开关磁阻电机的工作原理
开关磁阻电机原理

开关磁阻电动机原理开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。
下面通过一个开关磁阻电动机原理模型来介绍工作原理。
双凸极结构磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。
磁阻电机定子铁芯磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。
磁阻电机转子铁芯与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。
双凸极结构的定子铁芯与转子铁芯由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。
在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。
定子铁芯上有励磁绕组在转子上没有线圈,这是磁阻电机的主要特点。
在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引力拉动转子旋转。
三相6/4结构工作原理下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。
在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。
磁阻电机励磁绕组分布图在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。
A相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。
从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。
《开关磁阻电机》课件

05
结论
开关磁阻电机的总结
开关磁阻电机是一种基于磁阻原理的 电机,具有结构简单、可靠性高、调 速范围广等优点,被广泛应用于各种 工业领域。
开关磁阻电机的控制系统可以采用数 字化技术,实现快速、准确的控制, 提高电机的性能和稳定性。
开关磁阻电机通过改变电机的输入电 压或电流,可以方便地调节电机的转 速和转矩,从而实现精确的控制。
推动模块化设计和智能化控制,简化电机结构,提高系统的集成度 和智能化水平。
市场前景与预测
工业自动化
随着工业自动化程度的提高,开 关磁阻电机在工业领域的应用将
进一步扩大。
电动车与新能源
电动车和新能源市场的快速发展将 为开关磁阻电机提供广阔的应用空 间。
预测分析
根据市场需求和技术发展趋势,预 测开关磁阻电机未来的市场规模和 增长点。
洗衣机
在洗衣机中,开关磁阻电机作为驱动 元件,实现高效、低噪音的洗涤和脱 水。
04
开关磁阻电机的未来发展
技术创新与改进
高效能驱动控制技术
研究更先进的控制算法和策略,提高开关磁阻电机的驱动性能和 效率。
耐高温材料
研发能在高温环境下稳定运行的绝缘材料和磁性材料,提高电机的 可靠性和寿命。
模块化和智能化
优势
与传统的直流电机和交流电机相比,开关磁阻电机在性能和成本方面具有明显的 优势,能够满足各种应用场景的需求。此外,开关磁阻电机的控制方式灵活多样 ,可以实现精确的速度和位置控制。
02
开关磁阻电机的基本结构
定子结构
定子铁芯
通常采用硅钢片叠压而成,用于 产生磁场。
定子绕组
由多根漆包线绕制而成,连接至 控制器,用于产生旋转磁场。
转子结构
开关磁阻调速电机节能原理

开关磁阻调速电机节能原理开关磁阻调速电机是一种应用于工业和民用领域中的节能电动机,通过调节其磁场的大小和方向来调节其转速和输出功率。
本文将从开关磁阻调速电机的工作原理、节能机制和应用方向三个方面来详细介绍其相关知识。
一、开关磁阻调速电机的工作原理开关磁阻调速电机是一种异步电机,其转速控制是在转子回路中通过改变磁阻来实现的。
转子是由饼形磁性材料组成的,磁性材料的形状和结构可以改变磁路的磁阻。
转子上通过一个用于控制磁阻的磁阻器,通电时通过电极的信号来改变磁阻的大小和方向,从而调节转子的转速和输出功率。
具体来说,开关磁阻调速电机的转速调节是通过控制磁阻、定子电流和电源电压实现的。
在正常运行时,定子的电流和磁场是稳定的,其转速只有受到外力的影响才会发生改变。
当需要调节转速和输出功率时,通过控制磁阻的大小和方向来调节转速,其中磁阻的大小和方向是由外部电路控制的。
二、开关磁阻调速电机的节能机制开关磁阻调速电机的节能机制主要是通过控制磁阻来达到调节转速和输出功率的目的,从而达到节能的目的。
具体来说,其节能机制主要包括以下几个方面:1. 降低系统能耗:开关磁阻调速电机具有优秀的调速性能和调节范围,可以根据负载的需要来调整转速和输出功率,从而避免了传统机械式调速的能耗浪费。
2. 减少定子电流损耗:基于软启动和启停控制技术等节能模式,开关磁阻调速电机在正常工作时可以减少定子的电流损耗,从而减少了能耗。
3. 调整负载适配性:开关磁阻调速电机可以根据不同的负载变化动态调整其转速和输出功率,从而调整负载适配性,减少了能耗和误差。
三、开关磁阻调速电机的应用方向开关磁阻调速电机可以广泛应用于工业和民用领域,其中包括以下方面:1. 工业生产:开关磁阻调速电机广泛应用于机械设备、输送机、冷却塔、风机、泵、压缩机和阀门等工业场合中。
2. 社会生活:开关磁阻调速电机也广泛应用于家庭电器、供暖设备、空气净化器、吸尘器等社会生活场合中。
开关磁阻电动机原理

