音质设计与混响时间声压级的计算

合集下载

混响时间_精品文档

混响时间_精品文档

混响时间:当声源停止后声压级衰变60Db(相当于平均声能密度降为原来的1/606)所需的时间。

本定义假设之前提为:声衰变时,被测之声压级衰变量与时间呈线性关系,以及背景噪声足够低。

满场:正常使用(或演出)状况,管总占座率达80%以上。

排演状况:厅内只有必要的测量技术人员和参加演出的演员,以及必要的布景、道具,而这些都必须与相对应的满场正常使用时相同,但没有任何观众。

空场:除必要的测量技术人员外,厅内没有观众和演员,测量时,厅内设施与相应的满场正常使用时完全相同。

混响——一个稳定的声音信号突然中断后,厅堂内的声压级跌落60dB所需要的时间。

它的确定跟建筑结构和装饰材料有关,简略的由下式表示:T60=0.163V αS S式中:赛宾(吸声)因数:用Sabine混响时间公式算出的吸声材料的吸引量除以该材料的面积。

T——混响时间,s;V——房间体积,m3;αs——平均Sabine因数;S——房间表表面积,m2。

此公式适用于标准大气条件,1.013×105Pa,15℃。

单位:秒最佳混响时间混响时间是厅堂音质或称室内音质的重要评价指标,从混响时间的长短,大致可以判断厅堂音质的好坏。

在建声设计中,由于能对室内的混响时间进行定量计算,T60=0.16V/A(s),式中,V为房间容积(m3),A为室内总吸声量。

而且混响时间的测试方法简单,因此仍为音质设计最重要的内容。

事实上,房间混响是否适当,不仅仅关系到声音的清晰度,而且还直接关系到声音是否真实、自然的程度,是否动听悦耳。

主观听音评价的丰满、温暖、清晰、空间感等都与混响是否适当密切相关。

要把混响控制到适当的程度,首先要知道适当的混响时间是多少,又受什么因素的影响。

通过对厅堂音质及其混响时间的大量测试、统计分析,以及主观听音评价,声学家提出了“最佳混响时间“的概念,语言清晰度的高峰段就是最佳混响时间的范围。

最佳混响时间是对大量音质效果评价认为较好的各种用途的厅堂,如音乐厅、歌剧院、电影院、报告厅、会议室、录音室、演播室等实测的500Hz和1000Hz满场(指实际使用状态,如座椅坐有观众)混响时间进行统计分析得出的。

声学计算公式大全

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射,一部分被吸收(主要是转化成热能),一部分穿透到另一空间。

透射系数:反射系数:吸声系数:声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。

声压级Lp取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:听觉下限: p=2*10-5N/m2 为0dB能量提高100倍的 P=2*10-3N/m2 为20dB听觉上限: P=20N/m2 为120dB1、声压级Lp取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:听觉下限: p=2*10-5N/m2 为0dB能量提高100倍的 P=2*10-3N/m2 为20dB听觉上限: P=20N/m2 为120dB2、声功率级Lw取Wo为10-12W,基准声功率级任一声功率W的声功率级Lw为:3、声强级:3、声压级的叠加10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。

因此其声压是各声源贡献的声压平方和的开根号。

即:声压级为:声压级的叠加•两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。

这个结论对于声强级和声功率级同样适用。

•此外,两个声压级分别为不同的值时,其总的声压级为两个声强级获声功率级的叠加公式与上式相同在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。

声波在室内的反射与几何声学3.2.1 反射界面的平均吸声系数(1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式:材料和结构的吸声特性和声波入射角度有关。

声波垂直入射到材料和结构表面的吸声系数,成为“垂直入射(正入射)吸声系数”。

声环境学院:室内声压级计算与混响半径

声环境学院:室内声压级计算与混响半径

通过对室内声压级的计算,可以预计所设计的大厅内能否达到满意的声压级以及声场分布是否均匀。

如果采用电声系统,还可计算扬声器所需的功率。

(1)室内声压级计算当一点声源在室内发声时,假定声场充分扩散,则利用式(2.3-7)的稳态声压级公式计算离开声源不同距离处的声压级p L ,即)44lg(102Rr Q L L w p ++=π (dB ) (2.3-7) 式中: L w ——声源的声功率级,dB ;r ——离开声源的距离,m ;Q ——声源指向性因数;R ——房间常数,αα-⨯=1S R ,m 2; S ——室内总表面面积,m 2;α——平均吸声系数,室内总吸声量除以室内总表面面积Q 是指向性因数,当无指向性声源在完整的自由空间时,Q 等于l ;如果无指向性声源是贴在墙面或天花面(半个自由空间)时,以及在室内两面角(41自由空间)或三面角(81自由空间)时,Q 的具体数值见图2.3-5。

