七年级(下)数学培优试题(四)含答案

合集下载

人教版七年级数学下《压轴题培优》期末复习专题含答案

人教版七年级数学下《压轴题培优》期末复习专题含答案

⼈教版七年级数学下《压轴题培优》期末复习专题含答案⼈教版2018年七年级数学期末复习专题--压轴题培优1.已知AM∥CN,点B为平⾯内⼀点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.2.如图,已知两条射线OM∥CN,动线段AB的两个端点A.B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的⾓,并说明理由;(2)若平⾏移动AB,那么∠OBC与∠OFC的度数⽐是否随着AB位置的变化⽽发⽣变化?若变化,找出变化规律;若不变,求出这个⽐值;(3)在平⾏移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.3.已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A.∠APC与∠C之间有什么确定的相等关系?试证明你的结论.(3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成⽴吗?如果成⽴,说明理由;如果不成⽴,试探究它们之间新的相等关系并证明.4.如图1,在平⾯直⾓坐标系中,A(a,0)是x轴正半轴上⼀点,C是第四象限⼀点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上⼀动点,当AD⊥AC时,∠ODA的⾓平分线与∠CAE的⾓平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的⼤⼩是否变化?若不变,求出其值,若变化,说明理由.5.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所⽰,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满⾜∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平⾏移动AC,如图3,那么∠OCB:∠OFB的值是否随之发⽣变化?若变化,试说明理由;若不变,求出这个⽐值。

北师大版2020七年级数学下册期末模拟测试题4(培优 附答案)

北师大版2020七年级数学下册期末模拟测试题4(培优  附答案)

