六年级奥数优胜教育第2讲:数列与数表含答案
小学奥数基础教程(附练习题和答案)六年级-30讲全册版

小学数学奥数基础教程(六年级)本教程共30讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
也就是说,6.借助第三个数进行比较。
有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
小学六年级奥数题目 特殊数列

特殊数列等比数列:是指一串数字中前后两个数相除得到的商相等的数列.例如:1,2,4,8,16,32,64,128,...兔子数列(斐波那契数列):是指一数列中每相邻的3个数为一组,前面两个数的和等于第三个数.例如:1,1,2,3,5,8,13,21,34,55,89,...青蛙数列(分组数列):是指把数列分为奇数项和偶数项,分别寻找数列规律.例如:1,1,4,2,7,3,10,1,13,2,16,3,19,...周期数列:是指数列中的数字反复重复出现.例如:1,2,3,4,5,1,2,3,4,5,...规律差数列:是指数列本身规律不明显,但是相邻两个数的差构成的数列规律非常明显.例如:1,3,7,15,31,63,127,255,511,...视频描述成语“愚公移山”比喻做事有毅力,不怕困难.假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推.愚公和它的子孙每人一生能搬运100吨石头.如果愚公是第1代,那么到了第______代,这座大山可以搬完.(已知10个2连乘之积等于1024)1. 1.数列1,3,9,27,81,243,...,问该数列第11项等于多少?2. 2.细胞的增长方式,就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?3. 3.一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”(填“够”或“不够”)视频描述下面是一串有规律的数:9,20,33,48,65,84,....,问这串数中的第41个数是_____.1. 1.下面是一串有规律的数:9,22,39,60,85,114,....,问这串数中的第30个数是_______.2. 2.已知六个数按以下顺序排列:2,3,5,9,17,33,…如此继续排下去,问第七、八个数的和是什么?视频描述数列2,9,17,24,32,39,47,54,62,...,问第2010项是多少?1. 1.分析数列0,1,3,6,10,15,21,28,...的规律,问:数列第39项是多少?2. 2.数列1,10,13,22,25,34,37,46,49,...,问数列第1000项是多少?3. 3.数列1,3,4,6,8,9,11,13,14,16...,问数列第199项是多少?视频描述一列由两个数组成的数组:(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?1. 1.下面这个数列的规律很特别,填出其中的数.1,121,2,61,3,41,4,31,_____,_____,6,21注:最后答案用减号“-”隔开,比如:3-19(从前向后排列)2. 2.下面的算式是按规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…第______算式中的得数是2008.3. 3.下面数列的每一项由3个数组成的数组表示,它们依次是:(1,3,5),(2,6,10),(3,9,15)...问:第100个数组内3个数的和是多少?视频描述有一组算式:1+1+1,2+3+4,3+5+7,4+7+10,5+9+13,6+11+16,7+13+19,...,那么第2005个算式中三个数的和是________.1. 1.下下面的数组是按一定顺序排列的:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),….请问:(1)其中第70个括号内的数字之和是多少?(2)前50个括号内各数之和是多少?注:最后答案用减号“-”隔开,比如:3-8(从前向后排列)2. 2.找规律填数:179,278,377,476,______,______,773,872.问空白处数字之和为多少?3. 3.下面的算式是按规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…,问:第______算式中的得数是1992.视频描述一个数列,从第3项起,每一项都等于其前面两项的和.这个数列的第2项为39,第10项为2009,那么,前8项的和是______.1.开始有三个数为1,1,1,每次操作把其中的一个数换成其他两数的和.问经过10次操作后所得的三个数中,最大数的最大可能值是多少?视频描述对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,依此类推直到得到1时停止操作。
北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)-优质

小学六年级下册数学奥数知识点讲解第1课《列方程解应用题》试题附答案
小学六年级下册数学奥数知识点讲解第2课《关于取整计算》试题附答案
答案
六年级奥数下册:第二讲关于取整计算习题解答
小学六年级下册数学奥数知识点讲解第3课《最短路线问题》试题附答案
答案
六年级奥数下册:第三讲最短路线问题习题解答
小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案
答案
小学六年级下册数学奥数知识点讲解第5课《巧求面积》试题附答案
六年级奥数下册:第五讲巧求面积习题解答
小学六年级下册数学奥数知识点讲解第6课《最大与最小问题》试题附答案
答案。
小学奥数课本06-01(上)附答案和详解