图2.3-5 声源指向性因数(2)混响半径根据室内稳态声压级的计算公式,室内的声能密度由两部分构成:第一部分是直达声,相当于Q4πr 2表述的部分;第二部分是混响声(包括第一次及以后的反射声),即4R表述的部分。

可以设想,在离声源较近处Q 4πr 2>4R ,离声源较远处Q 4πr 2<4R ,前者直达声大于混响声,后者扩散声大于直达声。

在直达声的声能密度与混响声的声能密度相等处,距声源的距离称作“混响半径0r ”,或称“临界半径”。

0r 用式(2.3-8)计算Q4πr 02=4R (2.3-8)式中:Q ——声源的指向性因数;0r ——混响半径,m ;R ——房间常数,m 2。

上式可以转换为:r 0=0.14 QR (2.3-9)房间常数R 越大,则室内吸声量越大,混响半径就越长;R 越小,则正好相反,混响半径就越短。

这是室内声场的一个重要特性。

当我们以加大房间的吸声量来降低室内噪声时,接收点若在混响半径r 0之内,由于接收的主要是声源的直达声,因而效果不大;如接收点在r 0之外,即远离声源时,接收的主要是混响声,加大房间的吸声量,R 变大,4/R 变小,就有明显的降噪效果。

声学设计中的几个重要参数

声学设计中的几个重要参数

声学设计中的几个重要参数1、吸声系数〆建筑声学设计中用吸声材和吸声结构来消除回声,颤动回声,声聚焦和减少混响时间等房间的声学缺陷。

吸声材料吸声结构通常用吸声系数〆来表示。

Eo-Er〆=0Eo式中:Eo-入射到吸声材料的声能:Er-被材料反射出来的声能。

〆=1意味着声能全被吸收;〆=0意味着声能全被反射。

2、临界距离DC前面已提到直达声的传播衰减与传输距离的平方比成反比,离声源的距离越远,声压级越低,混响声的传播衰减不遵守平方反比定律,在理想状态下,理论上它在整个房间的声压级是相等的。

临界距离DC是指在声源轴线方向上,直达声与混响声声能相等的距离,即D/R=(0dB),临界距离在计算声音清晰度时很有用,一般来说,在D/R>-6dB 区域内(即2倍临界距离),声音的清晰度是最好的。

Q-扬声器的指向性因数R-房间常数(即房间的吸声量)〆-房间的平均吸声系数S-房间的总吸声面积3、混响时间R60房间的混响R60与房间的容积V表面面积S和房间的平均吸声系数有关,V-房间容积M3S-房间的总吸声面积房间平均吸声系数应使用EYING公式计算;M为空气吸声系数,它与频率和湿度有关,1KHZ~8KHZ的M值为0.003~0.057。

不同混响时间R60的听觉感受:R60<0.5秒(500HZ);声音清晰,但太于(单薄),适宜于录音室。

R60=0.7~0.8秒(500HZ):声音清晰、干净、适宜于电影院和会议厅。

R60=1.2~1.4秒(500HZ):声音丰满、有气魄、空间感强,适用于音乐厅和剧场。

R60>2秒~3秒(500HZ):声音混浊、语言清晰度差,声音发嗡,有回声感。

吸声材料与吸声结构按吸声机理,常用的吸声材料与吸声结构可分为多孔吸声材料和共振吸声结构。

1、多孔吸声材料多孔吸声材料包括纤维材料和颗粒材料。

纤维材料有:玻璃棉、超细玻璃棉、矿棉等无机纤维及其毡、板制品,棉、毛、麻等有机纤维织物。

音质设计与混响时间声压级的计算

音质设计与混响时间声压级的计算

音质设计与混响时间、声压级的计算(一)厅堂音质的设计要求参见表1-11、表1-12及图1-12。

体育馆 35 46 大办公室 40 50 餐厅 40 50(二)混响时间的计算与选择1.混响时间T60的计算公式参见表1-13。

0.003 2000 0.012 0.010 0.010 0.009 0.009 4000 0.038 0.029 0.024 0.022 0.021 6300 0.084 0.062 0.050 0.43 0.040 80000.120 0.095 0.077 0.065 0.0572.混响时间的选择参见表1-15及图1-13、图1-14。