北师大版2020七年级数学下册期末模拟测试题4(培优 附答案) 1.下列长度的三条线段能组成三角形的是( ) A .3, 4, 6B .6, 9,17C .5, 12, 18D .2, 2, 42.如图,将一副直角三角板摆放,点C 在EF 上,AC 经过点D ,已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =( )A .20oB .25oC .30oD .35o3.如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为O ,若射线OF 在AOE ∠的内部,EOF 25∠=︒,2AOF BOD 3∠∠=,则BOC ∠的度数为( )A .120︒B .135︒C .141︒D .145︒4.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°5.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=22°,那么∠2的度数是( )A .21°B .22°C .23°D .25°6.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS7.下列四个算式中,可以直接用平方差公式进行计算的是( ) A .(﹣a +b )(﹣a ﹣b ) B .(2a +b )(a ﹣2b ) C .(a ﹣b )(b ﹣a )D .(a +b )(﹣a ﹣b )8.如图,点E, F 在直线AC 上,DF=BE , ∠AFD=∠CEB,下列条件中不能判断△ADF ≌△CBE 的是( )A .∠D=∠B B .AD=CBC .AE=CFD .AD// BC9.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则∠A 与∠1+∠2之间有始终不变的关系是( )A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3A =∠1+∠2D .3∠A =2(∠1+∠2)10.下列运算正确的是( ) A .3a 2b 5ab +=B .325a a a ⋅=C .824a a a ⋅=D .236(2a )6a =-11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=60°,则∠3=____.12.用简便方法计算:20192-2019×38+361=________.13.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC∆和APQ ∆全等.14.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法:①△BDF ≌△CDE ;②CE=BF ; ③BF ∥CE ;④△ABD 和△ACD 周长相等.其中正确的有___________(只填序号)15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.16.已知|x-2|+y 2+2y+1=0,则x y 的值为__________________17.“国际半程马拉松”的赛事共有三项:A .“半程马拉松”、B .“10公里”、C .“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.小明和小刚被分配到不同项目组的概率______;18.如图,已知△ABC ≌△DEC ,∠E =40°,∠ACB=110°,则∠D 的度数为________.19.如图所示,是一块三角形木板,量的100A ∠=o ,40B ∠=o 则这块三角形木板的另外一个角的度数是___.20.若a m =4,a n =8,则a m +n =_____.21.已知ABC V 中,90BAC ∠=o ,AB AC =,点D 为直线BC 上的一动点(点D 不与点B 、C 重合),以AD 为边作ADE V ,使90DAE ∠=o ,AD AE =,连接CE . 发现问题:如图1,当点D 在边BC 上时,()1请写出BD 和CE 之间的位置关系为______,并猜想BC 和CE 、CD 之间的数量关系:______. 尝试探究:()2如图2,当点D 在边BC 的延长线上且其他条件不变时,()1中BD 和CE 之间的位置关系、BC 和CE 、CD 之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由; 拓展延伸:()3如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,2CE =,求线段ED 的长.22.已知,点D 和三角形ABC 在同一平面内.(1)如图1,点D 在BC 边上,DE BA P 交AC 于E ,DF CA ∥交AB 于F .若o(2)如图2,点D 在BC 的延长线上,DF CA ∥,EDF A ∠=∠,证明:DE BA P . (3)点D 是三角形ABC 外部的任意一点,过D 作DE BA P 交直线AC 于E ,DF CA ∥交直线AB 于F ,直接写出EDF ∠与A ∠的数量关系(不需证明).23.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt △ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点(1,2)处.则①OA 的长为 ;②点B 的坐标为 (直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰R t △ACB 如图放置,直角顶点 C (-1,0),点A (0,4),试求直线AB 的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B (4;3),过点B 作BA ⊥y 轴,垂足为点A ;作BC ⊥x 轴,垂足为点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上一动点.问是否存在以点P 为直角顶点的等腰R t △APQ ,若存在,请求出此时P 的坐标,若不存在,请说明理由.24.如图,长方形ABCD 表示一块草地,点E ,F 分别在边AB 、CD 上,BF ∥DE ,四边形EBFD 是一条水泥小路,若AD =12米,AB =7米,且AE ∶EB =5∶2,求草地的面积.25.已知:如图,AC ∥DF ,直线AF 分别直线BD 、CE 相交于点G 、H ,∠1=∠2,求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH (_________________) ∴∠2=__________(______________) ∴BD ∥CE (________________) ∴∠C= ________(_______________) 又∵AC ∥DF∴∠D=∠ABG (________________) ∴∠C=∠D (________________)26.已知△ABC 三边长分别为4,2a +1,7,求a 的取值范围. 27.(1)02201820181( 3.14)(0.5)()(3)3π---+⨯-; (2)(﹣3a )2•(a 2)3÷a 3.28.