通过合理选择导Lm通in 角 α1使相电流在进入有效工
作段时就达到足够大的数值,这是开关磁阻电机 控制电磁转矩的主要办法。
(2)第二段
t1 t t2 (1 2 )
• 这段期间 L在不断增大,因而相绕组中出现了旋转电势压降,绕 组中电流不能继续直线上升,甚至可能出现下降。求得这段期 间电流关系式为:
近似为一梯形波。
图5-24 相绕组电感变化规律
转矩特性
• 当开关磁阻电机由图 5-23所示的电源供电时,如果
电动机匀速旋转,可得
Us
L
di dt
iR i(5r-1L5)
式中,等号右边第一项为平衡绕组中变压器电势的压降;
第二项为电阻压降;
第三项为旋转电势所引起的压降,它只有在
电感随转子位置而变时才存在,其方向与电感随转子
设:定子绕组为m相,定子齿数 Ns=2m,转子齿数为Nr。
当定子绕组换流通电一次时,转子转过一个转子齿距。
这样定子需切换通电 Nr次转子才转过一周,故电机转
速 n(r/min)与相绕组电压的开关频率 f之间的关系为
(5-10) n 60 f
Nr
f Nrn 60
(5-11)
给定子相绕组供电的功率变换器输出电流脉动频率
间在 1/4周期左右,再加上续流时间,整个 通电过程中相绕组有可能均处在电感随转角 而增长的环境中,电流能有效地产生电磁转 矩。
双四 拍 运 行(每相通电1/2周期)
• 缺点:
▪ 电流产生转矩的有效性将降低,而电流在绕组中的损耗 却随着通流时间的增长而增加。
▪ 此外,在双四拍工作方式下由于有两相同时通电,电机 磁路饱和加剧,会进一步降低电机的输出转矩,影响运 行的效果及性能。
开关磁阻电机控制原理

开关磁阻电机控制原理首先,让我们来了解SRM的工作原理。
SRM由铁心、定子和转子组成,其中定子是由若干个相间的线圈组成,而转子则是由多个齿隙组成。
当施加电流到定子线圈时,线圈产生磁场并吸引转子上的磁极,使得转子转动。
与其他类型的电机相比,SRM没有永磁体,因此其转子结构更简单。
1. 电流控制(Current Control):SRM的电流控制是通过施加电流来控制电机的转矩和速度。
首先需要测量电机的位置和速度,以便根据实际情况调整电流。
通常使用位置传感器(如霍尔传感器)来测量转子位置,然后通过计算得到电机的速度。
基于这些测量结果,控制器可以确定如何调整电流的大小和方向,以实现所需的转矩和速度。
在电流控制过程中,还需要考虑到电机的特性和限制。
例如,如果电流过大,可能会导致电机过热或损坏。
因此,控制器需要根据电机的额定电流和温度来限制电流的大小。
此外,还需要考虑到电机的响应时间,以确保电流调整的快速性和准确性。
2. 位置控制(Position Control):SRM的位置控制是用于确定和保持转子的精确位置。
在SRM中,转子的位置是由电流和磁场之间的相对位置决定的。
通常使用位置传感器(如霍尔传感器或编码器)来测量转子位置,并将这些位置信息传递给控制器。
控制器使用这些位置信息来调整电流的大小和方向,以将转子移动到所需的位置。
在位置控制过程中,控制器需要根据转子的位置误差来决定调整电流的方向和大小。
通常使用位置反馈控制算法(如PID控制)来实现这一目标。
控制器将位置误差和其他参数(如转子惯性、负载和电机特性)纳入考虑,并根据算法的要求来调整电流。
在实际应用中,位置控制通常需要考虑到转子位置的精确性以及抗干扰和鲁棒性等问题。
总结起来,开关磁阻电机的控制原理主要包括电流控制和位置控制两个方面。
电流控制用于调整电机的转矩和速度,而位置控制用于确定和保持转子的精确位置。
控制器根据电机的特性和限制,使用合适的控制算法来实现所需的控制效果。
开关磁阻电机