混响时间推荐值(500Hz与1000Hz平均值)表1-15房间类型 T60(s)音乐厅 1.5~2.1 歌剧院 1.2~1.6 多功能厅 1.2~1.5 话剧院、会堂 0.9~1.3 普通电影院1.0~1.2式中PL——加到扬声器的电功率(W);r——扬声器到听音点的距离(m);L0——扬声器特性灵敏度(dB)由上式可见:(1)若扬声器的电功率加倍,则声压级Lp增加3dB;若电功率PL增至10倍,则声压级Lp增加10dB。

(2)若听音距离加倍,则声压级Lp减少6dB;若听音距离增至10倍,则声压级Lp减少20dB。

当听音点偏离有指向性的扬声器轴线为θ角时,其声压级Lp(θ)为:式中Lp——(1-3)式值;r——辐射距离(m);R0——与轴成θ角的听音点辐射距离(m);D(θ)——扬声器的指向性系数,由厂家提供。

PR——房间常数(m2),,其中S为室内总表面积(m2),为平均吸声系数;Q——指向性因数。

当声源在房间空中或舞台上时,Q=1;在墙上或地面上时,Q=2;在两墙交界处时,Q=4;在三界面交角处时,Q=8。

图1-15表示相对声压级(Lp-Lw)与r的关系曲线。

在厅堂扩声中,常用有指向性的号筒组合音箱等,它可被看作指向性声源,此时Q值按下式计算:式中α——音箱的水平指向性角度;β——音箱的垂直指向性角度。

专业音响工程国家标准(3)

专业音响工程国家标准(3)

简要的混响时间计算公式如下:一般的工程可以在家500Hz或者说kHz处进行细致的计算,各种材料的吸声系数应该严格按照产品参数或建筑材料手册中提供的数据,否则计算结果有可能出入较大,当然对于与推荐值基酊近的计算结果,设计人员不必要过多地去要求装饰单位改进,因为混响时间的要求并不是一个具体的绝对值,只要不是悬殊太大就可以了,计算中还应该考虑观众多少对混响时间的影响。

(7)声场设计的最后还应该考虑声压级的计算其目的不光是为了给使用者提供可行的工程电声参数,以利于他们安全正确地使用设备,创造一个健康卫生的听音环境,同时还中为了给音响工程中的电气设计提供依据,为设备的选型提供参考。

在进行声压级计算前,必须选择一个相应合适的环境其准声压级,而基准声压级的选择就必须了解正常人耳的等响曲线,即弗莱切--芒森曲线。

该曲线反映了人耳对不同频率、不同声压的听感响度反应,曲线上的数字表示相应频率和声压下的响度值,单位是:Phono,人耳对相同声压不同频率的声音的反应是不一样的,同样声压级的低频声音在人耳里产生的响度感觉要低于同声压级的高频声音;要想各频段的声音在人耳里产生的响度基本一致,不出现某些频段听感的不足,就必须使声压达到足够的声压级,这就是声压计算时基准声压选取的依据。

用以语言扩声的工程,由于语言信号主要集中在中频段,这里的等响应曲线度相关较小所以基准声压级可以取70~80dB;用于一般音乐重放的音响工程,这个基准声压可以取85~90dB作为计算的依据;同时为系统的扩声留下12~18dB的峰值的余量及1~3dB的环境噪音余量,那么在平均的听音距离上,设计的额定扩声声压级应该是:P 额=(85~90)dB+(1~3)dB然后需要根据厅堂的实际扩声范围确定平均的听音距离L,额定的声压级就应该是在此位置的实际声压级,然后依此可以通过计算得出音箱的1m位置声压级P:根据前面提及的:距离变化一倍,声压相应变化6dB的关系,则音箱在1m处需要提供的声压级为:P=P额+6LogL至此声扬的设计便基本结束,其后的工作就是与建筑装饰单位密切配合将设计要求付诸实际。

