流体动力学基础 _流体力学
热工流体动力学基础

【例】 如图所示,水泵汲入 管的外径为114mm,壁厚为4mm, 压出管的外径为88.5mm,壁厚 为4mm。在汲入管中水的流速 为1.5m/s。求在压出管中水的
流速。
【解】 已知,汲入管的内经D1=114-2×4=106mm,w1=1.5m/s,
D2=88.5-2×4=80.5mm,设在汲入管与压出管之间没有渗漏,
z1pg1 w 2g 12 z2pg2 w 2g22
伯努力方程
不可压缩的理想液体在等温流动过程中, 在管道的任一截面上,流体的静压能、 位能及动能之和是不变的。 三者之间可以相互转化
精品课件
(2)实际情况下的伯努力方程 实际流体有粘性,流动过程中有能量损失,能量方程:
z 1g p 1 1 21 2 z 2g p 2 1 2 2 2h L
输入机械能 H e15 (0 10)5 1 2 01 0 .24 (2 7.3 025 3.1 62 7 )50 11.9 7(P 1 7)3 a
精品课件
2.压头间的转换 (1)几何压头和静压头之间的转变
1-1和2-2的伯努力方程:
hg1hs1hg2hs2
因为 hg2(在下)>hg1(在上)
则 hs2<hs1
【解】 1000℃时烟气的密度为: 0(pp0)(T T1 0)
1.399994102 2730.27(k4g/m3) 1013225731000
1000℃时烟气的粘度为:
02T7C 3C2T7332
1.587105(1227 7311377)331 (2277 )32 334.9105(Pas)
精品课件
吸风管内风速
w 1 3 V F 6 1 3 0 4 V 6 0 d 1 2 0 30 4 6 3 9 .1 0 2 0 4 .3 0 2 0 3 .1 0 6 ( m 7 /s ) w 2 3 V F 6 2 3 0 4 V 6 0 d 2 2 0 30 4 6 3 9 .1 0 0 2 4 .4 0 2 0 2 .3 0 0 ( m 5 /s )
4工程流体力学 第四章流体动力学基础

Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
工程流体力学--第三章--流体动力学基础ppt课件

度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt
流体力学 第三章 流体动力学

7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
工程流体力学课件3流体动力学基础

恒质
量
三
守
大
守
恒能
恒 定
量 守
律
恒动
量
守
程连
续 方
程恒 定
总
程能 量 方
流 三
大
程动
方
量
方
• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量
由
dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点
工程流体力学课件3流体动力学基础