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
开关磁阻电机的工作原理
SRM的工作原理
• 电磁感应原理:转子绕组切割磁力线产生感应电动势 • 磁阻变化原理:定子凸极与转子凸极相对位置变化导致 磁阻变化 • 扭矩产生:磁阻变化产生电磁扭矩,驱动转子旋转
SRM的运转过程
• 启动阶段:电流通过定子绕组产生磁场,转子开始旋转 • 运行阶段:转子转速增加,磁阻变化减小,电流逐渐减 小 • 停止阶段:转子停止旋转,磁阻变化消失,电流降至零
应用领域的拓展
• 新能源汽车:提高电动汽车性能,降低能耗 • 家用电器:提高家用电器性能,降低能耗 • 工业自动化:提高生产效率,降低能耗
技术水平的提升
• 高性能电机的研究与应用:提高电机性能 • 新型控制策略的研究与应用:提高控制精度和响应速度 • 高性能驱动电路的研究与应用:提高驱动效率和可靠性
开关磁阻电机的技术发展趋势
高性能材料的应用
• 高磁能永磁材料:提高电机磁能密度 • 高强度绝缘材料:提高电机绝缘性能 • 高导热材料:提高电机散热性能
高性能电机设计
• 优化磁路设计:提高电机效率和扭矩 • 优化绕组设计:降低铜损,提高效率 • 优化轴承设计:提高电机运行稳定性
开关磁阻电机的研究热点与挑战
研究热点
• 新型控制策略:提高控制精度和响应速度 • 高性能驱动电路:提高驱动效率和可靠性 • 高性能材料的研究与应用:提高电机性能
挑战
• 高效率与高性能的平衡:提高电机效率,同时保持高性能 • 控制策略的优化:实现精确控制,提高系统性能 • 制造工艺的改进:提高电机制造工艺水平,降低成本
开关磁阻电机的未来展望
§5.3开关磁阻电动机原理

3.转矩脉动和噪声控制
开关磁阻电机 A、 B、C、D 各相绕组通 电时所产生 的 电 磁 转 矩 TA、TB、TC、TD 如图5-30所示,其波 形因电机结构、磁路 饱和程度、特别是通 电时间长短不同而异。
图5-30 各相电流产生的转矩
振动、噪声产生原因
当定子各相绕组依 序 轮流通电时电机产 生的合成转矩具有明 显 的 脉 动,这是 引起开关磁阻电机振动与噪声的一个原 因。 开关磁阻电机产生噪声的更重要原因是 齿极所受径向磁拉力的变化,引起了定 子铁心的变形和振动。
图5-27 制动时的 L、ψ 、i、T与θ 关系
5.4 开关磁阻电制方式
1.电流控制 从图 5-28可见,功率开关的导通角对电机电流 的影响很大,它是控制开关磁阻电机电流和转矩的 主要手段。 随着 α 1的减小,电流直线上升阶段的时间 t1 (1 1 ) / r 电流就显著增大,电机转矩相应增加。 功率开关的关断角 α 2 则影响电源对电机相绕 组的供电时间的长短和续流的过程,它对电机的转 矩有直接的影响。实用中多采用保持 α 2恒定而改 变α 1角的办法来控制开关磁阻电机的电流和转矩。
抑制噪声的办法
一般采用适当增加气隙长度,适当减小 α2角以减小相绕组断电时的齿极磁场强 度。 近年又提出了采用所谓二步关断的办法 来有效抑制电磁噪声。
4.开关磁阻电机的控制方式
单四 拍 运 行(每相通电 1/4周 期) 在这种运行方式中,电源向绕组供电的 时间在 1/4周期左右,再加上续流时间,整 个通电过程中相绕组有可能均处在电感随转 角而增长的环境中,电流能有效地产生电磁 转矩。
Lmax
在这段区间电机中的磁场储能进一步转换成电 能回馈给电容器,轴上无机械功输出。
开关磁阻电动机高速运行转矩控制

