2019宁波市中考数学试卷(word+详解+准图)

合集下载

2019年浙江省宁波市中考数学试题(word版,含解析)

2019年浙江省宁波市中考数学试题(word版,含解析)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019宁波市中考数学试卷(word+详解+准图)

2019宁波市中考数学试卷(word+详解+准图)

宁波市二〇一九年初中学业水平考试考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题4分,共48分.1.(2019年宁波)-2的绝对值为( )A.-12B.2 C.12D.-2{答案}B{解析}本题考查了绝对值的定义,一个数的绝对值等于这个数在数轴上所表示的点到原点的距离,因为-2在数轴上所表示的点到原点的距离是2,因此本题选B.2.(2019年宁波)下列计算正确的是( )A.a3+a2=a5B.a3·a2=a6C.(a2)3=a5D.a6÷a2=a4{答案}D{解析}本题考查了合并同类项和幂的运算,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.a3和a2不是同类项,故不能合并,选项A错误;同底数幂相乘,底数不变,指数相加,a3·a2=a5,选项B错误;幂的乘方,底数不变,指数相乘,(a2)3=a6,选项C错误;同底数幂相除,底数不变,指数相减,a6÷a2=a4,选项D正确.3.(2019年宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( )A.1.526×108B.15.26×108C.1.526×109D.1.526×1010{答案}C{解析}本题考查了科学记数法,1526000000=1.526×109,因此本题选C.4.(2019年宁波)若分式12x-有意义,则x的取值范围是( )A.x﹥2 B.x≠2 C.x≠0 D.x≠-2{答案}B{解析}本题考查了分式有意义的条件,根据分式的分母不能为零,得到x-2≠0,所以x≠2,因此本题选B.5.(2019年宁波)如图,下列关于物体的主视图画法正确的是( )A.B.C.D.{答案}C{解析}本题考查了几何体的三视图,主视图是指从几何体的正面看到的平面图,该几何体从正面看,只有选项C正确,因此本题选C.6.(2019年宁波)不等式32x-﹥x的解为( )A.x﹤1 B.x﹤-1 C.x﹥1 D.x﹥-1{答案}A{解析}本题考查了解一元一次不等式.根据不等式的解法,不等式的两边同乘以2,得3-x>2x,再移项,合并同类项,得-3x>-3,解得x<1,因此本题选A.7.(2019年宁波)能说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题的反例为( ) A.m =-1 B.m =0 C.m =4 D.m =5{答案}D{解析}本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题,只要满足△=16-4m<0的解即可,即m>4的值,因此本题选D.8.(2019年宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )A.甲B.乙C.丙D.丁{答案}B{解析}本题考查平均数和方差.比较四个品种的平均数可得,甲品种和乙品种的产量更好,而甲的方差>乙的方差,所以乙品种的产量更稳定些,因此本题选B.9.(2019年宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )A.60°B.65°C.70°D.75°n{答案}C{解析}本题考查了平行线的性质和三角形的外角的性质.如图,∵△ABC 是含45°的等腰直角三角形,∴∠B =45°,∴∠3=∠B +∠1=45°+25°=70°,∵m ∥n ,∴∠2=∠3=70°,因此本题选C .10.(2019年宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ) A .3.5cmB .4cmC .4.5cmD .5cm{答案}B{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,扇形的弧长等于圆周长.欲从矩形CDEF 中裁出最大的圆,矩形的两条边CD 、EF 恰好与圆相切,即DE 长是圆的直径,不妨设AB =x ,则扇形弧长为90180x p 白°,圆的周长为()6x p -,得90180xp 白°=()6x p -,所以x =4,因此本题选B .11.(2019年宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元{答案}A{解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰x 元,每支百合y 元,根据题意可列出方程:5x +3y +10=3x +5y -4,得x -y =-7,若小慧只买8支玫瑰,n (第9题解)则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入可得解是31,因此本题选A.12.(2019年宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和图1 图2(第12题图){答案}C{解析}本题考查了图形的面积计算和勾股定理的应用.不妨设图中所给直角三角形的较长直角边为a,较短直角边为b,斜边为c,则a2+b2=c2.将图中阴影部分分离出来,其每条边长如图所示,利用图形面积的和差关系可知阴影部分面积可以表示为c(c-b)-a(a-b),又因为a2+b2=c2,即阴影部分可表示为b(a+b-c).直角三角形的面积是12ab,选项A错误;最大正方形的面积为c2,选项B错误;最大正方形和直角三角形的面积和是c2+12ab,选项D错误;用排除法易得选项C正确.事实上,较小两个正方形重叠部分是以b为长,(a+b-c)为宽的矩形,所以面积是b(a+b-c),选项C正确,因此本题选C.二、填空题:本大题共6小题,每小题4分,共24分.13.(2019年宁波)请写出一个小于4的无理数:.{答案}p(答案不唯一){解析}本题考查了实数的大小比较和无理数的概念.本题答案不唯一,p(第12题解)14.(2019年宁波)分解因式:x 2+xy = . {答案}x (x +y ){解析}本题考查了因式分解——提取公因式.原式= x (x +y ).15.(2019年宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . {答案}58{解析}本题考查概率的基本计算.用红球的个数除以球的总个数即为所求的概率.因为一共有8个球,其中5个红球,所以从袋中任意摸出1个球是红球的概率是58.16.(2019年宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1≈1.4141.732)东A(第16题图){答案}566{解析}本题考查了解直角三角形,锐角三角函数等知识.如图,在Rt △ACO 中,∠ACO =90°,AO =400,∠AOC =45°,∴CO =AO ·cos45°=Rt △BCO 中,∠BCO =90°,∠COB =60°,∴OB = cos60CO°=.17.(2019年宁波)如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .(第16题解)东A{答案}132或{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD 中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴PDAD=PEAC,即13PD=612,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=AD=BD=13,DQ⊥AB,∴AQ=12AB =∴DQ=AFP=∠AQD=90°,∠P AF=∠DAQ,∴△APF∽△ADQ,∴APAD=PFDQ,即13AP,得:AP=AP的值为132或图(1) 图(2)(第17题解)18.(2019年宁波)如图,过原点的直线与反比例函数y =kx(k﹥0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.{答案}6{解析}本题考查了反比例函数,相似三角形,角平分线等知识.如图,连结OE,作AM⊥x轴,AN⊥x轴,垂足分别为点M,N.∵过原点的直线与反比例函数y=kx(k﹥0)的图象交于A,B两点,∴AO=BO,又∵AE⊥BE,∴OE=AO,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴OE∥AC,∴S△OAD=S△EAD=8,∵S四边形OADN=S△OAM+S四边形AMND=S△ODN+S△OAD,又∵点A、D均在反比例函数y=kx的图象上,∴S△OAM=S△ODN=2k,∴S四边形AMND =S△OAD=8.∵AM⊥x轴,AN⊥x轴,∴AM∥DN,∴△CDN∽△CAM,∴DNAM=CDCA=3CDCD=13,不妨设DN=a,AM=3a,∵点A、D均在反比例函数y=kx的图象上,∴OM=3ka,ON=ka,∴MN=OM-ON=23ka,∴S四边形AMND=12(AM+DN)·MN=43k=8,∴k=6.三、解答题:本大题有8小题,共78分.19.(2019年宁波)先化简,再求值:(x-2)(x+2)-x(x-1),其中x =3.{解析}本题考查了整式的乘法和代数式求值.首先计算多项式乘多项式,单项式乘多项式,再合并同类项,化简后再把x的值代入即可.{答案}解:原式=x2-4-x2+x=x-4当x=3时,原式=3-4=-1.20.(2019年宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6一个中心对称图形.)(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形(第20题图){解析}本题考查了轴对称图形和中心对称图形的作图,熟练掌握轴对称图形和中心对称图形定义是解题的关键.{答案}解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.21.(2019年宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.Array100名学生知识测试成绩的频数表(第21题图)由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.{解析}本题考查了频数表,频数直方图,中位数,用样本估计总体.明确题意,找出所求问题需要的条件、利用数形结合思想解析问题.{答案}解:(1)20.补全频数直方图:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<90中,但它们的平均数不一定是85分.(3)4015100+×1200=660(人).答:全校1200名学生中,成绩优秀的约有660人.22.(2019年宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.{解析}本题考查了二次函数的性质、待定系数法求解析式以及距离问题.在第(2)题的第②小题中先确定到y轴的距离等于2的x的值,再利用数形结合思想确定n的取值范围是解此题的关键.{答案}解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∵y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n =11.②2≤n<11.23.(2019年宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD的中点,FH=2,求菱形ABCD的周长.{解析}本题考查了矩形、菱形的性质,全等三角形的判定和性质,平行四边形的判定和性质.根据矩形和菱形的相关性质得到判定三角形全等的条件,进而得出边相等.利用中点的定义进行边的等量转化,判定四边形ABGE是平行四边形,再利用矩形的对角线相等这一性质进行边的转化,求出菱形ABCD周长.{答案}解:(1)在矩形EFGH中,EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)如图,连结EG.在菱形ABCD中,AD∥BC,且AD=BC.(第23题解)HF∵E 为AD 中点,∴AE =ED ,又∵BG =DE , ∴AE ∥BG ,且AE =BG . ∴四边形ABGE 为平行四边形. ∴AB =EG .在矩形EFGH 中,EG =FH =2,∴AB =2,∴菱形的周长为8.24.(2019年宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差. {答案}解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0).把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b ì=+ïí=+ïî,解得1503000k b ì=ïí=-ïî.图 2x y 2700150065382520小聪第一班车(分)(米)O图1∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y=150x-3000(20≤x≤38).(注:x的取值范围可省略不写)(2)把y=1500代入,解得x=30,则30-20=10(分).∴第一班车到塔林所需时间10分钟.(3)设小聪坐上第n班车.30-25+10(n-1)≥40,解得n≥4.5,∴小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分).∴小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟.25.(2019年宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.B图1 图2 图3(第25题图){解析}本题综合考查了直角三角形,等腰三角形,相似三角形的知识.根据邻余四边形的定义判定四边形ABEF是邻余四边形,利用直角三角形的两锐角互余画出图形,利用等腰三角形,相似三角形的判定和性质求出AB长.{答案}解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形.(2)如图所示(答案不唯一)B四边形ABEF即为所求.(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M是EF中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=35.∵QB=3,∴NC=5,又∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(2019年宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB 的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF︰EF=3︰2,AC=6时,求AE的长.(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.图1 图2(第26题图){解析}本题综合考查了圆,等腰三角形的判定、相似三角形的判定和性质.第(1)小题中利用同弧所对的圆周角相等,等角对等边推出两边相等.第(2)小题中利用等边△ABC的性质求出相关边长,再利用相似三角形对应边成比例求出EG长,然后由勾股定理求出AE.第(3)小题中通过构造直角三角形,有效利用tan∠DAE,找出y与x之间的函数关系;通过设参数a表示相关线段长,由面积关系找出等量关系,既而求出y值.{答案}解:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC是等边三角形,AC=6,∴BG=12BC=12AC=3,∴在Rt△ABG中,AG=∵BF⊥EC,∴BF∥AG,∴AFEF=BGEB,∵AF︰EF=3︰2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE(3)①如图,过点E作EH⊥AD于点H.∵∠EBD=∠ABC=60°,∴在Rt△BEH中,EHBE=sin60°=2,∴EH=2BE,BH=12BE,∵BGEB=AFEF=x,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=EHAH=21(2)2x BE+∴y.(第26题第(2)题解)②如图,过点O 作OM ⊥EC 于点M ,设BE =a , ∵BG EB =AFEF=x ,∴CG =BG =xBE =ax , ∴EC =CG +BG +BE =a +2ax , ∴EM =12EC =12a +ax , ∴BM =EM -BE =ax -12a , ∵BF ∥AG ,∴△EBF ∽△EGA , ∴BF AG =BE EG =a a ax +=11x+. ∵AG,∴BF =11x+AG=1x +,∴△OFB 的面积=2BF BM ×=12(ax -12a ),∴△AEC 的面积=2EC AG ×=12(a +2ax ), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12(a +2ax )=10×12×1x +(ax -12a ),∴ 2x 2-7x +6=0,解得x 1=2,x 2=32,∴ y.(第26题第(3)②题解)。

