数字信号实验报告
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
xjtu数字信号处理“实验报告”

数字信号处理实验报告实验1 常见离散信号的MATLAB产生和图形显示【实验目的】加深对常用离散信号的理解;【实验内容】(1)单位抽样序列(取100个点)程序设计:N=100;x=[1 zeros(1,N-1)];stem(0:N-1,x)结果(2)单位阶跃序列(取100个点)程序设计:N=100;x=ones(1,N);stem(0:99,x);axis([0 100 0 2])结果102030405060708090100(3) 正弦序列(取100个点) 程序设计: N=100; n=0:99; f=100; Fs=1000; fai=0.2*pi; A=2;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x); grid 结果0102030405060708090100(4)复正弦序列(取100个点)程序设计:N=100;n=0:99;w=0.2*pi;x=exp(j*w*n);stem(n,x);结果(5)复指数序列(取41个点)程序设计:>> n=0:40;>> c=-0.02+0.2*pi*i;>> x=exp(c*n);>> subplot(2,1,1);>> stem(n,real(x));>> subplot(2,1,2);>> stem(n,imag(x));结果05101520253035400510152025303540(上部为实部,下部为虚部)(6)指数序列(取100个点)程序设计:>> n=0:99;>> a=0.5;>> x=a.^n;>> stem(n,x);结果:【实验要求】讨论复指数序列的性质。
由(5)的图形结果可以看出,复指数序列实部和虚部均为按指数衰减(上升)的序列,两者的均是震荡的,实部震荡周期与指数的实部有关,虚部震荡周期与指数的实虚部有关。
数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
【精品】数字信号处理实验报告
【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。
2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。
3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。
4 总结。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。
实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。
2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。
3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。
4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。
实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。
2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。
3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。
实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。
在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。
数字信号处理实验报告
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:快速傅立叶变换的谱分析一、实验目的:学会利用matlab中的FFT函数,即进行信号的谱分析。
二、实验题目:1.已知:t1=[0:0.001:0.3];t2=[0.301:0.001:0.6];t3=[0.601:0.001:0.9];t4=[0.901:0.001:1.199];x1=sin(2*pi*100*t1);x2=sin(2*pi*50*t2);x3=sin(2*pi*25*t3);x4=sin(2*pi*10*t4);信号s1为t= 0:0.001:1.199;s1= sin(2*pi*100*t)+sin(2*pi*50*t)+sin(2*pi*25*t)+sin(2*pi*10*t);信号s2为t=[t1,t2,t3,t4];s2= [x1,x2,x3,x4];信号s3为t=[t1,t2,t3,t4];s3= [x1,x4,x2,x3];a.编写程序分别画出信号s1,s2,s3的时域波形和幅频图(参考图1,2,3)。