声学计算公式大全[1]

声学计算公式大全[1]

声学计算公式⼤全[1]透射系数:反射系数:吸声系数:声压和声强有密切的关系,在⾃由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。

声压级Lp取参考声压为Po=2*10-5N/m2为基准声压,任⼀声压P的Lp为:听觉下限: p=2*10-5N/m2 为0dB能量提⾼100倍的 P=2*10-3N/m2 为20dB听觉上限: P=20N/m2 为120dB1、声压级Lp取参考声压为Po=2*10-5N/m2为基准声压,任⼀声压P的Lp为:听觉下限: p=2*10-5N/m2 为0dB能量提⾼100倍的 P=2*10-3N/m2 为20dB听觉上限: P=20N/m2 为120dB2、声功率级Lw取Wo为10-12W,基准声功率级任⼀声功率W的声功率级Lw为:3、声强级:3、声压级的叠加10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.⼏个声源同时作⽤时,某点的声能是各个声源贡献的能量的代数和。

因此其声压是各声源贡献的声压平⽅和的开根号。

即:声压级为:声压级的叠加两个数值相等的声压级叠加后,总声压级只⽐原来增加3dB,⽽不是增加⼀倍。

这个结论对于声强级和声功率级同样适⽤。

此外,两个声压级分别为不同的值时,其总的声压级为两个声强级获声功率级的叠加公式与上式相同在建筑声学中,频带划分的⽅式通常不是在线性标度的频率轴上等距离的划分频带,⽽是以各频率的频程数n都相等来划分。

声波在室内的反射与⼏何声学3.2.1 反射界⾯的平均吸声系数(1)吸声系数:⽤以表征材料和结构吸声能⼒的基本参量通常采⽤吸声系数,以α表⽰,定义式:材料和结构的吸声特性和声波⼊射⾓度有关。

声波垂直⼊射到材料和结构表⾯的吸声系数,成为“垂直⼊射(正⼊射)吸声系数”。

这种⼊射条件可在驻波管中实现。

其吸声系数的⼤⼩可通过驻波管法来测定。

当声波斜向⼊射时,⼊射⾓度为θ,这是的吸声系数称为斜⼊射吸声系数,。

混响时间计算

混响时间计算

混响和混响时间是室内声学中最为重要和最基本的概念。

所谓混响,是指声源停止发声后,在声场中还存在着来自各个界面的迟到的反射声形成的声音“残留”现象。

这种残留现象的长短以混响时间来表征。

混响时间公认的定义是声能密度衰减60dB所需的时间。

根据声能密度的衰减公式(11-8)可知,其衰减率(每秒的衰减量)是e-4v/ca , 以dB表示,衰减率可写为d=10lge-4v/ca(dB/s)。

根据混响时间定义,则混响时间:上式称为赛宾(sabine)公式。

式中,A是室内的总系音量,是室内总表面积与其平均吸声系数的乘积。

室内表面常是有多种不同材料构成的,如每种材料的吸声系数为a i,对应表面积为s i,则总吸声量A=Σs i a i。

如果室内还有家具(如桌、椅)或人等难以确定表面积的物体,如果每个物体的吸声量为A i,则室内的总吸声量为:A=Σs i a i+Σa i上式也可写成A=Sā+ΣA i式中S—室内总表面积,㎡S=S1+S2+......+Sn=Σs i在室内总吸声量较小、混响时间较长的情况下,根据赛宾的混响时间计算公式计算出的数值与实测值相当一致。

而在室内总吸声量较大、混响时间较短的情况下,计算值比实测值要长.在ā=1,即声能几乎被全部吸收的情况下,混响时间应当趋近于0,而根据赛宾的计算公式,此时T并不趋近于0,显然与实际不符。