=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解 决了.
甲与乙的时间比是4∶3. 工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比 的反比,为3∶4.
答:这批树一共252棵.
例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,
例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程
之几(即一人的工效). 解:①1人1天完成全部工程的几分之几(即一人的工效): ②剩余工作量若要提前6天完成共需多少人:
=36(人). ③需增加几人:
4 / 85
36-18=18(人). 答:还要增加18人. 例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小 时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水, 进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确 到分钟) 分析与解答 ①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情 况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工 效), 排空水的时间=1÷(出水管工效-进水管工效). ②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池
4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现
满水箱? 5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接 着做,共用20天完成.求甲乙完成工作量之比.
7 / 85
7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天 可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合 做这批玩具,需要多少天完成?
小学六年级奥数题认识简单数列、上楼梯问题、平均数问题

小学六年级奥数题认识简单数列、上楼梯问题、平均数问题1.小学六年级奥数题认识简单数列篇一1、如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213……996997998999。
那么在这个多位数里,从左到右的第2000个数字是多少?2、标有A,B,C,D,E,F,G记号的7盏灯顺次排成一行,每盏灯各安装着一个开关。
现在A,C,D,G这4盏灯亮着,其余3盏灯是灭的。
小方先拉一下A开关,然后拉B,C,……,直到G的开关各一次,接下去再按从A到G顺序拉动开关,并依此循环下去。
他这样拉动了1990次后,亮着的灯是哪几盏?3、在1,2两数之间,第一次写上3;第二次在1,3之间和3,2之间分别写上4,5,得到14352。
以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复了8次,那么所有数的和是多少?4、有一列数:1,1989,1988,1,1987,……。
从第三个数起,每一个数都是它前面两个数中大数减小数的差。
那么第1989个数是多少?5、在1,9,8,9后面顺次写出一串数字,使得每个数字都等于它前面两个数之和的个位数字,即得到1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是多少?2.小学六年级奥数题上楼梯问题篇二1、有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?解:从1层走到11层共走:11-1=10(个)从1层走到11层一共要走:17×10=170(级)答:从1层走到11层,一共要登170级台阶。
2、从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?解:每一层楼梯的台阶数为:48÷(4-1)=16(级)从1楼到6楼共走:6-1=5(个)楼梯从1楼到6楼共走:16×5=80(级)台阶答:从1楼到6楼共走80级台阶。
六年级上奥数第二讲 等差和裂项求和

第二讲 等差和裂项求和【知识概述】一、等差数列求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:二、列项求和实质:将一个分数裂项,分成几个分数的和与差的形式。
例 3121232361-=⨯-= 41314343127+=⨯+= 目的:将一串分数中的每一个分数适当地裂项,出现一对一对可以抵消的数,从而简化计算。
减法裂项:分母分成两数之积,分子为两数之差。
直接裂项加法裂项:分母分成两数之积,分子为两数之和。
变形裂项:先变形再直接裂项。
【典型例题】例1 1+2+3+…+1999=?例2 3+7+11+…+99=?项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。
例3 计算:3012011216121++++例4 计算:7217561542133011209127651-+-+-+-例5.+⨯+⨯+⨯752532312……+1192⨯例6 1111111248163264128++++++例7 110118116114112122222-+-+-+-+-【我能行】1、17+19+21+ (39)2、5+8+11+14+ (50)3、+⨯+⨯+⨯199919981199819971199719961……+200220011⨯+200214.521⨯+851⨯+1181⨯+……+29261⨯5.7217561542133011209127311+-+-+-+6. 34313312831073743413⨯+⨯+⨯+⨯+⨯7、3512214152127653221---+-+8、 256112816413211618141211--------【我试试】1、2+4+6+ (200)2、3+10+17+24+ (101)3.1431119919631735151513311+++++4. 152403187632145245---++5. 6432168421214181161321641++++++++++++6.11231631431232222-+⋅⋅⋅+-+-+-。
小学奥数基础教程附练习题和答案六年级讲全册版

小学数学奥数基础教程(六年级)本教程共30讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
也就是说,6.借助第三个数进行比较。
有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
(word完整版)小学六年级奥数题附答案(2021年整理)