2019年浙江省宁波市余姚市中考数学一模试卷

2019年浙江省宁波市余姚市中考数学一模试卷

((2019年浙江省宁波市余姚市中考数学一模试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣4,﹣2.5,0,1四个数中,比﹣3小的数是()A.﹣4B.﹣2.5C.0D.12.4分)4月上旬,宁波市统计局组织开展了2019年一季度交通出行公众满意度调查,采集样本1889个,其中“1889”用科学记数法表示为()A.0.1889×104B.0.1889×103C.1.889×104D.1.889×103 3.(4分)下列计算正确的是()A.x+x2=x3B.2x﹣3x=﹣x C.(x2)3=x5D.x6÷x3=x2 4.(4分)袋中有五个小球,3个红球,2个白球,它们除了颜色外其余完全一样.现从中任意摸一个球,摸出红球的概率为()A.B.C.D.5.(4分)下列图形中,是圆锥的侧面展开图的为()A.B.C.D.6.(4分)能说明命题“若|a|=|b|,则a=b”是假命题的反例为()A.a=2,b=﹣2B.a=1,b=0C.a=l,b=1D.a=﹣3,b=7.4分)红领巾的形状是等腰三角形,底边长为100厘米,腰长为60厘米,则底角()A.小于30°C.等于30°8.(4分)如图是方程+1=B.大于30°且小于45°D.大于45°且小于60°的变形求解过程,其中“去括号”的步骤是()A.①B.②C.③D.④9.(4分)如图,在△ABC中,∠ABC=70°,按如下步骤作图:第一步,以点A为圆心,BC长为半径作弧,再以点C为圆心,AB长为半径作弧,两弧交点记为D,连结AD,CD;第二步,以点D为圆心,CD长为半径作弧,交AD于点E,连结CE.则∠BCE的度数为()A.55°B.60°C.65°D.70°10.(4分)如图,在Rt△ABC中,∠ACB=90°,DE是△ABC的中位线,连结CD.下列各组线段的比值一定与cosA相等的是()A.B.C.D.11.(4分)如图,⊙O与矩形ABCD的边AB,CD,AD相切,切点分别为E,F,G,边BC与⊙O交于M,N两点.下列五组条件中,能求出⊙O半径的有()①已知AB,MN的长;②已知AB,BM的长;③已知AB,BN的长;④已知BE,BN的长;⑤已知BM,BN的长.A.2组B.3组C.4组D.5组12.(4分)如图,四张大小不一的正方形纸片分别放賞于矩形的四个角落,其中,①和②纸片既不重叠也无空隙.在矩形ABCD的周长已知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长()A.①B.②C.③D.④二、填空题(每小题4分,共24分)13.(4分)因式分解:2x2﹣8=.14.(4分)若二次根式有意义,则x的取值范围是.15.(4分)平面直角坐标系中,点P(﹣2,1)绕点O(0,0)顺时针旋转90°后,点P 的对应点将落在第象限.16.(4分)下图是某小组美术作业得分情况,则该小组美术作业得分的众数为分.编号得分132433455564738595104(分)17.(4分)直线y=ax+m和直线y=b x+n在同一平面直角坐标系中的图象如图所示,则抛物线y=ax2+b x+c的对称轴为.18.(4分)如图,反比例函数y=(x>0)的图象与矩形OABC的边BC交于点D,过点A,D作DE∥AF,交直线y=kx(k<0)于点E,F.若OE=OF,BD=形ADEF的面积为.CD,则四边.三、解答题(本大题有 8 小题,共 78 分)19.(6 分)解分式方程:+ =1.20.(8 分)6×6 的方格图中,按要求作格点三角形 ABC .(1)在图 1 中,作等腰直角△ABC ,使得∠BAC =45°;(画出一个即可)(2)在图 2 中,作钝角△ABC ,使得∠BAC =45°.21.(8 分)随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈.某校举行了“女神节暖心特别行动”,从中随机调査了部分同学的暖心行动,并将其分为 A ,B ,C ,D 四种类型(分别对应送服务、送鲜花、送红包、送话语) 现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)补全条形统计图和扇形统计图;(3)若该校共有 2400 名同学,请估计该校进行送鲜花行动的同学约有多少名?22.(10 分)随着科技的发展,智能产品越来越受到人们的喜爱,为了奖励员工,某公司打算采购一批智能音箱.现有 A ,B 两款智能音箱可供选择,已知 A 款音箱的单价比 B 款音箱的单价高 50 元,购买 5 个 A 款音箱和 4 个 B 款音箱共需 1600 元.(1)分别求出 A 款音箱和 B 款音箱的单价;(2)公司打算采购 A ,B 两款音箱共 20 个,且采购 A ,B 两款音箱的总费用不超过 3500元,那么 A 款音箱最多采购多少个?(23.(10 分)如图,在 △RABC 中,CD 是斜边 AB 上的中线,以 CD 为直径作⊙O ,交 BC于点 E ,过 E 作 EF ⊥AB ,垂足为 F .(1)求证:直线 EF 与⊙O 相切;(2)若 CE =2,EF =1,求弧 DE 的长.24.(10 分)如图,平面直角坐标系中,A (5,0),B (2,3),连结 OB 和 AB ,抛物线 y=﹣x 2+b x 经过点 A .(1)求 b 的值和直线 AB 的解析式;(2)若 P 为抛物线上位于第一象限的一个动点,过 P 作 x 轴的垂线,交折线段 OBA 于Q .当点 Q 在线段 AB 上时,求 PQ 的最大值.25. 12分)我们把两边之比为整数的三角形称为倍比三角形.其中,这个整数比称为倍比,第三条边叫做该三角形的底.(1)如图 △1, ABC 是以 AC 为底的倍比三角形,倍比为 3,若∠C =90°,AC =2,求 BC 的长;(2)如图 △2, ABC 中,D 为 BC 边上一点,BD =3,CD =1,连结 AD .若 AC =2,求证:△ABD 是倍比三角形,并求出倍比;(3)如图 3,菱形 ABCD 中,∠BAD 为钝角,P 为对角线 BD 上一动点,过 P 作 PH ⊥CD 于 H 、当 CP +PH 的值最小时,APCD 恰好是以 PD 为底的倍比三角形,记倍比为 x ,=y ,求 y 关于 x 的函数关系式.26.(14分)如图1,在矩形ABCD中,点E以1cm/s的速度从点A向点D运动,运动时间为t(s),连结BE,过点E作EF⊥BE,交CD于F,以EF为直径作⊙O.(1)求证:∠1=∠2;(2)如图2,连结BF,交⊙O于点G,并连结EG.已知AB=4,AD=6.①用含t的代数式表示DF的长②连结△DG,若EGD是以EG为腰的等腰三角形,求t的值;(3)连结OC,当tan∠BFC=3时,恰有OC∥EG,请直接写出tan∠ABE的值.2019年浙江省宁波市余姚市中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣4,﹣2.5,0,1四个数中,比﹣3小的数是()A.﹣4B.﹣2.5C.0D.1【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣4|=4,|﹣3|=3,∴比﹣3小的数是:﹣4.故选:A.【点评】此题主要考查了有理数比较大小,正确把握两负数比较大小的方法是解题关键.2.(4分)4月上旬,宁波市统计局组织开展了2019年一季度交通出行公众满意度调查,采集样本1889个,其中“1889”用科学记数法表示为()A.0.1889×104B.0.1889×103C.1.889×104D.1.889×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1889用科学记数法表示为1.889×103.故选:D.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列计算正确的是()A.x+x2=x3B.2x﹣3x=﹣x C.(x2)3=x5D.x6÷x3=x2【分析】根据同底数幂的除法,底数不变,指数相减,即可解答.【解答】解:A、x x2=x3,故本选项错误;B、2x﹣3x=﹣x,故本选项正确;C、(x2)3=x6,故本选项错误;D、x6÷x3=x3,故本选项错误;故选:B.【点评】本题考查了同底数幂的除法,解决本题的关键是熟记同底数幂的除法,底数不变,指数相减.4.(4分)袋中有五个小球,3个红球,2个白球,它们除了颜色外其余完全一样.现从中任意摸一个球,摸出红球的概率为()A.B.C.D.【分析】袋中有五个小球,3个红球,2个白球,它们除了颜色外其余完全一样,利用概率公式直接求解即可求得答案.【解答】解:∵袋中有五个小球,3个红球,2个白球,它们除了颜色外其余完全一样,∴从中任意摸一个球,摸出红球的概率为,故选:C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.(4分)下列图形中,是圆锥的侧面展开图的为()A.B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:A.【点评】本题考查了几何体的展开图,圆锥的侧面展开图是扇形.6.(4分)能说明命题“若|a|=|b|,则a=b”是假命题的反例为()A.a=2,b=﹣2B.a=1,b=0C.a=l,b=1D.a=﹣3,b=【分析】要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致.【解答】解:因为当a>0,b<0时,a=﹣b,|a|=|b|成立,但是a≠b,∴举的反例是:a=2,b=﹣2.故选:A.【点评】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.7.4分)红领巾的形状是等腰三角形,底边长为100厘米,腰长为60厘米,则底角()(A.小于30°C.等于30°B.大于30°且小于45°D.大于45°且小于60°【分析】过A作AD⊥BC于D,根据等腰三角形的性质得到BD=CD=BC=50,根据三角函数的定义得到tanB==,于是得到结论.【解答】解:如图,过A作AD⊥BC于D,∵AB=AC=60,∴BD=CD=BC=50,∴tanB==,∵<<1,∴底角B大于30°且小于45°,故选:B.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握三角函数的定义是解题的关键.8.(4分)如图是方程+1=的变形求解过程,其中“去括号”的步骤是()A.①B.②C.③D.④【分析】按照解一元一次方程的步骤,依次去分母,去括号,移项,合并同类项,系数化为1,找出①②③④分别对应的步骤,即可得到答案.【解答】解:去分母,得3(x﹣1)+6=2(2x+1),去括号,得3x﹣3+6=4x+2,移项,得3x﹣4x=2+3﹣6,合并同类项,得﹣x=﹣1,系数化为1,得x=1,即①为去分母,②为去括号,③为移项,④为合并同类项,故选:B.【点评】本题考查了解一元一次方程,等式的性质,正确掌握解一元一次方程的方法是解题的关键.9.(4分)如图,在△ABC中,∠ABC=70°,按如下步骤作图:第一步,以点A为圆心,BC长为半径作弧,再以点C为圆心,AB长为半径作弧,两弧交点记为D,连结AD,CD;第二步,以点D为圆心,CD长为半径作弧,交AD于点E,连结CE.则∠BCE的度数为()A.55°B.60°C.65°D.70°【分析】首先证明四边形ABCD是平行四边形,利用平行四边形的性质以及等腰三角形的性质即可解决问题.【解答】解:由题意AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,∵DE=DC,∴∠DEC=∠DCE=(180°﹣∠ADC)=55°,故选:A.【点评】本题考查基本作图,平行四边形的判定和性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(4分)如图,在Rt△ABC中,∠ACB=90°,DE是△ABC的中位线,连结CD.下列各组线段的比值一定与cosA相等的是()A.B.C.D.【分析】根据特殊角锐角三角函数的定义以及直角三角形斜边上的中线性质即可求出答案.【解答】解:∵ED是△ABC的中位线,∴点D、E分别是AB、AC的中点,∵∠ACB=90°,∴CD=BD=AD,∴∠A=∠DCE,∴cosA=cos∠DCE==,故选:C.【点评】本题考查三角形综合问题,涉及直角三角形斜边上的中线性质,中位线的性质以及特殊角锐角三角函数的定义,本题属于中等题型.11.(4分)如图,⊙O与矩形ABCD的边AB,CD,AD相切,切点分别为E,F,G,边BC与⊙O交于M,N两点.下列五组条件中,能求出⊙O半径的有()①已知AB,MN的长;②已知AB,BM的长;③已知AB,BN的长;④已知BE,BN的长;⑤已知BM,BN的长.A.2组B.3组C.4组D.5组【分析】①连接EF,OM,OG并反向延长交BC于H,根据切线的性质得到EF过点O,EF⊥AB,EF⊥CD,OG⊥AD,OH⊥BC,求得EF=AD=AB,MH=MN,根据勾股定理得到OM,故①正确;②根据矩形的性质得到BH=AG=DG=CH,∵BC=AB,根据勾股定理得到OM2=(AB﹣OM)2=(MN)2,故②正确;③根据线段的和差得到MN=BC﹣2BM,根据勾股定理得到OM2=(AB﹣OM)2=(MN)2,故③正确;④根据矩形的性质得到OH=BE,根据勾股定理得到OM==,故④正确;⑤根据线段的和差和矩形的性质得到OE=BH,故⑤正确.【解答】解:①连接EF,OM,OG并反向延长交BC于H,∵⊙O与矩形ABCD的边AB,CD,AD相切,切点分别为E,F,G,∴EF过点O,EF⊥AB,EF⊥CD,OG⊥AD,OH⊥BC,∴EF=AD=AB,MH=MN,∴OM=OG,∴OH=AB﹣OM,∴在△Rt OMH中,∵OM2=OH2+MH2,∴OM2=(AB﹣OM)2=(MN)2,∴已知AB,MN的长,能求出⊙O半径,故①正确;②∵四边形ABHG和四边形CDGH是矩形,∴BH=AG=DG=CH,∵BC=AB,∴MN=BC﹣2BM,∴在△Rt OMH中,∵OM2=OH2+MH2,∴OM2=(AB﹣OM)2=(MN)2,∴已知AB,BM的长,能求出⊙O半径,故②正确;③∵BM=CN=BC﹣BN,∴MN=BC﹣2BM,∴在△Rt OMH中,∵OM2=OH2+MH2,∴OM2=(AB﹣OM)2=(MN)2,∴已知AB,BN的长,能求出⊙O半径,故③正确;④∵四边形EFCB是矩形,∴OH=BE,∴BM=CN=BC﹣BN,∴MN=BC﹣2BM,∴MH=MN,∴OM==,∴已知BE,BN的长,能求出⊙O半径,故④正确;⑤∵MN=BN﹣BM,∴MH=MN,∴BM+MH=BH,∵四边形BHOE是矩形,∴OE=BH,∴已知BM,BN的长,能求出⊙O半径,故⑤正确;故选:D.【点评】本题考查了切线的性质,正方形的性质,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.12.(4分)如图,四张大小不一的正方形纸片分别放賞于矩形的四个角落,其中,①和②纸片既不重叠也无空隙.在矩形ABCD的周长已知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长()A.①B.②C.③D.④【分析】先表示出阴影部分所有竖直的边长之和和所有水平的边长之和,再表示出阴影部分的周长,然后进行整理即可得出答案.【解答】解:根据题意得:阴影部分所有竖直的边长之和=AB+CD,所有水平的边长之和=(AD﹣②的边长)+(BC﹣②的边长),则阴影部分的周长=(AB+CD+BC+AD)﹣②的边长×2=矩形ABCD的周长﹣②的边长×2所以知道②的边长,就可以求得阴影部分的周长;故选:B.