b.观察信号s1,s2,s3的时域波形和频谱图,思考其幅频图的差别及其原因。
c.信号s1,s2,s3的抽样频率fs为多少?对于1200个点的时域离散序列,对其FFT后仍为长度为1200个点的序列,即周期N=1200,试分析N与离散时间信号频谱的周期fs的对应关系。
各频谱图的频率分辨率为多少Hz?d.若有信号s4的幅频图与s2的幅频图完全相同(如图2所示),问s4的时域波形和s2是相同的吗,为什么?实验程序清单:t1=[0:0.001:0.3];t2=[0.301:0.001:0.6];t3=[0.601:0.001:0.9];t4=[0.901:0.001:1.199];x1=sin(2*pi*100*t1);x2=sin(2*pi*50*t2);x3=sin(2*pi*25*t3);x4=sin(2*pi*10*t4);%信号s1的时域图和频域图t5=0:0.001:1.199;x5=sin(2*pi*100*t5)+sin(2*pi*50*t5)+sin(2*pi*25*t5)+sin(2*pi*10*t5);y5=abs(fft(x5));f=1000*(0:(1/1200):0.5);figure(1)subplot(2,1,1),plot(t5,x5);grid on;axis tight;%波形图title('时域波形');xlabel('t(s)');subplot(2,1,2),plot(f,y5(1:601));grid on;axis tight;%幅频图title('幅频图');xlabel('f(Hz)');%信号s2的时域图和频谱图t6=[t1,t2,t3,t4];x6=[x1,x2,x3,x4];y6=abs(fft(x6));figure(2)subplot(2,1,1),plot(t6,x6);grid on;axis tight; %波形图title('时域波形');xlabel('t(s)');subplot(2,1,2),plot(f,y6(1:601));grid on;axis tight; %幅频图title('幅频图');xlabel('f(Hz)');%信号s3的时域图和频域图x7=[x1,x4,x2,x3];y7=abs(fft(x7));figure(3)subplot(2,1,1),plot(t6,x7);grid on;axis tight; %波形图title('时域波形');xlabel('t(s)');subplot(2,1,2),plot(f,y7(1:601));grid on;axis tight; %幅频图title('幅频图');xlabel('f(Hz)');结果分析a.编写程序分别画出信号s1,s2,s3的时域波形和幅频图(参考下图)。
b.观察信号s1,s2,s3的时域波形和频谱图,思考其幅频图的差别及其原因。
因为信号s1、s2、s3这三个信号中都有频率为100hz,50hz,25hz,10hz的频率分量,从波形图可以看出s1只是单纯的含有这四种分量,而s2,s3的频谱图相同,除了这四种分量还有其他分量,因为s1中这四种分量一直存在,但s2,s3中只是特定时间段出现。
c. 信号s1,s2,s3的抽样频率fs为多少?对于1200个点的时域离散序列,对其FFT后仍为长度为1200个点的序列,即周期N=1200,试分析N与离散时间信号频谱的周期fs的对应关系。
各频谱图的频率分辨率为多少Hz?频谱图横坐标所以两相邻点的频率间隔为1000/1200=5/6hz,所以各频谱图的频率分辨率F=5/6HZ.又因为F=1/tp=1/NT=fs/N,因为N=1200,所以s1,s2,s3的抽样频率fs=NF=1200*5/6=1000HZ.d .若有信号s4的幅频图与s2的幅频图完全相同(如图2所示),问s4的时域波形和s2是相同的吗,为什么?若有信号s4的幅频图与s2的幅频图完全相同,s4的时域波形和s2可能是不同的,因为幅频特性图只表明了幅度和频率的关系,即对应频率分量的幅值,而其相位特性未知,时域图是幅度和相位图完全一致时才相同。
实验小结虽然第一次实验看起来比较简单,但是由于平时不怎么接触Matlab,导致很多对Matlab语法以及命令操作不是很熟悉,但是Matlab本省提供的帮助文档很全,所以遇到不会的命令或者函数可以直接调用帮助文档,可以很快的解决问题。
其次就是通过实验,反复研究代码,可以加深对快速傅立叶变换的谱分析的理解。
实验二:IIR数字滤波器设计一、实验目的:1、熟悉滤波器的基本概念;2、了解滤波器的分类;3、熟悉应用matlab设计各种滤波器的方法。