边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u
dy
将牛顿内摩擦定律推广到一般空间流动,得出
yz zy zx xz xy yx
u z y
u y z u z x u x y
u x z u y x
(4—6)
3.粘性流体运动微分方程
g
2g
p g
表示理想流体的恒定流动,沿同一元流(沿同一流线)各断式 (4—23)则面的总水头相等.理想流体的水头线是水平线
图4—2水头线
3.几何意义
各项的几何意义是不同的几何高度:z是位臵高度, 测压管 高度。总结如下:
p
式中o点的压强水头,由另—根测压管量测, 于是测速管和测压管中液面的高度差,就是A 点的流速水头,该点的流速:
第二个角标表示应力的方向,则法向应力
p xx p yy p zz 进—步研究证明,任一点任意三个正交面上的法向应力之和 都不变,即
pxx p yy pzz p p p
据此,在粘性流体中,把某点三个正文面上的法向应力的平 均值定义为该点的动压强以p表示:
1 p pxx p yy pzz 3
1)。设六面体的中心点o‘,速度压强p,分析该微
小六面体x方向的受力和运动情况。
1.表面力:理想流体内不存在切应力.只有压强x方
向受压面(abcd面和a‘b’c‘d’面)形心点
图4—1连续性微分方程
的压强为:
pM p
1 p 2 x
dx
pN p
1 p 2 x
dx
受压面上的压力为: PM p M dydz
PN p N dydz
质量力: FBx Xdxdydz
由牛顿第二定律
[( p
1 p 2 x
F
1 p 2 x
x
m
du x dt
得:
dx ) -( p
du x ) ] dydz + Xdxdydz dx dxdydz dt
化简得: X
1 Y 1 Z
p1
——理想流体运动微分方程沿流线的积分称为伯努利积分,
由于元流的过流断面积无限小,所以沿流线的伯努利方 程就 是元流的伯努利方程。推导该方程引入的限定条件, 就是理想流体元流伯努利方程的应用条件,归纳起来有:理 想流体;恒定流动;质量力中只有重力;沿元流(流线);不 可压缩流体。
1.物理意义式
式子中的前两项 分别是单位重量流体具有的比位能压能或比势能;单位重 量流体具有的动能。 2
[例4—1] 理想流体速度场为 ux ay, uy bx, uz 0, a, b 为常数。试求:(1)流动是否可能实现;(2)流线方程;(3)等 压面方程(质量力忽略不计) ux uy uz [解] (1)由连续性微分方程 0
x y z
满足连续性条件,流动是可能实现的。 (2)由流线方程 dx dy 得:
采用类似于推导理想流体运动微分方程式(4—1)的方 法,取微小平行 六面体,根据牛顿第二定律建立以应力 (包 括切应力 ) 表示的运动微分方程式,并以式 (4—5) 、式 (4—6) 代人整理,使得到粘性液体运动微分方程:
u y u x u x u z 2 1 p X x u x t u x x u y y u z z u y u y u y u y 1 p 2 Y y u y t u x x u y y u z z 1 p u z u z u z u z 2 Z z u z t u x x u y y u z z
用矢量表示为
f p u
1 2 u t
u u
(4—8)
式中:
2
2 x 2
2 y 2
2 z 2
——拉普拉斯算子。
——粘性流体运动微分方程,又称为纳维— 斯托克斯方程(简写为N—S方程)。
N—S方程表示作用在单位质量流体上的质量力、表面力(压力 和粘性力) 的相平衡。由N—S方程式和连续性微分方程式组成的 基本方程组,原则上可以求解速度场和压强场p,可以说粘性流体的 运动分析,归结为对N—S方程的研究。
当阀门关闭时,根据压强计的读数, 应用流体静力学基本方程
pa p a 0.6 p a V22 H 0 0 g g 2g
pa gH pa 2 .8 pa ,
求出H值:
H 2.8 pa 2.8 98060 28m H2 O g 9806
图4—5
1
p x
dx
p y
dy
duy
p z
dz dp d
1
p px, y, z
p
③.恒定流流线与迹线重合:dx=uxdt,dy=uydt,dz=uzdt 则
2 2 2 u u u dux duz x y z dx dy dz d dt dt dt 2
dx dy ay bx
ux
uy
bxdx aydy
积分得流线方程 bx ay c a,b同号,流线是双曲线a,b异号,流线是圆。 (3)由欧拉运动微分方程式,不计质量力:
2 2
1 1
p x
p y
u x uy abx y u y ux aby x
1 p x p y p z
du x dt du y dt du z dt
(4—1)
用矢量表示为:
将加速度项展成欧拉法表达式 : u x u x u x u x 1 p X x t u x x u y y u z z u y u y u y u y 1 p Y y t u x x u y y u z z u z u z u z u z 1 p Z z t u x x u y y u z z
第二节 元流的伯努利方程
一、理想流体运动微分方程的伯努利积分 理想流体运动微分方程式是非线性偏微分方程组,只有 特 定 条 件 下 的 积 分 , 其 中 最 为 著 名 的 是 伯 努 利 (Daniel Bernoull,1700~1782,瑞士科学家)积分。
u y u x u z 1 p X x u x x u y y u z z u y u y u y 1 p Y y u x x u y y u z z u z u z u z 1 p Z z u x x u y y u z z
第四章 流体动力学基础
第一节 第二节 第三节 第四节 第五节 流体的运动微分方程 元流的伯努利方程 总流的伯努利方程 总流的动量方程 理想流体的无旋流动
第一节 流体的运动微分方程
一、理想流体运动微分方程
在运动的理想流体中,取微小平行六面体(质点),
正交的三个边长dx,dy,dz,分别平行于x,y,z坐标轴(图4—
(4—10)
由理想流体运动微分方程式
du x 1 p X x dt du y 1 p Y y dt du z 1 p Z z dt
各式分别乘以沿流线的坐标增量dx,dy,dz,然后相加得:
( Xdx Ydy Zdz)
1 f p u t
(4—2)
u u
(4—3)
上式即理想流体运动微分方程式,又称欧拉运动 微分方程式。该式是牛顿第二定律的表达式,因此是 控制理想流体运动的基本方程式。 1755年欧拉在所著的《流体运动的基本原理》中 建立了欧拉运动微分方程式,及上一节所述的连续性 微分方程式。对于理想流体的运动,含 ux, uy, uz 有和 p四个未知量,由式(3—30)和式(3—36)组成的基本方 程组,满足未知量和方程式数目一致,流动可以求解。 因此说,欧拉运动微分方程和连续性微分方程奠定了 理想流体动力学的理论基础。
1 p p ( dx dy) ab( xdx ydy) x y 1 dp ab( xdx ydy)
将方程组化为全微分形式:
积分,得
x2 y2 p ab c' 2
令p=常数 即得等压面方程
x y c
2 2
等压面是以坐标原点为中心的圆。
duy dux duz dx dy dz dt dt dt
1 p x
dx dy dz
p y
p z
、
1.引人限定条件: ①.作用在流体上的质量力只有重力:X=Y=0,Z=-g;
( Xdx Ydy Zdz) gdz
②.不可压缩,恒定流: C ,
p' p u 2g 2 gh0 (4—27) g
根据上述原理,将测速管和测风管组合 成测量点流速的仪器,图4—4所示,与迎流 孔(测速孔)相通的是测速管,与侧面顺流孔 (测压孔或环形窄缝)相通的是测压管。考 虑到粘性流体从迎流孔至顺流孔存在粘性效 应,以及皮托管队员流场的干扰等影响,引 用修正系数C:
相加带入后得:
( Xdx Ydy Zdz)
duy dux duz dx dy dz dt dt dt
1 p x
dx dy dz
p y
p z
gz
p g
u2 2
C
z
p
u2 2g
C
2 u12 p2 u 2 z1 z2 2g 2g
u C 2g p' p C 2 gh0 g
图4—4 毕托管构造
录像