【点评】此题考查了整式的加减和长方形的周长公式,根据长方形的周长公式推导出所求的答案是解题的关键.二、填空题(每小题4分,共24分)13.(4分)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法和公式法分解因式,是基础题.14.(4分)若二次根式有意义,则x的取值范围是x≥.【分析】根据被开方数是非负数列不等式求解即可.【解答】解:根据题意得,2x﹣3≥0,解得x≥.故答案为:x≥.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数列不等式是解题的关键.15.(4分)平面直角坐标系中,点P(﹣2,1)绕点O(0,0)顺时针旋转90°后,点P 的对应点将落在第一象限.【分析】画出点P绕点O(0,0)顺时针旋转90°后的对应点P′即可判断.【解答】解:观察图象可知:点P绕点O(0,0)顺时针旋转90°后的对应点P′在第一象限.故答案为一.【点评】本题考查旋转变换,坐标与图形变化,解题的关键是理解题意,正确画出图象解决问题.16.(4分)下图是某小组美术作业得分情况,则该小组美术作业得分的众数为5分.编号得分132433455564738595104(分)【分析】根据众数的定义求解可得.【解答】解:由表知5分出现次数最多,所以众数为5分,故答案为:5.【点评】本题主要考查众数,解题的关键是掌握众数的概念:一组数据中出现次数最多的数据叫做众数.17.(4分)直线y=ax+m和直线y=b x+n在同一平面直角坐标系中的图象如图所示,则抛物线y=ax2+b x+c的对称轴为直线x=﹣.【分析】根据一次函数的图象上点的坐标特征,把x=2、3、6代入两个解析式,且利用x=3和x=6时,y的值相等,从而建立方程组求出a、b的关系式,然后利用二次函数对称轴直线公式求解即可.【解答】解:如图可知,当x=2时,2a+m=2b+n,得2a﹣2b=n﹣m;当x=3时,y1=3a+m①,当x=6时,y2=6b+n②,且y1=y2;②﹣①得n﹣m=3a﹣6b,∴2a﹣2b=3a﹣6b,∴a=4b.由二次函数的性质可知,其对称轴为直线x=﹣=﹣.故答案为:直线x=﹣.【点评】本题主要考查二次函数的性质、一次函数图象上点的坐标特征,解题关键是根据一次函数图象建立方程组,求出a、b的等量关系式.18.(4分)如图,反比例函数y=(x>0)的图象与矩形OABC的边BC交于点D,过点A,D作DE∥AF,交直线y=kx(k<0)于点E,F.若OE=OF,BD=形ADEF的面积为5+5.CD,则四边【分析】延长DE交x轴于G,作DH⊥OA于△H,证得OEG≌△OF A,即可证得S四边形ADEF=S四边形ADEO+S△GEO=△S ADG,设D(a,),则CD=a,DH=,BD=a,得到BC=OA=GO=(+1)a,根据三角形面积公式求得即可.【解答】解:延长DE交x轴于G,作DH⊥OA于H,∵DE∥AF,∴∠OGE=∠OAF,在△OEG和△OF A中∴△OEG≌△OF A(AAS),∴S 四边形 ADEF =S 四边形 ADEO +△S GEO =S △ADG ,设 D (a , ),∴CD =a ,DH = ,BD =a ,∴BC =OA =GO =(+1)a ,∴S 四边形 ADEF =△S ADG = AG •DH = ×2(故答案为 5+5.+1)a • =5 +5.【点评】本题考查了反比例函数和一次函数的交点问题,三角形面积公式,证得 S四边形ADEF =S 四边形 ADEO +△S GEO =△S ADG 是解题的关键.三、解答题(本大题有 8 小题,共 78 分)19.(6 分)解分式方程:+ =1.【分析】根据解分式方程的一般步骤,可得分式方程的解.【解答】解:方程两边都乘以(x +3)(x ﹣3),得3+x (x +3)=x 2﹣93+x 2+3x =x 2﹣9解得 x =﹣4检验:把 x =﹣4 代入(x +3)(x ﹣3)≠0,∴x =﹣4 是原分式方程的解.【点评】本题考查了解分式方程,先求出整式方程的解,检验后判定分式方程解的情况.20.(8 分)6×6 的方格图中,按要求作格点三角形 ABC .(1)在图 1 中,作等腰直角△ABC ,使得∠BAC =45°;(画出一个即可)(2)在图 2 中,作钝角△ABC ,使得∠BAC =45°.( .【分析】 1)根据题意作出图形即可;(2)根据题意作出图形即可.【解答】解:(1)如图 △1,所示,ABC 即为所求;(2)如图 2,所示,△ABC 即为所求.【点评】本题考查了应用与设计的作图.关键是根据题意,由网格的特点确定三角形的第三个顶点 C .21.(8 分)随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈.某校举行了“女神节暖心特别行动”,从中随机调査了部分同学的暖心行动,并将其分为 A ,B ,C ,D 四种类型(分别对应送服务、送鲜花、送红包、送话语) 现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)补全条形统计图和扇形统计图;( ( (3)若该校共有 2400 名同学,请估计该校进行送鲜花行动的同学约有多少名?【分析】 1)根据 A 有 20 人,占 25%可以求得本次调查的人数;(2)根据(1)中的结果可以计算出 C 级的人数,用 B 类型人数除以总人数求得其对应百分比,从而可以将统计图补充完整;(3)用总人数乘以样本中 B 类型对应百分比可得.【解答】解:(1)该校抽查的学生总人数为 20÷25%=80(人);(2)C 类型人数为 80×30%=24(人),B 类型人数对应百分比为补全图形如下:×100%=40%,(3)估计该校进行送鲜花行动的同学约有 2400×40%=960(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(10 分)随着科技的发展,智能产品越来越受到人们的喜爱,为了奖励员工,某公司打算采购一批智能音箱.现有 A ,B 两款智能音箱可供选择,已知 A 款音箱的单价比 B 款音箱的单价高 50 元,购买 5 个 A 款音箱和 4 个 B 款音箱共需 1600 元.(1)分别求出 A 款音箱和 B 款音箱的单价;(2)公司打算采购 A ,B 两款音箱共 20 个,且采购 A ,B 两款音箱的总费用不超过 3500元,那么 A 款音箱最多采购多少个?【分析】 1)设 A 款音箱的单价为 x 元,B 款音箱的单价为 y 元,根据“已知 A 款音箱的单价比 B 款音箱的单价高 50 元,购买 5 个 A 款音箱和 4 个 B 款音箱共需 1600 元”分别列出两个二元一次方程组成的方程组进行解答;(2)设 A 款音箱采购 a 个,根据“采购 A ,B 两款音箱的总费用不超过 3500 元”列出( 不等式进行解答便可.【解答】解:(1)设 A 款音箱的单价为 x 元,B 款音箱的单价为 y 元,根据题意,得,解得,,答:A 款音箱的单价为 200 元,B 款音箱的单价为 150 元;(2)设 A 款音箱应采购 a 个,则 B 种音箱应采购(20﹣a )个,根据题意得,200a+150(20﹣a )≤3500,解得,a ≤10,答:A 款音箱最多采购 10 个.【点评】本题是二元一次方程组的应用与一元一次不等式的应用的综合题,主要考查了列二元一次方程组解应用题,列一元一次不等式解应用题,解题的关键是正确设元,并找到题目中的等量关系或不等关系列出方程或不等式.23.(10 分)如图,在 △RABC 中,CD 是斜边 AB 上的中线,以 CD 为直径作⊙O ,交 BC于点 E ,过 E 作 EF ⊥AB ,垂足为 F .(1)求证:直线 EF 与⊙O 相切;(2)若 CE =2,EF =1,求弧 DE 的长.【分析】 1)连接 OE ,根据直角三角形的性质得到CD =BD = AB ,根据等腰三角形的性质得到∠B =∠OEC ,根据平行线的性质得到 EF ⊥OE ,于是得到结论;(2)连接 DE ,根据已知条件得到 DE ⊥CE ,得到 BE =CE =2,求得∠DOE =2∠OCE=60°,根据弧长公式即可得到结论.【解答】解:(1)连接 OE ,∵CD 是斜边 AB 上的中线,∴CD =BD = AB ,∴∠OCE=∠B,∵OC=OE,∴∠OCE=∠OEC,∴∠B=∠OEC,∵OE∥AB,∴EF⊥OE,∴直线EF与⊙O相切;(2)连接DE,∵CD是⊙O的直径,∴DE⊥CE,∵CD=BD,∴BE=CE=2,∵EF=1,∴∠B=30°,∴∠OCE=30°,∴∠DOE=2∠OCE=60°,∵DE⊥CE,∠OCE=30°,CE=2,∴CD=∴OD=,,∴弧DE的长为=π.【点评】本题考查了切线的判定和性质,解直角三角形,等腰三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.24.(10分)如图,平面直角坐标系中,A(5,0),B(2,3),连结OB和AB,抛物线y =﹣x2+b x经过点A.( ( (1)求 b 的值和直线 AB 的解析式;(2)若 P 为抛物线上位于第一象限的一个动点,过 P 作 x 轴的垂线,交折线段 OBA 于Q .当点 Q 在线段 AB 上时,求 PQ 的最大值.【分析】 1)把 A (5,0)代入抛物线抛物线 y =﹣x 2+b x 中,即可解出可得 b 的值,然 后设直线 AB 的解析式为 y =kx +n ,可把 A (5,0),B (2,3)代入利用待定系数法即可求得直线 AB 的解析式;(2)设点 P 的坐标,并表示点 Q 的坐标,根据铅直高度表示 PQ 的长,并配方可得 PQ的最大值.【解答】解:(1)把 A (5,0)代入抛物线 y =﹣x 2+bx 中得:﹣52+5b =0,解得 b =5,设直线 AB 的解析式为 y =kx +n ,把 A (5,0),B (2,3)代入得:,解得,∴直线 AB 的解析式为 y =﹣x +5;(2)设 P (m ,﹣m 2+5m ),则 Q (m ,﹣m +5),∴PQ =﹣m 2+6m ﹣5(2<m <5),由 PQ =﹣m 2+6m ﹣5=﹣(m ﹣3)2+4 可知,当 m =3 时,PQ 有最大值为 4.【点评】此题考查了用待定系数法求二次函数的解析式以及相似三角形的判定和性质、一次函数的解析式.解题的关键是表示线段的长度.25. 12 分)我们把两边之比为整数的三角形称为倍比三角形.其中,这个整数比称为倍比,第三条边叫做该三角形的底.(1)如图 △1, ABC 是以 AC 为底的倍比三角形,倍比为 3,若∠C =90°,AC =2 求 BC 的长;,( (2)如图 △2, ABC 中,D 为 BC 边上一点,BD =3,CD =1,连结 AD .若 AC =2,求证:△ABD 是倍比三角形,并求出倍比;(3)如图 3,菱形 ABCD 中,∠BAD 为钝角,P 为对角线 BD 上一动点,过 P 作 PH ⊥CD 于 H 、当 CP +PH 的值最小时,APCD 恰好是以 PD 为底的倍比三角形,记倍比为 x ,=y ,求 y 关于 x 的函数关系式.【分析】 △1)由 ABC 是以 AC 为底的倍比三角形,倍比为 3,推出 AB =3BC ,根据勾股定理构建方程即可解决问题.(△2)证明 BCA ∽△ACD ,可得= =2,解决问题.(3)过点 A 作 AH ⊥CD 交 BD 于点 P ,此时 CP +PH 的值最小.不妨设 AP =CP =a ,由=y ,得到 PH = ,证明△ABP ∽△HDP ,可得= ,即 DH = ,在 △Rt ADH中,根据 AH 2+DH 2=AD 2,构建方程即可解决问题.【解答】解:(△1)∵ABC 是以 AC 为底的倍比三角形,倍比为 3,∴AB =3BC ,∵∠C =90°,AC =2,∴BC 2+AC 2=AB 2,∴BC 2+8=9BC 2,∴BC =1.(2)∵BD =3,CD =1,AC =2,∴∴= =2,= ,= =2,∵∠BCA =∠ACD ,∴△BCA ∽△ACD ,∴==2,∴△ABD是倍比三角形,倍比为2.(3)过点A作AH⊥CD交BD于点P,此时CP+PH的值最小.不妨设AP=CP=a,由=y,得到PH=,∵△PCD是以PD为底的倍比三角形,倍比为x.∴=x,即CD=ax,∵四边形ABCD是菱形,∴AB∥CD,AB=AD=CD=ax,∴∠ABP=∠HDP,∠BAP=∠DHP,∴△ABP∽△HDP,∴=,即DH=,在△Rt ADH中,∵AH2+DH2=AD2,∴(a+)2+()2=(ax)2,∴+=x2,∴(1+y)2=x2(y2﹣1),∴y=.【点评】本题属于相似三角形综合题,考查了相似三角形的判定和性质,菱形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.26.(14分)如图1,在矩形ABCD中,点E以1cm/s的速度从点A向点D运动,运动时间为t(s),连结BE,过点E作EF⊥BE,交CD于F,以EF为直径作⊙O.( (1)求证:∠1=∠2;(2)如图 2,连结 BF ,交⊙O 于点 G ,并连结 EG .已知 AB =4,AD =6.①用含 t 的代数式表示 DF 的长②连结 △DG ,若 EGD 是以 EG 为腰的等腰三角形,求 t 的值;(3)连结 OC ,当 tan ∠BFC =3 时,恰有 OC ∥EG ,请直接写出 tan ∠ABE 的值.【分析】 1)根据矩形的性质得到 AD ∥BC ,∠A =∠ADC =90°,根据余角的性质即可 得到结论;(2)①根据相似三角形的性质即可得到结论;②当 EG =ED 时,根据相似三角形的性质得到结论;当 GE =GD 时,根据全等三角形的性质和勾股定理即可得到结论;(3)如图 2,过 O 作 OH ⊥CD 于 H ,设 CF =a ,BC =3a ,得到 DE =3a ﹣t ,根据三角形的中位线的性质得到 OH = DE =,根据三角函数的定义得到 DF =7a ﹣3t ,AB=8a ﹣3t ,根据相似三角形的性质即可得到结论..【解答】解:(1)∵四边形 ABCD 是矩形,∴AD ∥BC ,∠A =∠ADC =90°,∴∠AEB =∠1,∵EF ⊥BE ,∴∠AEB +∠DEF =90°,∵∠2+∠DEF =90°,∴∠AEB =∠2,∴∠1=∠2;(2)①∵∠A =∠ADC =90°,∠AEB =∠EFD ,∴△ABE ∽△DEF ,∵AB=4,AE=t,DE=6﹣t,∴,∴DF=;②当EG=ED时,∴∠EGD=∠EDG,∵∠EGD=∠EFD,∠EDG=∠EFG,∴∠EFD=∠EFG=∠AEB,∵∠A=∠EDF=∠BEF,∴△BAE∽△EDF∽△BEF,∴==,∴AE=DE,∴t=6﹣t,∴t=3;当GE=GD时,∴∠GED=∠GDE,∵∠EDG=∠BFE,∠GED=∠BFC,∴∠BFE=∠BFC,∵∠BEF=∠C=90°,BF=BF,∴△BEF≌△BCF(AAS),∴BE=BC=6,∵AB2+AE2=BE2,∴42+t2=62,∴t=2;综上所述,若△EGD是以EG为腰的等腰三角形,t的值为3或2;(3)tan∠ABE=1,理由:如图2,过O作OH⊥CD于H,∵tan∠BFC==3,设CF=a,BC=3a,∴DE=3a﹣t,∵OH⊥CD,AD⊥CD,∴OH∥DE,∵OF=OE,∴OH=DE=,∵OC∥EG,EG⊥FG,∴OC⊥FG,∴tan∠COH=tan∠BFC=3,∴CH=3OH=,FH=,∴DF=7a﹣3t,AB=8a﹣3t,,由△ABE∽△DEF,得,即,解得:t1=2a,t2=a,∴tan∠ABE====1.【点评】本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。