依琳提出的混响理论认为,反射声能并不像赛宾公式所假定的那样,是连续衰减的,而是声波与界面每碰撞一次就衰减一次,衰减曲线呈台阶形。

假定经过第n次放射后的放射声声强为I,那么I=IO(1-ā)n。

ā室内界面的平均吸声系数。

为了计算在一封闭空间中单位时间内的反射次数,引起“平均自由程”的概念。

平均自由程就是反射声在于内表面的一次反射之后,到下一次反射所经过的距离的统计平均值。

在常规形状的室内。

平均自由程p=s/4v。

V为房间容积(m3)s为房间内表面积(m2)。

所以在单位时间里,声波与室内表面的碰撞次数(反射次数)为N=p/c=4v/4s式中c—声速,m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

音质设计与混响时间、声压级的计算
(一)厅堂音质的设计要求
参见表1-11、表1-12及图1-12。

厅堂音质设计要求与相关的客观指标表1-11
部分民用建筑的允许噪声级表1-12
办公室3546
体育馆3546
大办公室4050
餐厅4050
(二)混响时间的计算与选择
1.混响时间T60的计算公式参见表1-13。

式中V——房间容积(m3);
S——室内总表面积(m2);
--平均吸声系数。

称为室内总吸声量,且有:
式中S1…Sn——室内不同材料的表面积(m2);
α1…αn——不同材料的吸声系数。

4m——空气吸声系数(表1-14),在1000Hz以下时可省略。

空气吸声系数4m值(室温20℃)
表1-14
频率(Hz)
室内相对湿度(%)3040506070
1000 2000 4000 6300 8000
2.混响时间的选择
参见表1-15及图1-13、图1-14。

混响时间推荐值
(500Hz与1000Hz平均值)表1-15
3.混响时间计算示例
参见表1-16(先求各表面积S,再根据材料吸声系数α,代入表1-13公式算得)。

(三)声压级计算公式
1.室外点声源的声压级
Lp=Lw-20lgr-11(1-1)
式中Lp——空间某点的声压级(dB);
Lw——声源的声功率级(dB);
r——被测点与声源的距离(m)。

对于有地面反射的情况,上式改为:
Lp=Lw-20lgr-8(1-2)
2.扬声器电功率与声压级的关系式
扬声器作为声源,其直达声压级Lp表为:
Lp=L0+10lgPL-20lgr(1-3)
式中PL——加到扬声器的电功率(W);
r——扬声器到听音点的距离(m);
L0——扬声器特性灵敏度(dB)
由上式可见:
(1)若扬声器的电功率加倍,则声压级Lp增加3dB;
若电功率PL增至10倍,则声压级Lp增加10dB。

(2)若听音距离加倍,则声压级Lp减少6dB;
若听音距离增至10倍,则声压级Lp减少20dB。

当听音点偏离有指向性的扬声器轴线为θ角时,其声压级Lp(θ)为:式中Lp——(1-3)式值;
r——辐射距离(m);
R0——与轴成θ角的听音点辐射距离(m);
D(θ)——扬声器的指向性系数,由厂家提供。

3.室内声压级Lp的计算式
(1-4)
式中Lw——声源声功率级(dB),,其中P为声源声功率(W);
r——听音点与声源的距离(m);
R——房间常数(m2),,其中S为室内总表面积(m2),为平均吸声系数;
Q——指向性因数。

当声源在房间空中或舞台上时,Q=1;在墙上或地面上时,Q=2;在两墙交界处时,Q=4;在三界面交角处时,Q=8。

图1-15表示相对声压级(Lp-Lw)与r的关系曲线。

在厅堂扩声中,常用有指向性的号筒组合音箱等,它可被看作指向性声源,此时Q值按下式计算:
式中α——音箱的水平指向性角度;
β——音箱的垂直指向性角度。

例如,JBL公司SR4704型音箱的指向性(α×β)为90°×40°,则代入(1-5)式得Q=。

4.扬声器最远供声距离
rm≤(3~4)rc
式中rc——临界距离,;
其中Q——扬声器指向性因数;
R——房间常数(m2)。

对于清晰度要求较高的场合,则取rm≤3rc。

当最大距离超过3rc时,清
晰度变差,此时可增加吸声处理,使rc增大。

图1-15为室内声压级计算图表。

相关文档
最新文档