(word完整版)小学六年级奥数题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学六年级奥数题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学六年级奥数题附答案(word版可编辑修改)的全部内容。
小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4。
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了."小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。
有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运。
最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲数列与数表例1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?例2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?例3:计算2+4+6+8+…+1990的和。
例4:计算(1+3+5+...+l99l)-(2+4+6+ (1990)例5:已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。
例6:小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?例7:建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
例8:四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?A1.有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
2.求1,5,9,13,…,这个等差数列的第3O项。
3.计算1+2+3+4+…+53+54+55的和。
4.计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002)5.有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。
B6.一等差数列,首项=7,公差=3,项数=15,它的末项是多少?7.计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。
8.文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?9.李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?10.有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?C11.一些同样粗细的圆木,像如图所示一样均匀地堆放在一起,已知最下面一层有70根。
一共有多少根圆木?12.用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按下图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边能放10根火柴棒,那么这个大的等边三角形中一共要放多少根火柴棒?13.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?14.学校进行书法大赛,每个选手都要和其他所有选手各赛一场。
如果有16人参加比赛,一共要进行多少场比赛?15.在一次元旦晚会上,一共有48位同学和5位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?1.有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?2.求等差数列2,5,8,11,…的第100项。
3.计算5+10+15+20+⋯ +190+195+200的和。
4.有一列数是这样排列的:2,11,20,29,38,47,56,…,求785是第几个数。
5.计算(2+4+6+...+100)-(1+3+5+ (99)1.在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?2.计算100+99+98+…+61+60的和3.在等差数列6,13,20,27,…中,从左到右数第几个数是1994?4.小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?5.用相同的小立方体摆成如图所示的形状,如果共摆成10层,那么最下面有多少个小立方体?6.一辆公共汽车有66个座位,空车出发后,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依次类推,第几站后,车上坐满乘客?7.一次朋友聚会,大家见面时总共握手28次。
如果参加聚会的人和其余的每个人只握手一次,问参加聚会的共有多少人?8.有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?第二讲数列与数表1.等差数列:若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:通项公式:第几项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
2.斐波那契数列:1,1,2,3,5,8,13,21,34…这个以1,1分别为第1项、第2项,以后各项都等于前两项之和的无穷数列,就是斐波那契数列。
3.周期数列与周期:从某一项开始,重复出现同一段数的数列称为周期数列,其重复出现的这一段数的个数则称为此数列的周期。
例如: 8,1,2,3,8,4,5,7,6,3,8,4,5,7,6,3,8,4,5,7,6……这是一个周期数列,周期为6。
4.寻找数列的规律,通常有以下几种办法:1寻找各项与项数间的关系。
2考虑此项与它前一项之间的关系。
3考虑此项与它前两项之间的关系。
4数列本身要与其他数列对比才能发现其规律,这类情形稍微复杂些。
5有时可以将数列的项恰当分组以寻求规律。
(“分组”是难点)6常常需要根据题中的已知条件求出数列的若干项之后,找到周期,探求规律。
1.逐步了解首项、末项、项数、公差与和之间的关系。
2.在解题中应用数列相关知识。
例1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?分析:仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
例2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?分析:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
例3:计算2+4+6+8+…+1990的和。
分析:仔细观察数列中的特点,相邻两个数都相差2,所以可以用等差数列的求和公式来求。
解:因为首项是2,末项是1990,公差是2,昕以,项数=(1990-2)÷2+1=995,再根据等差数列的求和公式:总和=(首项+末项)×项数÷2,解出2+4+6+8+…+1990=(2+1990)×995÷2=991020。
例4:计算(1+3+5+...+l99l)-(2+4+6+ (1990)分析:仔细观察算式中的被减数与减数,可以发现它们都是等差数列相加,根据题意可以知道首项、末项和公差,但并没有给出项数,这需要我们求项数,按照这样的思路求得项数后,再运用求和公式即可解答。
解:被减数的项数=(1991-1)÷2+1=996,所以被减数的总和=(1+1991)×996÷2=992016;减数的项数=(l990-2)÷2+1=995,所以减数的总和=(2+1990)×995÷2=991020.所以原式=992016-991020=996。
例5:已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。
分析:仔细观察这列数可以发现,后项与其相邻的前项之差等于3,所以这是一个以2为首项,以公差为3的等差数列,求80是这列数中第几个数,实际上是求该数列的项数。
解:这列数的首项是2,末项是80,公差是3,运用公式:项数=(末项-首项)÷公差+1即(80-2)÷3+1=27,所以80是该数列的第27项。
例6:小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?分析:根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。
要求这本书共有多少页也就是求出这列数的和。
解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
例7:建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
分析:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。
解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
答:这堆钢管一共有52根。
例8:四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?分析:假设45位同学排成一队,第1位同学一次与其他同学握手,一共握了44次,第2位同学因与第1位同学已握手,只需要与另外43位同学握手,一共握了43次,这样第3位同学只需与另外的42位同学握手,…,依次类推。
握手的次数分别为:44,43,42,…,3,2,1,这样应用等差数列求和公式即可解答。
解:根据以上分析,可以把本题转化为求一个等差数列的和即 44+43+42+…+3+2+1=(44+1)×44÷2=990(次)答:同学们共握了990次手。
A1.有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答案:这个数列共有27项2.求1,5,9,13,…,这个等差数列的第3O项。
答案:这个等差数列的第30项是117。
3.计算1+2+3+4+…+53+54+55的和。
答案:1+2+3+4+…+53+54+55=(l+55)×55÷2=1540。
4.计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002)答案:10025.有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。
答案:第12个数是91B6.一等差数列,首项=7,公差=3,项数=15,它的末项是多少?答案:它的末项是49。