浙江省宁波市南三县中考数学模拟试卷(4)含答案解析

浙江省宁波市南三县中考数学模拟试卷(4)含答案解析

浙江省宁波市南三县中考数学模拟试卷(4)一.选择题(共10小题,满分30分,每小题3分)1.(3分)计算:﹣15÷(﹣5)结果正确的是()A.75 B.﹣75 C.3 D.﹣32.(3分)下列交通标志图案中,是中心对称图形的是()A.B.C.D.3.(3分)书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2 B.a=b+12 C.a+b=10 D.a+b=124.(3分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大5.(3分)下列运算中正确的是()A.a5+a5=2a10B.a5•a5=2a10C.(﹣4a﹣1)(4a﹣1)=1﹣16a2D.(a﹣2b)2=a2﹣4b26.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°7.(3分)抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位8.(3分)下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A.4 B.3 C.2 D.19.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣ C.﹣1 D.﹣210.(3分)如图,AB为⊙O的直径,过B作⊙O的切线,在该切线上取点C,连接AC交⊙O于D,若⊙O的半径是6,∠C=36°,则劣弧AD的长是()A.πB.πC.πD.3π二.填空题(共6小题,满分24分,每小题4分)11.(4分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(4分)分解因式:a2﹣a+2=.13.(4分)教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是千克.14.(4分)如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.已知tan∠BPD=,CE=2,则△ABC的周长是.15.(4分)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.16.(4分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P 的坐标为.三.解答题(共8小题,满分66分)17.(6分)化简计算①π0+2﹣1﹣﹣|1﹣|②﹣2③﹣(+2)④3﹣9+3⑤÷﹣×+.18.(6分)解不等式组;19.(6分)已知:如图,在▱ABCD中,DE平分∠ADB,交AB于E,BF平分∠CBD,交CD于F.(1)求证:△ADE≌△CBF;(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.20.(8分)如图,反比例函数y=(k≠0,x<0)的图象过等边△AOB的顶点A.已如点B在x轴上,且B(﹣4,0).(1)求反比例函数的表达式;(2)若要使点B在上述反比例函数的图象上,需将△AOB向上平移多少个单位长度?21.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(10分)如图,已知A、B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y 轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.浙江省宁波市南三县中考数学模拟试卷(4)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:﹣15÷(﹣5)=3,故选:C.2.【解答】解:四张交通标志图案的卡片中,只有第三张为中心对称图形.故选:C.3.【解答】解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.4.【解答】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故选:C.5.【解答】解:A、a5+a5=2a5,故本选项错误;B、a5•a5=a10,故本选项错误;C、(﹣4a﹣1)(4a﹣1)=(﹣1)2﹣(4a)2=1﹣16a2,故本选项正确;D、(a﹣2b)2=a2﹣4ab+4b2,故本选项错误;故选:C.6.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SH C=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.7.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.8.【解答】解:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行是真命题.②过直线外一点有且只有一条直线与这条直线平行是真命题.③两条平行线被第三条直线所截,同旁内角互补是假命题.④内错角相等,两直线平行是真命题.故选:B.9.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.10.【解答】解:连接BD,OD,∵AB为圆O的直径,∴∠ADB=90°,∵BC与圆O相切,∴AB⊥BC,即∠ABC=90°,∵∠C=36°,∴∠ABD=36°,∵OB=OD,∴∠ABD=∠ODB=36°,∴∠AOD=72°,则劣弧AD的长为=π.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.【解答】解:a2﹣a+2=(a2﹣6a+9)=(a﹣3)2.故答案为:(a﹣3)2.13.【解答】解:设学生人数为x名,依题意有140x+170=145(x+1),解得x=5,39×(5+1)﹣35×5=234﹣175=59(千克).答:老师的体重是59千克.故答案为:59.14.【解答】解:过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1﹣a.∴且tan∠BPD=,∴DQ=2(1﹣a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+【2(1﹣a)】2,解之得a=1(不合题意,舍去),或a=.∵△ADQ与△ABC相似,∴====.∴AB=5AD=5,BC=5DQ=4,AC=5AQ=3,∴三角形ABC的周长是:AB+BC+AC=5+4+3=12;故答案为:12.15.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.16.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(﹣1,0)代入,得:,解得:,∴直线AB的解析式为y=x+1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(1,2)或(﹣2,﹣1),故答案为:(1,2)或(﹣2,﹣1).三.解答题(共8小题,满分66分)17.【解答】解:①原式=1+﹣﹣(﹣1)=2﹣.②原式=2+1﹣2=1.③原式=2﹣2﹣2=﹣2.④原式=12﹣3+6=15.⑤原式=4﹣+2=4+.18.【解答】解:由①得:x>,由②得:x<8,故不等式组的解集为:<x<8.19.【解答】证明:(1)∵▱ABCD,∴AD=BC,∠A=∠C,AD∥BC,∴∠ADB=∠CBD,∵DE平分∠ADB,BF平分∠CBD,∴∠ADE=∠CBF,在△ADE与△CBF中,∴△ADE≌△CBF(ASA),(2)当AD=BD时,∵DE平分∠ADB,∴DE⊥BE,∴∠DEB=90°,∵△ADE≌△CBF,∴DE=BF,∵∠EDB=∠DBF,∴DE∥BF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴平行四边形DEBF是矩形.20.【解答】解:(1)过A作AD⊥OB于D,∵B(﹣4,0),∴OB=4,∵△AOB是等边三角形,∴OD=2,AD==2,∵反比例函数y=(k≠0,x<0)的图象过等边三角形AOB的顶点A,∴A(﹣2,2),∴k=﹣2×2=﹣4,∴反比例函数的表达式为:y=﹣;(2)∵B(﹣4,0),∵当x=﹣4时,y=﹣=,∴要使点B在上述反比例函数的图象上,需将△AOB向上平移个单位长度.21.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBD=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE交AB于H,如图,∵E为的中点,∴OE⊥AB,∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==设EH=3x,BH=4x,∴BE=5x,∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.23.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=180,s2=120330﹣180﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.24.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷(word版,含答案解析)