开关磁阻电动机高速运行转矩控制本文将介绍开关磁阻电动机高速运行转矩控制的基本原理和应用。
开关磁阻电动机是一种新型高速驱动技术,它具有优异的力矩响应速度和稳定性,适用于高速转矩控制。
一、开关磁阻电动机工作原理开关磁阻电动机的转子由许多钢制齿轮组成,每个齿轮都通过一个铁芯旋转。
这些齿轮的外围有一个铁芯环形线圈,称为定子。
齿轮和定子之间的空隙非常小,以确保转子始终与定子保持接触,进而保持稳定的力矩输出。
在电机工作时,连续的电流流过定子绕组,进而通过齿轮荷载到转子。
这导致定子和转子之间产生磁通,使齿轮旋转。
由于每个齿轮都有自己的铁芯和绕组,它们会产生不同的磁通,从而产生异步运动,最终将过载电流传递到电机的负载。
因此,开关磁阻电动机可以提供高速度和可靠的转矩控制。
二、开关磁阻电动机高速运行转矩控制方法开关磁阻电动机的高速运行转矩控制可以通过以下3个步骤实现:1. 电压控制模式在电压控制模式下,电机的电压随着转速增加而增加,以保持稳定的转矩输出。
这种方法通常用于车辆等高速应用,可以在高速条件下实现有效的转矩控制。
2. 电流控制模式在电流控制模式下,电机的电流随着转速增加而增加,以保持稳定的转矩输出。
这种方法通常用于工业应用,可以在高负载条件下实现有效的转矩控制。
3. 磁通控制模式在磁通控制模式下,电机的磁通随着转速增加而增加,以保持稳定的转矩输出。
这种方法通常用于电磁场调节和自适应控制,可以在不同负载和转速条件下实现精确的转矩控制。
三、开关磁阻电动机高速运行转矩控制应用开关磁阻电动机高速运行转矩控制适用于以下应用:1.电机控制系统开关磁阻电动机可用于机器人、航空航天器、制造机械等需要高速、精确转矩控制的应用,以提高生产效率和质量。
2.轮毂电动机开关磁阻电动机可用于车辆轮毂电动机,以实现可靠的高速驱动。
3.火箭动力系统开关磁阻电动机可用于火箭动力系统,用于控制燃烧室内氧化剂的流量,以提高燃烧效率和性能。
4.模拟电子系统开关磁阻电动机可用于模拟电子系统,用于模拟密封冷却系统和助推器等应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关磁阻电机的工作原理
开关磁阻电机是一种常见的电机类型,它基于磁阻效应来实现电机转动。
下面将详细介绍开关磁阻电机的工作原理。
一、磁阻效应简介
磁阻效应是指材料在外磁场作用下,磁通量通过材料时会引起材料内部磁场的变化。
根据材料的磁导率和磁场的变化情况,磁阻效应可分为正磁阻效应和负磁阻效应。
正磁阻效应是指在磁场作用下,磁通量增加时,材料的磁导率减小;负磁阻效应则相反,磁通量增加时,材料的磁导率增大。
二、磁阻电机的基本结构
开关磁阻电机由转子、定子、磁阻切换器和电源组成。
其中,转子是电机的旋转部分,定子是电机的固定部分,磁阻切换器用于切换磁通的路径,电源提供电流给电机。
三、工作原理
1. 初始状态:在电机初始状态下,磁阻切换器将磁通量导向转子的一个极性,使得转子与定子之间存在磁阻。
2. 通电启动:当电源给电机提供电流时,电流通过定子线圈,产生磁场。
此时,由于磁阻切换器的作用,磁通量无法直接通过转子,导致转子受到磁阻的阻碍,无法自由转动。
3. 磁阻切换:在转子受到磁阻的阻碍时,磁阻切换器会切换磁通的路径,使得磁通量可以通过转子。
通过切换,磁通量的路径发生变化,从而改变了转子所受到的磁阻大小。
4. 磁阻变化:磁阻切换后,转子所受到的磁阻发生变化,转子受到的力矩也随之改变。
根据磁阻效应的原理,当转子在磁阻变化的作用下,会趋向于转到较小磁阻路径的方向运动。
5. 转动运行:当转子受到磁阻的作用,趋向于转到较小磁阻路径的方向运动时,电机开始转动。
转子的转动会继续改变磁阻切换器的状态,从而引起磁通量的改变,进一步推动转子的转动。
这样就实现了电能向机械能的转换,使得电机正常运行。
四、优势和应用
开关磁阻电机具有以下优势:
1. 结构简单:相比传统的电机结构,开关磁阻电机的结构较为简单,减少了动力传输的损耗。
2. 超低速驱动:开关磁阻电机具有较好的低速性能,在一些特殊应用中具有优势。
3. 节能环保:开关磁阻电机的能效较高,能够有效节约能源和减少环境污染。
开关磁阻电机的应用非常广泛,例如:
1. 家电领域:开关磁阻电机可以用于洗衣机、冰箱、空调等家电产
品中的驱动装置。
2. 工业领域:开关磁阻电机可以用于工业机械设备的驱动,如机床、风机、泵等。
3. 建筑领域:开关磁阻电机可以用于电梯、自动门、风扇等建筑设备的驱动。
总结:开关磁阻电机是一种基于磁阻效应实现电机转动的装置。
通过磁阻切换器的切换,改变磁通量的路径,从而引起转子受到的磁阻的变化,推动电机转动。
开关磁阻电机具有结构简单、超低速驱动和节能环保等优势,在家电、工业和建筑等领域有着广泛的应用。