,交流异步电动机牵引的机车,其优点是交流异步电动机结构简单、维修方便、体积小、重量轻、功率大,而且粘着利用率高,电机恒功区宽,特别适合大功率机车采用。
其难点是交流异步电动机必须采用变频调整,且大功率变频器不仅技术难度大,而且需要大功率高性能的电力电子元件。
国产电力机车交流传动装置,基本上均采用架控供电方式的交直交电传动系统。
电力机车的供电方式分为集中供电、架控供电和轴控供电三种。
由一台大功率牵引逆变器向机车所有电机供电,称为集中供电方式由一台牵引逆变器向一个转向架的几个电机供电,称为架控供电方式;由一台牵引逆变器向一个动轴上的一个电机供电,称为轴控供电方式。
因架控供电的逆便变器功率和数量适中,并且于实施轴重转移电气补偿,因此,国产交传动电力机车均采用架控供电方式。
交直交电传动机车的关键部件是牵引逆变器,它承担着将电压稳定的中间直流电转换为电压和频率均可调的三相交流电的任务,目前已经历了三代逆变器的发展过程。
第三代牵引逆变器以智能功率模块为元件,它性能更好,关断电流大,开关频率很高。
3.我国机车电传动技术的发展3.1 第一代电力机车控制技术我国电力机车控制技术的发展历史可追塑到本世纪60年代末、70年代初。
期间,株洲电力机车研究所的科技人员对SS2型试验用电力机车成功地进行了相控改造,为我国电力机车电传动控制技术的发展奠定了基础。
电子控制技术真正用于国产电力机车始于1978年竣工的6轴SS3型电力机车。
由于晶闸管应用技术的推广,该车采用了8级调压开关有级转换和级间相控平滑调压的主电路结构,因此电子控制系统相对比较复杂。
其主要功能有:(1)牵引工况恒电枢电流控制,具有最高电机电压限制功能;(2)制动工况恒励磁电流控制,具有最大制动电流限制功能;(3)具有超压、二次侧短路、电机过流等保护功能;(4)具有调压开关进、退级与相控调压有关逻辑联锁、监控及保护电路。
在电路系统设计上,为提高装置的可靠性,采用了A、B两组相同的控制系统,当一组出现故障时,可人工切换至另一组,从而不影响机车运行。
这一设计思想为后续各型机车控制系统所借鉴。
经过不断地改进、完善,该车型电子控制装置成为最早批量装车,技术比较成熟的第一代产品。
3.2 第二代电力机车控制技术80年代我国采用技贸结合的方式从欧洲50Hz集团采购了150台8K型电力机车,其中2台机车在株洲合作生产。
株洲电力机车研究所在此期间承担了电子控制装置的合作生产和技术国产化工作,并在此基础上,在“七五”、“八五”期间成功地开发出了SS5、SS6、SS3B、SS4改进型、SS6B、SS7等不同车型的电力机车电子控制装置。
这一代控制系统功能完善,技术上达到国际80年代初水平,并实现了标准化、模块化,从而实现了我国电力机车控制技术的一次更新换代。
第二代控制技术的特点有:(1) 电路组成单元主要以LM124、LM139、74HC系列IC等新一代数、模集成电路为主构成。
部分电路如功率因数补偿、空电联合制动控制电路采用单板机技术;(2) 采用了符合IEC有关标准的电路板、机箱结构和法拉第箱概念设计的机柜,具有良好的防尘、防潮、防震和电磁屏蔽性能;(3) 在系统设计上,较完整地考虑了电位隔离、滤波、屏蔽等抗干扰措施。
如对数字I O信号采用光耦和继电器进行电位隔离,对模拟I O信号采用电磁变换原理进行电位隔离等;(4) 系统电路设计上采用了高精度霍耳电流、电压传感器、0.5%精密电阻等措施,可保证电路板精度,系统精度达2%;(5) 各型控制装置电路板标准化、通用化程度高(12种电路板中有9种是通用电路板);(6) 系统充分考虑了各种控制需要,功能模块齐全,可满足特性控制,防空转 滑行控制,功率因数补偿控制,空电联合制动控制,加馈或再生制动控制,重联控制以及各种保护的功能要求;(7) 工艺上采用绕接、压接布线,自动波峰焊接,全自动功能测试等新工艺,提高了产品质量;3.3 第三代电力机车控制技术第三代电力机车控制技术是以微型计算机技术为核心的新一代控制技术。
我国电力机车微机控制技术1987年开始起步,并于1991年底首次在SS438号车上装车运行考核,目前已成功地推广应用于SS8准高速客运电力机车、SS4B重载货运电力机车和首次出口伊朗的电动车组头车(TM1)。