2019年浙江省杭州市中考数学试卷(word版,含答案解析)2019年浙江省杭州市中考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. 2×0+1?9B. 2+0×1?9C. 2+0?1×9D. 2+0+1?92.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=?3,n=2C. m=2,n=3D. m=?2,n=?33.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. 2x+3(72?x)=30B. 3x+2(72?x)=30C. 2x+3(30?x)=72D. 3x+2(30?x)=725.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的个位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE//BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A. ADAN =ANAEB. BDMN =MNCEC. DNBM =NEMCD. DNMC =NEBM7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于30°B. 必有⼀个内⾓等于45°C. 必有⼀个内⾓等于60°D. 必有⼀个内⾓等于90°8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N?1或M=N+1C. M=N或M=N+1D. M=N或M=N?1⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1?x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cosC=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD 的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:4xx2?4?2x?21圆圆的解答如下:4x x2?4?2x?21=4x2(x+2)(x24)=x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954⼄组?22?3?14(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为x甲?,x⼄?,写出x甲?与x⼄?之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22. 设⼆次函数y =(x ?x 1)(x ?x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;⼄求得当x =12时,y =?12.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x 1,x 2的代数式表⽰). (3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n 是实数),当016.23. 如图,已知锐⾓三⾓形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA .②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB= n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m? n+2=0.1.【答案】A【解析】解:A.2×0+1?9=?8,B.2+0×1?9=?7C.2+0?1×9=?7D.2+0+1?9=?6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=?3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】【分析】此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵数是解题关键.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.【解答】解:设男⽣有x⼈,则⼥⽣(30?x)⼈,根据题意可得:3x+2(30?x)=72.故选D.5.【答案】B利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.【解答】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.6.【答案】C【解析】解:∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM,∵NE//MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NEMC.故选:C.先证明△ADN∽△ABM得到DNBM =ANAM,再证明△ANE∽△AMC得到NEMC=ANAM,则DNBM=NEMC,本题考查了相似三⾓形的判定与性质:在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】【分析】根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠A=∠C?∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C?∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.8.【答案】A【解析】A、由图可知:直线y1,a>0,b>0.∴直线y2经过⼀、⼆、三象限,故A正确;B、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、四、三象限,故B错误;C、由图可知:直线y1,a<0,b>0.∴直线y2经过⼀、⼆、四象限,交点不对,故C错误;D、由图可知:直线y1,a<0,b<0,∴直线y2经过⼆、三、四象限,故D错误.故选:A.根据直线判断出a、b的符号,然后根据a、b的符号判断出直线经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤?坡度⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2?4ab=(a?b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2?4ab=(a?b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1?x)(1+x)【解析】解:∵1?x2=(1?x)(1+x),故答案为:(1?x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解?运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】mx+nym+n【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的总和为:mx+ny,.所以平均数为:mx+nym+n故答案为:mx+ny.m+n直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=1利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】√32或2√55【解析】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2?x 2=√3x ,所以cosC =BC AC=√3x2x=√32;若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cosC =ACBC =5x=2√55;综上所述,cos C 的值为√32或2√55.故答案为√32或2√55.讨论:若∠B =90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√3x ,然后根据余弦的定义求cos C 的值;若∠A=90°,设AB =x ,则AC =2x ,利⽤勾股定理计算出BC =√5x ,然后根据余弦的定义求cos C 的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y =?x +1(答案不唯⼀)【解析】解:设该函数的解析式为y =kx +b ,∵函数满⾜当⾃变量x =1时,函数值y =0,当⾃变量x =0时,函数值y =1,∴{k +b =0b =1解得:{k =?1,所以函数的解析式为y =?x +1,故答案为:y =?x +1(答案不唯⼀).根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,因为x =0时,y =1,所以不可能是正⽐例函数. 16.【答案】2(5+3√5)【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA′=AB =x ,PD′=CD =x ,∵△A′EP 的⾯积为4,△D′PH 的⾯积为1,∴A′E =4D′H ,设D′H =a ,则A′E =4a ,∵△A′EP∽△D′PH ,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或?2a(舍弃),∴PA′=PD′=2a,∵12a2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的⾯积=2(5+3√5).故答案为2(5+3√5)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出D′HPA′=PD′EA′,推出ax=x4a,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:4xx2?4?2x?21=4x(x?2)(x+2)2(x+2)(x?2)(x+2)(x?2)(x+2)(x?2)(x+2) =4x?2x?4?x2+4(x?2)(x+2)=2x?x2(x?2)(x+2)=?xx+2.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①x 甲?=50+x ⼄?.②S 甲2=S ⼄2.理由:∵S 甲2=15[(48?50)2+(52?50)2+(47?50)2+(49?50)2+(54?50)2]=6.8.S ⼄2=15[(?2?0)2+(2?0)2+(?3?0)2+(?1?0)2+(4?0)2]=6.8,∴S 甲2=S ⼄2.【解析】(1)利⽤描点法画出折线图即可. (2)利⽤平均数和⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B =∠BAP ,∵∠APC =∠B +∠BAP ,∴∠APC =2∠B ;(2)根据题意可知BA =BQ ,∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ ,∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°,∴5∠B =180°,∴∠B =36°.【解析】(1)根据线段垂直平分线的性质可知PA =PB ,根据等腰三⾓形的性质可得∠B =∠BAP ,根据三⾓形的外⾓性质即可证得∠APC =2∠B ;(2)根据题意可知BA =BQ ,根据等腰三⾓形的性质可得∠BAQ =∠BQA ,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千⽶/⼩时,∴v 关于t 的函数表达式为:v =480t ,(t ≥4).(2)①8点⾄12点48分时间长为245⼩时,8点⾄14点时间长为6⼩时,将t =6代⼊v =480t得v =80;将t =245代⼊v =480t得v =100.∴⼩汽车⾏驶速度v 的范围为:80≤v ≤100.②⽅⽅不能在当天11点30分前到达B 地.理由如下: 8点⾄11点30分时间长为72⼩时,将t =72代⼊v =480t得v =9607>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解; (2)①8点⾄12点48分时间长为24 5⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v 关于t 的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为72⼩时,将其代⼊v 关于t 的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间、速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG 的边长为a ,∵正⽅形ABCD 的边长为1,∴DE =1?a ,∵S 1=S 2,∴a 2=1×(1?a),解得,a 1=?√5212(舍去),a 2=√5212,即线段CE 的长是√52?12;(2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52?12,∴HG =√52,∴HD =HG .【解析】(1)设出正⽅形CEFG 的边长,然后根据S 1=S 2,即可求得线段CE 的长; (2)根据(1)中的结果和题⽬中的条件,可以分别计算出HD 和HG 的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x =0时,y =0;当x =1时,y =0;∴⼆次函数经过点(0,0),(1,0),∴x 1=0,x 2=1,∴y =x(x ?1)=x 2?x ,当x =12时,y =?14,∴⼄求得的结果不对; (2)对称轴为x =x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m =x 1x 2,n =1?x 1?x 2+x 1x 2,∴mn =[?(x 1?12)2+14][?(x 2?12)2+14]∵0∴02)2+14≤14,02)2+14≤14,且x 1和x 2不可以同时等于12,∴0【解析】(1)将(0,0),(1,0)代⼊y =(x ?x 1)(x ?x 2)求出函数解析式即可求解; (2)对称轴为x = x 1+x 22,当x =x 1+x 22时,y =?(x 1?x 2)24是函数的最⼩值;(3)将已知两点代⼊求出m =x 1x 2,n =1?x 1?x 2+x 1x 2,再表⽰出mn =[?(x 1?12)2+14][?(x 2?12)2+14],由已知04,0<(x 212)2+14≤14,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn 准确的⽤x 1和x 2表⽰出来是解题的关键. 23.【答案】解:(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,∴∠OBC =30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=32,△ABC⾯积的最⼤值=12×BC×AD=12×2OBsin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,∵OE=OD,∴∠AOD=180°?2x,即:180°+mx?nx=180°?2x,化简得:m?n+2=0.【解析】(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°?∠ABC?∠ACB=180°?mx?nx=12∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°?mx?nx+2mx=180°+mx?nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2)∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷(解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷(解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为( )A.5cm B.8cm C.10cm D.17cm3.(3分)如果a b>,那么下列不等式中正确的是()A.33a b->+B.22ab<C.ac bc>D.22a b-+<-+4.(3分)下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.46.(3分)若等腰三角形的一个内角为80︒,则底角的度数为( )A .20︒B .20︒或50︒C .80︒D .50︒或80︒7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .138.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A B C .12cm D .13 cm10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<-… B .11542a -<-… C .11542a --剟 D .11542a -<<- 二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC ∆中,90C ∠=︒,65A ∠=︒,则B ∠= .12.(3分)用不等式表示:x 的两倍与3的差不小于5,则这个不等式是 .13.(3分)如图,在ABC ∆中,AB AC =,外角110ACD ∠=︒,则A ∠= ︒.14.(3分)如图,点P 在AOB ∠的平分线上,若使AOP BOP ∆≅∆,则需添加的一个条件是 (只写一个即可,不添加辅助线).15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩…的解集为35x <…,则b 的值为 16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 本作业本.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 米.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 (填序号)19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE 的长度是 .20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩…,并把解集在数轴上表示出来.22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =.(2)若25CDE ∠=︒,求A ∠的度数.23.(6分)对于任意实数a ,b ,定义关于@的一种运算如下:@2a b a b =-,例如:5@31037=-=,(3)@56511-=--=-.(1)若@35x <,求x 的取值范围;(2)已知关于x 的方程2(21)1x x -=+的解满足@5x a <,求a 的取值范围.24.(6分)如图,ABC ∆中,45C ∠=︒,若MP 和NQ 分别垂直平分AB 和AC ,4CQ =,3PQ =,求BC 的长.25.(8分)如图,在ABC ∆中,AB AC =,点D ,E ,F 分别在AB ,BC ,AC 边上,且BE CF =,BD CE =.(1)求证:DEF ∆是等腰三角形;(2)当50A ∠=︒时,求DEF ∠的度数;(3)若A DEF ∠=∠,判断DEF ∆是否为等边三角形.26.(8分)如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ 的长;(2)从出发几秒钟后,PQB ∆第一次能形成等腰三角形?(3)当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的定义和图案特点即可解答.