二、实验相关原理:1.数字滤波器分类实现方法有限长冲激响应----FIR滤波器无限长冲激响应----IIR滤波器功能低通(LP)高通(HP)带通(BP)带阻(BS)2、数字滤波器设计步骤一、给出所需要的滤波器的技术指标二、设计一个H(Z)使其逼近所需要的技术指标三、实现所设计的H(Z)( H(Z)为系统的数学模型:传递函数模型、状态方程模型和零极点增益模型等)3、IIR数字滤波器设计步骤一、按一定规则将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标二、根据转换后的技术指标使用滤波器阶数选择函数,确定最小阶数N和固有频率Wn三、运用最小阶数N、固有频率Wn产生模拟滤波器原型四、运用冲激响应不变法或双线性不变法把模拟滤波器转换成数字滤波器函数1、Buttord(Wp,Ws,Rp,Rs)butterworth滤波器阶数选择函数,返回符合要求性质的滤波器最小阶数N 以及固有频率WnWp 通带截至频率Ws 阻带截至频率Rp 通带衰减(不超过)Rs 阻带衰减(不小于)Wp,Ws是归一化频率,范围是[0,1],对应д弧度归一化处理: Wp(或Ws)/(fs/2)例:确定数字低通Butterworth滤波器的阶数和固有频率。
要求:wp=500hz,ws=550hz,rp=1db,rs=50db,fs=2000hz程序清单:Wp=500;ws=550;rp=1;rs=50;fs=2000 ;[N,Wn]=buttord(wp/(fs/2),ws/(fs/2),rp,rs)2、Butter(N,Wn)设计数字滤波器函数格式:[B,A]= Butter(N,Wn) [B,A]是滤波器系数矩阵。
如果Wn=[w1,w2]是一个二元向量,则该函数将设计出带通、带阻数字滤波器3、freqz(B,A)求线性离散时间系统的传输函数的频率响应格式:[H,W]= freqz(B,A)H:频率响应W:所要计算响应的频率点组成的向量4、filter()一维数字滤波函数格式:y= filter(B,A,x)x:待滤波信号y:滤波以后的信号x1=wavread('pb8k.wav');%读取语音信号实验题目:用双线性变换法设计Butterworth滤波器对加噪后的语音信号进行滤波。
绘制频率响应曲线,画出滤波前后的时域图和频谱图。
实验程序清单:%双线性变换法设计Butterworth滤波器fs=8000;x1=wavread('pb8k.wav');t=(0:length(x1)-1)/8000;f=fs*(0:1023)/2048;A1=0.05;A2=0.10;d=[A1*cos(2*pi*3800*t)+A2*sin(2*pi*3600*t)]';x2=x1+d;%用双线性变换法设计一数字巴特沃斯低通器fp=3200;fs=3400;Fs=8000;Ts=1/Fs;wp=2*pi*fp*Ts;ws=2*pi*fs*Ts;Rp=1;Rs=15;wp1=2/Ts*tan(wp/2); %将模拟截止频率进行预畸变ws1=2/Ts*tan(ws/2);[N,Wn]=buttord(wp1,ws1,Rp,Rs,'s'); %选择滤波器的最小阶数[Z,P,K]=buttap(N); %创建butterworth模拟滤波器%输入N:滤波器的阶数%输出Z:零点;P:极点;K:增益[Bap,Aap]=zp2tf(Z,P,K);[b,a]=lp2lp(Bap,Aap,Wn); %求模拟滤波器的传递函数[bz,az]=bilinear(b,a,Fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换(即求的数字滤波器的系统函数)[H,W]=freqz(bz,az); %绘制频率响应曲线figure(1)plot(W*Fs/(2*pi),abs(H))grid on;axis tight;xlabel('频率(Hz)')ylabel('频率响应')title('Butterworth')f1=filter(bz,az,x2);figure(2)subplot(2,1,1)plot(t,x2) %画出滤波前的时域图grid on;axis tight;title('滤波前的时域波形');subplot(2,1,2)plot(t,f1); %画出滤波后的时域图grid on;axis tight;title('滤波后的时域波形');y3=fft(f1,2048);figure(3)y2=fft(x2,2048);subplot(2,1,1);plot(f,abs(y2(1:1024))); %画出滤波前的频谱图grid on;axis tight;title('滤波前的频谱')xlabel('Hz');ylabel('幅度');subplot(2,1,2)plot(f,abs(y3(1:1024))); %画出滤波后的频谱图grid on;axis tight;title('滤波后的频谱')xlabel('Hz');ylabel('幅度');实验波形图:实验小结对于IIR数字滤波器的设计还真是遇到很多问题,刚开始是找不到音频文件,寻求助教和同学的帮助后,自己慢慢一步一步操作才得到实验结果。