【解答】解:A 、是轴心对称图形,故选项符合题意;B 、不是轴心对称图形,故本选项不符合题意;C 、不是轴心对称图形,故选项不符合题意;D 、不是轴心对称图形,故本选项不符合题意.故选:A .【点评】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解题的关键.2.(3分)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为()A .5cmB .8cmC .10cmD .17cm【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【解答】解:三角形的两条边长分别为6cm 和10cm ,∴第三边长的取值范围是:416x <<,∴它的第三边长不可能为:17cm .故选:D.【点评】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键.3.(3分)如果a b>,那么下列不等式中正确的是()A.33a b->+B.22ab<C.ac bc>D.22a b-+<-+【分析】原式各项利用不等式的性质判断即可.【解答】解:由a b>,得到22a b-+<-+,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.(3分)下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【解答】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为222+≠不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【点评】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A .1B .2C .3D .4【分析】显然第2中有完整的三个条件,用ASA 易证现要的三角形与原三角形全等.【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA 易证三角形全等,故应带第2块.故选:B .【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题转化为数学问题解答是关键.6.(3分)若等腰三角形的一个内角为80︒,则底角的度数为( )A .20︒B .20︒或50︒C .80︒D .50︒或80︒【分析】先分情况讨论:80︒是等腰三角形的底角或80︒是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【解答】解:当80︒是等腰三角形的顶角时,则顶角就是80︒,底角为1(18080)502︒-︒=︒ 当80︒是等腰三角形的底角时,则顶角是18080220︒-︒⨯=︒.∴等腰三角形的底角为50︒或80︒故选:D .【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .13【分析】根据等腰三角形三线合一的性质可得AD BC ⊥,CD BD =,再根据直角三角形斜边上的中线等于斜边的一半可得12DE CE AC ==,然后根据三角形的周长公式列式计算即可得解.【解答】解:AB AC =,AD 平分BAC ∠,8BC =,AD BC ∴⊥,142CD BD BC ===, 点E 为AC 的中点,152DE CE AC ∴===, CDE ∴∆的周长45514CD DE CE =++=++=.故选:C .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.8.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆【分析】设甲种运输车安排x 辆,可列不等式求解.【解答】解:设甲种运输车安排x 辆,根据题意得(465)410x x +-÷…,解得:6x …,故至少甲要6辆车.故选:C .【点评】本题考查理解题意的能力,关键是以运输46吨物资做为不等量关系列方程求解.9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A B C .12cm D .13 cm【分析】首先根据勾股定理求出BF 的长度,进而求出CF 的长度;再根据勾股定理求出EF 的长度问题即可解决.【解答】解:由题意得:AF AD =,EF DE =(设为)x ,四边形ABCD 为矩形,10AF AD BC ∴===,8DC AB ==;90ABF ∠=︒;由勾股定理得:22210836BF =-=,6BF ∴=,1064CF =-=;在直角三角形EFC 中,由勾股定理得:2224(8)x x =+-,解得:5x =,222105125AE ∴=+=,)AE cm ∴=.故选:A .【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<-… B .11542a -<-… C .11542a --剟 D .11542a -<<- 【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:23824x x x a <-⎧⎨->⎩①②, 解不等式①得:8x >,解不等式②得:24x a <-,∴不等式组的解集是824x a <<-,关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解, 122413a ∴<-…,解得:115 42a-<-…,故选:B.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a的不等式组是解此题的关键.二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC∆中,90C∠=︒,65A∠=︒,则B∠=25︒.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:90C∠=︒,65A∠=︒,906525B∴∠=︒-︒=︒.故答案为:25︒.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.12.(3分)用不等式表示:x的两倍与3的差不小于5,则这个不等式是235x-….【分析】首先表示“x的两倍”为2x,再表示“与3的差”为23x-,最后表示“不小于5”可得不等式.【解答】解:x的两倍表示为2x,与3的差表示为23x-,由题意得:235x-…,故答案为:235x-….【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.13.(3分)如图,在ABC∆中,AB AC=,外角110ACD∠=︒,则A∠=40︒.【分析】先得到ACB∠的度数,利用等腰三角形的性质和三角形内角和求出顶角A.【解答】解:AB AC=,ABC ACB∴∠=∠.而110ACD ∠=︒,18011070ACB ABC ∴∠=∠=︒-︒=︒,180707040A ∴∠=︒-︒-︒=︒.故答案为:40.【点评】考查了三角形的内角和定理与等腰三角形的两底角相等的性质.14.(3分)如图,点P 在AOB ∠的平分线上,若使AOP BOP ∆≅∆,则需添加的一个条件是APO BPO ∠=∠(答案不唯一) (只写一个即可,不添加辅助线).【分析】首先添加APO BPO ∠=∠,利用ASA 判断得出AOP BOP ∆≅∆.【解答】解:APO BPO ∠=∠等. 理由:点P 在AOB ∠的平分线上,AOP BOP ∴∠=∠,在AOP ∆和BOP ∆中AOP BOP OP OPOPA OPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOP BOP ASA ∴∆≅∆,故答案为:APO BPO ∠=∠(答案不唯一).【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩…的解集为35x <…,则b 的值为 6 【分析】先求出不等式组的解集,根据已知得出关于a 、b 的方程组,求出方程组的解即可.【解答】解:221x a b x a b -⎧⎨-<+⎩①②…,解不等式①得:x a b +…,解不等式②得:212a b x ++<, ∴不等式组的解集是:212a b a b x +++<…, 关于x 的不等式组221x a b x a b -⎧⎨-<+⎩…的解集为35x <…, ∴32152a b a b +=⎧⎪⎨++=⎪⎩, 解得:3a =-,6b =,【点评】本题考查了解一元一次不等式组和解二元一次方程,能得出关于a 、b 的方程组是解此题的关键.16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 7 本作业本.【分析】利用已知笔记本和作业本的价格,得出不等关系求出即可.【解答】解:设她还可以买x 本作业本,根据题意得出:10 1.830.6x -⨯…, 解得:273x …, 故最多还可以买7本作业本.故答案为:7.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 2 米.【分析】先根据勾股定理求出AB 的长,同理可得出A D '的长,进而可得出结论.【解答】解:如图.在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒, 2.20.7 1.5BD =-=(米),222BD A D A B +'=', 221.5 6.25A D ∴'+=,24A D ∴'=,0A D '>,2A D ∴'=米,故答案是:2.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 ①②③ (填序号)【分析】根据角平分线的定义得出EBG CBG ∠=∠,FCG BCG ∠=∠,根据平行线的性质得出EGB GBC ∠=∠,FGC BCG ∠=∠,求出EGB EBG ∠=∠,FCG FGC ∠=∠,根据等腰三角形的判定得出BE EG =,FG CF =,即可判断①;根据三角形的内角和定理求出②即可;根据角平分线的性质求出③即可.【解答】解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,EBG CBG ∴∠=∠,FCG BCG ∠=∠,//EF BC ,EGB GBC ∴∠=∠,FGC BCG ∠=∠,EGB EBG ∴∠=∠,FCG FGC ∠=∠,BE EG ∴=,FG CF =,EF EG FG BE CF ∴=+=+,故①正确;180A ABC ACB ∠+∠+∠=︒,180ABC ACB A ∴∠+∠=︒-∠,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,12CBG ABC ∴∠=∠,12BCG ACB ∠=∠, 111(180)222GBC GCB ABC ACB A ∴∠+∠=∠+∠=︒-∠ 1902A =︒-∠, 180()BGC GBC GCB ∴∠=︒-∠+∠1180(90)2A =︒-︒-∠ 1902A =︒+∠,故②正确;过G 作GQ AB ⊥于Q ,GW BC ⊥于W ,ABC ∠和ACB ∠的平分线相交于点G ,GD AC ⊥,GQ GW ∴=,GW GD =,GQ GW GD ∴==,即点G 到ABC ∆各边的距离相等,故③正确;故答案为:①②③.【点评】本题考查了三角形内角和定理,角平分线的性质定理,平行线的性质,角平分线的定义,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE 的长度是【分析】根据直角三角形斜边上的中线等于斜边的一半可得2AB DE =,再利用勾股定理列式计算即可得解.【解答】解:BE AC ⊥,D 为AB 中点,2248AB DE ∴==⨯=,在Rt ABE ∆中,BE =故答案为:【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是 12【分析】先画出图形, 作PM OA ⊥与OA 相交于M ,并将PM 延长一倍到E ,即ME PM =. 作PN OB ⊥与OB 相交于N ,并将PN 延长一倍到F ,即NF PN =. 连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则PQR ∆即为周长最短的三角形 . 再根据线段垂直平分线的性质得出PQR EF ∆=,再根据三角形各角之间的关系判断出EOF ∆的形状即可求解 .【解答】解: 设POA θ∠=,则30POB θ∠=︒-,作PM OA ⊥与OA 相交于M ,并将PM 延长一倍到E ,即ME PM =.作PN OB ⊥与OB 相交于N ,并将PN 延长一倍到F ,即NF PN =. 连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则PQR ∆即为周长最短的三角形 . OA 是PE 的垂直平分线,EQ QP ∴=;同理,OB 是PF 的垂直平分线,FR RP ∴=,PQR ∴∆的周长EF =.12OE OF OP ===,且22(30)60EOF EOP POF θθ∠=∠+∠=+︒-=︒, EOF ∴∆是正三角形,12EF ∴=,即在保持12OP =的条件下PQR ∆的最小周长为 12 .故答案为: 12【点评】本题考查的是最短距离问题, 解答此类题目的关键根据轴对称的性质作出各点的对称点, 即把求三角形周长的问题转化为求线段的长解答 .三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩…,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:21512x x x x +>⎧⎪⎨+-⎪⎩①②… 解不等式①得:1x >-,解不等式②得:3x …,则不等式组的解集是:13x -<…, 不等式组的解集在数轴上表示为:【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,…向右画;<,…向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“…”,“ …”要用实心圆点表示;“<”,“ >”要用空心圆点表示.22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =.(2)若25CDE ∠=︒,求A ∠的度数.【分析】(1)利用等角对等边证明即可.(2)求出ABC ∠,ACB ∠即可解决问题.【解答】(1)证明:CD 是ACB ∠ 的平分线,BCD ECD ∴∠=∠,//DE BC ,EDC BCD ∴∠=∠,EDC ECD ∴∠=∠,DE CE ∴=.(2)解:25ECD EDC ∠=∠=︒,250ACB ECD ∴∠=∠=︒,AB AC =,50ABC ACB ∴∠=∠=︒,180505080A ∴∠=︒-︒-︒=︒.【点评】本题考查等腰三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(6分)对于任意实数a ,b ,定义关于@的一种运算如下:@2a b a b =-,例如:5@31037=-=,(3)@56511-=--=-.(1)若@35x <,求x 的取值范围;(2)已知关于x 的方程2(21)1x x -=+的解满足@5x a <,求a 的取值范围.【分析】(1)根据新定义列出关于x 的不等式,解之可得;(2)先解关于x 的方程得出1x =,再将1x =代入@5x a <列出关于a 的不等式,解之可得.【解答】解:(1)@35x <,235x ∴-<,解得:4x <;(2)解方程2(21)1x x -=+,得:1x =,@1@25x a a a ∴==-<,解得:3a >-.【点评】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.24.(6分)如图,ABC ∆中,45C ∠=︒,若MP 和NQ 分别垂直平分AB 和AC ,4CQ =,3PQ =,求BC 的长.【分析】根据线段垂直平分线的性质得出AP BP =,AQ CQ =,求出90AQP ∠=︒,根据勾股定理求出AP ,即可得出BP ,求出即可.【解答】解:MP 和NQ 分别垂直平分AB 和AC ,AP BP ∴=,AQ CQ =,又45C ∠=︒,90AQC ∴∠=︒,3PQ =,由勾股定理得5BP =,12BC AP PQ CQ ∴=++=.【点评】本题考查了线段垂直平分线性质和勾股定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,解此题的关键是求出BP 的长.25.(8分)如图,在ABC ∆中,AB AC =,点D ,E ,F 分别在AB ,BC ,AC 边上,且BE CF =,BD CE =.(1)求证:DEF ∆是等腰三角形;(2)当50A ∠=︒时,求DEF ∠的度数;(3)若A DEF ∠=∠,判断DEF ∆是否为等边三角形.【分析】(1)根据AB AC =可得B C ∠=∠,即可求证BDE CEF ∆≅∆,即可解题;(2)根据全等三角形的性质得到CEF BDE ∠=∠,于是得到DEF B ∠=∠,根据等腰三角形的性质即可得到结论;(3)由(1)知:DEF ∆是等腰三角形,DE EF =,由(2)知,DEF B ∠=∠,于是得到结论.【解答】解:(1)AB AC =,B C ∴∠=∠, 在BDE ∆和CEF ∆中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;(2)DEC B BDE ∠=∠+∠,即DEF CEF B BDE ∠+∠=∠+∠,BDE CEF ∆≅∆,CEF BDE ∴∠=∠,DEF B ∴∠=∠, 又在ABC ∆中,AB AC =,50A ∠=︒,65B ∴∠=︒,65DEF ∴∠=︒;(3)由(1)知:DEF ∆是等腰三角形,即DE EF =,由(2)知,DEF B ∠=∠,A DEF ∠=∠,A B ∴∠=∠,AB AC =,B C ∴∠=∠,A B C ∴∠=∠=∠,ABC ∴∆的等边三角形,60B DEF ∴∠=∠=︒,DEF ∴∆的等边三角形.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.26.(8分)如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ 的长;(2)从出发几秒钟后,PQB ∆第一次能形成等腰三角形?(3)当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可;(2)设出发t 秒钟后,PQB ∆能形成等腰三角形,则BP BQ =,由2BQ t =,8BP t =-,列式求得t 即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C C B Q ∠=∠,可证明A ABQ ∠=∠,则B Q A Q =,则C Q A Q =,从而求得t ;②当CQ BC =时(如图2),则12BC CQ +=,易求得t ;③当BC BQ =时(如图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【解答】解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,PQ ;(2)2BQ t =,8BP t =- 1⋯'28t t =-, 解得:823t =⋯';(3)①当CQ BQ =时(图1),则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠,BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.1⋯'②当CQ BC =时(如图2),则12BC CQ +=1226t ∴=÷=秒.1⋯'③当BC BQ =时(如图3),过B 点作BE AC ⊥于点E , 则6824105AB BC BE AC ⨯===,所以185CE ==, 故27.2CQ CE ==,所以13.2BC CQ +=,13.22 6.6t ∴=÷=秒.2⋯'由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.。

2019年中考数学试卷(word版,含答案) (54)

2019年中考数学试卷(word版,含答案) (54)

2019年中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)的图象在第一象限交于点A、xB,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK= x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20-x−20020×2)-80×20=−110(x−200)2+2400,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A(4,1)代入y=m2−3mx,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y=4x;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴CD CE =BDAE,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B=4x=4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,{k+b=44k+b=1,解得,k=-1,b=5,∴y AB=-x+5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C 是BC ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD ⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中, ∵{∠F =∠CDG∠FGB =∠DGC BF =CD, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC AB =BEBC,∴BC2=AB•BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC (HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE 和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴a =12, ∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=-2,x 2=4,∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516, ∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴AG EG =52158=43, ∵∠AGE =∠AHP =90°∴sin ∠EAG =PH AP =EG AE =35, ∴PH =35AP ,∵E 、F 关于x 轴对称,∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小,∵EF =158×2=154,∠AEG =∠HEF ,∴sin∠AEG =sin∠HEF =AG AE =FH EF =45,∴FH =45×154=3. ∴PE +35PA 的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A (-1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME -S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t22+t,∴EG=AE-AG=22√2+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=22√2+t =√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=t 2+82√2+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=32√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

浙江省宁波市2019-2020学年中考数学仿真第五次备考试题含解析

浙江省宁波市2019-2020学年中考数学仿真第五次备考试题含解析

浙江省宁波市2019-2020学年中考数学仿真第五次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.2+3B.23C.3+3D.334.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米5.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是()A .216000米B .0.00216米C .0.000216米D .0.0000216米6.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A .8073B .8072C .8071D .80707.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D8.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6 B .8.23×10﹣7 C .8.23×106 D .8.23×1079.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x+21x 的值是( ) A .1 B .2 C .﹣34 D .﹣4310.如图,在△ABC 中,AB=AC,点D 是边AC 上一点,BC=BD=AD,则∠A 的大小是().A .36°B .54°C .72°D .30°11.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定12.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.14.函数12xyx+=-中,自变量x的取值范围是.15.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.16.如图,数轴上点A表示的数为a,化简:a244a a+-+=_____.17.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.18.如图,点G是ABCV的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6=,那么线段GE的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,5MC的长.=-++,其图20.(6分)某种商品每天的销售利润y元,销售单价x元,间满足函数关系式:y x bx c象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?21.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的距离.22.(8分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.23.(8分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?24.(10分)如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于D 点,连接BD 并延长至F ,使得BD=DF ,连接CF 、BE .(1)求证:DB=DE ;(2)求证:直线CF 为⊙O 的切线;(3)若CF=4,求图中阴影部分的面积.25.(10分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值. 26.(12分)李宁准备完成题目;解二元一次方程组48x y x y -=⎧⎨+=-⎩W ,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x y x y -=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x 、y 是一对相反数,通过计算说明原题中“□”是几?27.(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白 两白 礼金券(元) 18 24 18 (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A .【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.2.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.3.A【解析】【分析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=()a ,∴tan ∠故选A.【点睛】本题主要考查特殊角的三角函数值.4.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故选B.考点:勾股定理的应用.5.B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2.16×10﹣3米=0.00216米.故选B.【点睛】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.7.A【解析】【分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.8.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【解析】试题分析:找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和12b x x a +=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系10.A【解析】【分析】由BD=BC=AD 可知,△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又由AB=AC可知,△ABC 为等腰三角形,则∠ABC=∠C=2x .在△ABC 中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD ,∴△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x .又∵AB=AC ,∴△ABC 为等腰三角形,∴∠ABC=∠C=2x .在△ABC 中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A .【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.11.B【解析】【分析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD ,∴AC+BC=BC+BD ,即AC=BD ,又∵BC=2AC ,∴BC=2BD ,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.12.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是58. 故答案为58. 【点睛】本题考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 14.x 1≥-且x 2≠.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x -在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.15.1【解析】【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.16.1.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<1,则(1﹣a)=1.故答案为1.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.17.310 5【解析】【详解】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG=22BG BC-=4,∴DG=DC﹣CG=1,则AG=22AD DG+=10,∵BA BGBC BE=,∠ABG=∠CBE,∴△ABG∽△CBE,∴35 CE BCAG AB==,解得,CE=310,故答案为3105.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.18.2【解析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=12BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE :CD=AG :AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG :AD=2:3是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)MC=154. 【解析】【分析】(1)连接OC ,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【详解】(1)连接OC ,∵CN 为⊙O 的切线,∴OC ⊥CM ,∠OCA+∠ACM=90°,∵OM ⊥AB ,∴∠OAC+∠ODA=90°,∵OA=OC ,∴∠OAC=∠OCA ,∴∠ACM=∠ODA=∠CDM ,∴MD=MC ;(2)由题意可知AB=5×2=10,5 ∵AB 是⊙O 的直径,∴∠ACB=90°,∴()221045-5∵∠AOD=∠ACB ,∠A=∠A ,∴△AOD ∽△ACB ,∴OD AO BC AC=2545= 可得:OD=2.5,设MC=MD=x ,在Rt △OCM 中,由勾股定理得:(x+2.5)2=x 2+52,解得:x=154, 即MC=154. 【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.20.(1)10,1;(2)812x ≤≤.【解析】【分析】(1)将点(5,0),(8,21)代入2y x bx c =-++中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),再根据图象判断出x 的取值范围即可.【详解】解:(1)2y x bx c =-++图象过点(5,0),(8,21), 255064821b c b c -++=⎧∴⎨-++=⎩, 解得2075b c =⎧⎨=-⎩ 22075y x x ∴=-+-.222075(10)25y x x x =-+-=--+Q .22075y x x ∴=-+-的顶点坐标为(10,25).10-<Q ,∴当10x =时,y 最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数22075y x x =-+-图象的对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),又∵函数22075y x x =-+-图象开口向下,∴当812x ≤≤时,21y ≥.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.21.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则22.1【解析】【分析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.23.(1)见解析(2)A-国学诵读(3)360人【解析】【分析】(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×2760=360(人)【点睛】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解. 24.(1)证明见解析;(2)证明见解析;(3)2π-.【解析】【分析】(1)欲证明DB=DE.,只要证明∠DBE=∠DEB;(2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;(3)根据S阴影部分=S扇形-S△OBD计算即可.【详解】解:(1)∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE(2)连接CD∵DA平分∠BAC,∴∠DAB=∠DAC ,∴BD=CD ,又∵BD=DF ,∴CD=DB=DF ,∴°90BCF ,∠= ∴BC ⊥CF ,∴CF 是⊙O 的切线(3)连接OD∵O 、D 是BC 、BF 的中点,CF =4, ∴OD =2.∵CF 是⊙O 的切线,∴90.BOD BCF ∠=∠=︒∴△BOD 为等腰直角三角形∴S 阴影部分=S 扇形-S △OBD =211222242ππ⨯⨯-⨯⨯=-. 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.25.原式=11x -,把x=2代入的原式=1. 【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可. 试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=1 26.(1)15x y =-⎧⎨=-⎩;(2)-1 【解析】【分析】(1)②+①得出4x=-4,求出x ,把x 的值代入①求出y 即可;(2)把x=-y 代入x-y=4求出y ,再求出x ,最后把x 、y 代入②求出答案即可.【详解】解:(1)438x y x y -=⎧⎨+=-⎩①②①+②得,1x =-.将1x =-时代入①得,5y =-,∴15x y =-⎧⎨=-⎩. (2)设“□”为a ,∵x 、y 是一对相反数,∴把x=-y 代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是22x y =⎧⎨=-⎩, 代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“□”是-1.【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a 的方程是解(2)的关键. 27. (1)见解析 (2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率; (2)算出相应的平均收益,比较大小即可.试题解析:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率=4263=; (2)∵两红的概率P=16,两白的概率P=16,一红一白的概率P=23, ∴摇奖的平均收益是:16×18+23×24+16×18=22, ∵22>20,∴选择摇奖.【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市二〇一九年初中学业水平考试考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题4分,共48分.1.(2019年宁波)-2的绝对值为( )A.-12B.2 C.12D.-2{答案}B{解析}本题考查了绝对值的定义,一个数的绝对值等于这个数在数轴上所表示的点到原点的距离,因为-2在数轴上所表示的点到原点的距离是2,因此本题选B.2.(2019年宁波)下列计算正确的是( )A.a3+a2=a5B.a3·a2=a6C.(a2)3=a5D.a6÷a2=a4{答案}D{解析}本题考查了合并同类项和幂的运算,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.a3和a2不是同类项,故不能合并,选项A错误;同底数幂相乘,底数不变,指数相加,a3·a2=a5,选项B错误;幂的乘方,底数不变,指数相乘,(a2)3=a6,选项C错误;同底数幂相除,底数不变,指数相减,a6÷a2=a4,选项D正确.3.(2019年宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( )A.1.526×108B.15.26×108C.1.526×109D.1.526×1010{答案}C{解析}本题考查了科学记数法,1526000000=1.526×109,因此本题选C.4.(2019年宁波)若分式12x-有意义,则x的取值范围是( )A.x﹥2 B.x≠2 C.x≠0 D.x≠-2{答案}B{解析}本题考查了分式有意义的条件,根据分式的分母不能为零,得到x-2≠0,所以x≠2,因此本题选B.5.(2019年宁波)如图,下列关于物体的主视图画法正确的是( )A.B.C.D.{答案}C{解析}本题考查了几何体的三视图,主视图是指从几何体的正面看到的平面图,该几何体从正面看,只有选项C正确,因此本题选C.6.(2019年宁波)不等式32x-﹥x的解为( )A.x﹤1 B.x﹤-1 C.x﹥1 D.x﹥-1{答案}A{解析}本题考查了解一元一次不等式.根据不等式的解法,不等式的两边同乘以2,得3-x>2x,再移项,合并同类项,得-3x>-3,解得x<1,因此本题选A.7.(2019年宁波)能说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题的反例为( ) A.m =-1 B.m =0 C.m =4 D.m =5{答案}D{解析}本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题,只要满足△=16-4m<0的解即可,即m>4的值,因此本题选D.8.(2019年宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )A.甲B.乙C.丙D.丁{答案}B{解析}本题考查平均数和方差.比较四个品种的平均数可得,甲品种和乙品种的产量更好,而甲的方差>乙的方差,所以乙品种的产量更稳定些,因此本题选B.9.(2019年宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )A.60°B.65°C.70°D.75°n{答案}C{解析}本题考查了平行线的性质和三角形的外角的性质.如图,∵△ABC 是含45°的等腰直角三角形,∴∠B =45°,∴∠3=∠B +∠1=45°+25°=70°,∵m ∥n ,∴∠2=∠3=70°,因此本题选C .10.(2019年宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ) A .3.5cmB .4cmC .4.5cmD .5cm{答案}B{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,扇形的弧长等于圆周长.欲从矩形CDEF 中裁出最大的圆,矩形的两条边CD 、EF 恰好与圆相切,即DE 长是圆的直径,不妨设AB =x ,则扇形弧长为90180x p 白°,圆的周长为()6x p -,得90180xp 白°=()6x p -,所以x =4,因此本题选B .11.(2019年宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元{答案}A{解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰x 元,每支百合y 元,根据题意可列出方程:5x +3y +10=3x +5y -4,得x -y =-7,若小慧只买8支玫瑰,n (第9题解)则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入可得解是31,因此本题选A.12.(2019年宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和图1 图2(第12题图){答案}C{解析}本题考查了图形的面积计算和勾股定理的应用.不妨设图中所给直角三角形的较长直角边为a,较短直角边为b,斜边为c,则a2+b2=c2.将图中阴影部分分离出来,其每条边长如图所示,利用图形面积的和差关系可知阴影部分面积可以表示为c(c-b)-a(a-b),又因为a2+b2=c2,即阴影部分可表示为b(a+b-c).直角三角形的面积是12ab,选项A错误;最大正方形的面积为c2,选项B错误;最大正方形和直角三角形的面积和是c2+12ab,选项D错误;用排除法易得选项C正确.事实上,较小两个正方形重叠部分是以b为长,(a+b-c)为宽的矩形,所以面积是b(a+b-c),选项C正确,因此本题选C.二、填空题:本大题共6小题,每小题4分,共24分.13.(2019年宁波)请写出一个小于4的无理数:.{答案}p(答案不唯一){解析}本题考查了实数的大小比较和无理数的概念.本题答案不唯一,p(第12题解)14.(2019年宁波)分解因式:x 2+xy = . {答案}x (x +y ){解析}本题考查了因式分解——提取公因式.原式= x (x +y ).15.(2019年宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . {答案}58{解析}本题考查概率的基本计算.用红球的个数除以球的总个数即为所求的概率.因为一共有8个球,其中5个红球,所以从袋中任意摸出1个球是红球的概率是58.16.(2019年宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1≈1.4141.732)东A(第16题图){答案}566{解析}本题考查了解直角三角形,锐角三角函数等知识.如图,在Rt △ACO 中,∠ACO =90°,AO =400,∠AOC =45°,∴CO =AO ·cos45°=Rt △BCO 中,∠BCO =90°,∠COB =60°,∴OB = cos60CO°=.17.(2019年宁波)如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .(第16题解)东A{答案}132或{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD 中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴PDAD=PEAC,即13PD=612,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=AD=BD=13,DQ⊥AB,∴AQ=12AB =∴DQ=AFP=∠AQD=90°,∠P AF=∠DAQ,∴△APF∽△ADQ,∴APAD=PFDQ,即13AP,得:AP=AP的值为132或图(1) 图(2)(第17题解)18.(2019年宁波)如图,过原点的直线与反比例函数y =kx(k﹥0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.{答案}6{解析}本题考查了反比例函数,相似三角形,角平分线等知识.如图,连结OE,作AM⊥x轴,AN⊥x轴,垂足分别为点M,N.∵过原点的直线与反比例函数y=kx(k﹥0)的图象交于A,B两点,∴AO=BO,又∵AE⊥BE,∴OE=AO,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴OE∥AC,∴S△OAD=S△EAD=8,∵S四边形OADN=S△OAM+S四边形AMND=S△ODN+S△OAD,又∵点A、D均在反比例函数y=kx的图象上,∴S△OAM=S△ODN=2k,∴S四边形AMND =S△OAD=8.∵AM⊥x轴,AN⊥x轴,∴AM∥DN,∴△CDN∽△CAM,∴DNAM=CDCA=3CDCD=13,不妨设DN=a,AM=3a,∵点A、D均在反比例函数y=kx的图象上,∴OM=3ka,ON=ka,∴MN=OM-ON=23ka,∴S四边形AMND=12(AM+DN)·MN=43k=8,∴k=6.三、解答题:本大题有8小题,共78分.19.(2019年宁波)先化简,再求值:(x-2)(x+2)-x(x-1),其中x =3.{解析}本题考查了整式的乘法和代数式求值.首先计算多项式乘多项式,单项式乘多项式,再合并同类项,化简后再把x的值代入即可.{答案}解:原式=x2-4-x2+x=x-4当x=3时,原式=3-4=-1.20.(2019年宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6一个中心对称图形.)(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形(第20题图){解析}本题考查了轴对称图形和中心对称图形的作图,熟练掌握轴对称图形和中心对称图形定义是解题的关键.{答案}解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.21.(2019年宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.Array100名学生知识测试成绩的频数表(第21题图)由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.{解析}本题考查了频数表,频数直方图,中位数,用样本估计总体.明确题意,找出所求问题需要的条件、利用数形结合思想解析问题.{答案}解:(1)20.补全频数直方图:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<90中,但它们的平均数不一定是85分.(3)4015100+×1200=660(人).答:全校1200名学生中,成绩优秀的约有660人.22.(2019年宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.{解析}本题考查了二次函数的性质、待定系数法求解析式以及距离问题.在第(2)题的第②小题中先确定到y轴的距离等于2的x的值,再利用数形结合思想确定n的取值范围是解此题的关键.{答案}解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∵y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n =11.②2≤n<11.23.(2019年宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD的中点,FH=2,求菱形ABCD的周长.{解析}本题考查了矩形、菱形的性质,全等三角形的判定和性质,平行四边形的判定和性质.根据矩形和菱形的相关性质得到判定三角形全等的条件,进而得出边相等.利用中点的定义进行边的等量转化,判定四边形ABGE是平行四边形,再利用矩形的对角线相等这一性质进行边的转化,求出菱形ABCD周长.{答案}解:(1)在矩形EFGH中,EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)如图,连结EG.在菱形ABCD中,AD∥BC,且AD=BC.(第23题解)HF∵E 为AD 中点,∴AE =ED ,又∵BG =DE , ∴AE ∥BG ,且AE =BG . ∴四边形ABGE 为平行四边形. ∴AB =EG .在矩形EFGH 中,EG =FH =2,∴AB =2,∴菱形的周长为8.24.(2019年宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差. {答案}解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0).把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b ì=+ïí=+ïî,解得1503000k b ì=ïí=-ïî.图 2x y 2700150065382520小聪第一班车(分)(米)O图1∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y=150x-3000(20≤x≤38).(注:x的取值范围可省略不写)(2)把y=1500代入,解得x=30,则30-20=10(分).∴第一班车到塔林所需时间10分钟.(3)设小聪坐上第n班车.30-25+10(n-1)≥40,解得n≥4.5,∴小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分).∴小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟.25.(2019年宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.B图1 图2 图3(第25题图){解析}本题综合考查了直角三角形,等腰三角形,相似三角形的知识.根据邻余四边形的定义判定四边形ABEF是邻余四边形,利用直角三角形的两锐角互余画出图形,利用等腰三角形,相似三角形的判定和性质求出AB长.{答案}解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形.(2)如图所示(答案不唯一)B四边形ABEF即为所求.(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M是EF中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=35.∵QB=3,∴NC=5,又∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(2019年宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB 的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF︰EF=3︰2,AC=6时,求AE的长.(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.图1 图2(第26题图){解析}本题综合考查了圆,等腰三角形的判定、相似三角形的判定和性质.第(1)小题中利用同弧所对的圆周角相等,等角对等边推出两边相等.第(2)小题中利用等边△ABC的性质求出相关边长,再利用相似三角形对应边成比例求出EG长,然后由勾股定理求出AE.第(3)小题中通过构造直角三角形,有效利用tan∠DAE,找出y与x之间的函数关系;通过设参数a表示相关线段长,由面积关系找出等量关系,既而求出y值.{答案}解:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC是等边三角形,AC=6,∴BG=12BC=12AC=3,∴在Rt△ABG中,AG=∵BF⊥EC,∴BF∥AG,∴AFEF=BGEB,∵AF︰EF=3︰2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE(3)①如图,过点E作EH⊥AD于点H.∵∠EBD=∠ABC=60°,∴在Rt△BEH中,EHBE=sin60°=2,∴EH=2BE,BH=12BE,∵BGEB=AFEF=x,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=EHAH=21(2)2x BE+∴y.(第26题第(2)题解)②如图,过点O 作OM ⊥EC 于点M ,设BE =a , ∵BG EB =AFEF=x ,∴CG =BG =xBE =ax , ∴EC =CG +BG +BE =a +2ax , ∴EM =12EC =12a +ax , ∴BM =EM -BE =ax -12a , ∵BF ∥AG ,∴△EBF ∽△EGA , ∴BF AG =BE EG =a a ax +=11x+. ∵AG,∴BF =11x+AG=1x +,∴△OFB 的面积=2BF BM ×=12(ax -12a ),∴△AEC 的面积=2EC AG ×=12(a +2ax ), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12(a +2ax )=10×12×1x +(ax -12a ),∴ 2x 2-7x +6=0,解得x 1=2,x 2=32,∴ y.(第26题第(3)②题解)。

相关文档
最新文档