先化简再求值:x²(x-1)- x (x²+x-1),其中x=1参考答案1.A【解析】【分析】根据三角形的三边关系:三角形任意两边的和大于第三边进行分析判断.【详解】A、3+4=7>6,能组成三角形;B、9+6<17,不能组成三角形;C、5+12<18,不能够组成三角形;D、2+2=4,不能组成三角形.故选A.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B【解析】【分析】由AB=AC,∠A=90°,根据等腰直角三角形的性质可得∠ACB=45°,即可求得∠ACE=85°,又因∠ACE=∠F+∠CDF,∠F=60°,由此可得∠CDF=25°.【详解】∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选B.【点睛】本题考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C【解析】【分析】由ED⊥CD可得∠EOC=∠EOD=90°,根据对顶角的定义可得∠AOC=∠BOD,根据∠AOC+∠AOF+∠EOF=∠EOC=90°,即可求出∠AOC的度数,利用邻补角的定义即可求出∠BOC的度数.【详解】∵ED⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,∠AOF=23∠BOD,∠EOF=25°,∴∠AOC+∠AOF+∠EOF=∠EOC=90°∴∠AOC+23∠AOC+25°=90°,∴∠AOC=39°,∴∠BOC=180°-∠AOC=180°-39°=141°,故选C.【点睛】本题考查了垂直的定义、对顶角的性质及角的和差运算,认真观察图形是解题关键. 4.C【解析】【分析】本题先运用邻补角定义,得到∠BAC的度数,然后根据平行得到结果.【详解】解:∵∠BAE=50°,∴∠BAC=180°-50°=130°,∵AB CD∥,∴∠ACD=∠BAC=130°.故选择:C.【点睛】本题考查了平行线的性质和邻补角的定义,解题的关键是熟练运用平行线的性质.5.C【解析】【分析】直接利用平行线的性质,求得∠AFE的度数,进而结合等腰直角三角形的性质得出答案.【详解】如图,∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=22°,∴∠AFE=23°,∴∠2=23°,故选:C.【点睛】此题考查平行线的性质,等腰直角三角形的性质,正确运用平行线的性质是解题关键.6.B【解析】【分析】根据题目确定出△ABC和△EDC全等的条件,然后根据全等三角形的判定方法解答即可;【详解】∵C是BD的中点,∴BC=DC,∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵在△ABC和△EDC中,90ABC EDC BC DCACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B . 【点睛】本题主要考查了全等三角形的应用,掌握全等三角形的应用是解题的关键. 7.A 【解析】 【分析】根据平方差公式的结构特点“两数之和与两数之差的乘积等于这两数的平方差”,对各项分析判断即可. 【详解】解:A 、(﹣a +b )(﹣a ﹣b )=(﹣a )2﹣b 2=a 2﹣b 2,符合平方差公式的结构特点,正确; B 、(2a +b )(a ﹣2b ),不是相同的两个数的和与差的积,不符合平方差公式的结构特点,错误;C 、(a ﹣b )(b ﹣a ),两项互为相反数,不符合平方差公式的结构特点,错误;D 、(a +b )(﹣a ﹣b ),两项互为相反数,不符合平方差公式的结构特点,错误; 故选:A . 【点睛】本题考查的是平方差公式的结构特点,熟记公式的结构是解题的关键. 8.B 【解析】 【分析】已知条件有一角和一边,可采用ASA 、AAS 或SAS 判定全等,据此逐项判断即可. 【详解】A. ∠D=∠B ,与已知条件组合可用ASA 判定△ADF ≌△CBE ,不符合题意;B. AD=CB ,与已知条件组合为“SSA ”,不能判定△ADF ≌△CBE ,符合题意;C. 由AE=CF 可得AF=CE ,与已知条件组合可用SAS 判定△ADF ≌△CBE ,不符合题意;D. 由AD// BC可得∠A=∠C,与已知条件组合可用AAS判定△ADF≌△CBE,不符合题意;故选B.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.9.B【解析】【分析】本题问的是关于角的问题,当然与折叠中的角是有关系的,∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)在△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2)则2∠A=∠1+∠2,故选择B项.【点睛】本题考查折叠和三角形内角和的性质,解题的关键是掌握折叠的性质.10.B【解析】【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.考查合并同类项,同底数幂的乘法和幂的乘方,解题关键是熟记运算法则.11.100°【解析】【分析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【详解】如图所示:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=60°+40°=100°.故答案是:100°.【点睛】考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.12.4000000【解析】【分析】运用完全平方公式进行计算即可.【详解】20192-2019×38+361=20192-2×2019×19+192=(2019-19)2=4000000.故答案为:4000000.【点睛】本题考查了完全平方公式.13.5㎝或10㎝【解析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中PQ AB AP BC=⎧⎨=⎩,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中PQ AB AP AC=⎧⎨=⎩,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为:5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.14.①②③【解析】【分析】根据AD是中线可知BD=CD,结合题意从而可证△BDF≌△CDE,继而可知CE=BF,BF∥CE,由于△ABC的两边AB与AC不一定相等,可判断△ABD和△ACD周长相等的对错,进而可以得出答案.【详解】∵AD 是△ABC 的中线,∴BD=CD在△BDF 和△CDE 中BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CDE (SAS )故①正确;∵△BDF ≌△CDE∴BF=CE ,∠FBD=∠ECD故②正确;∵∠FBD=∠ECD∴BF ∥CE (内错角相等两直线平行)故③正确;∵△ABC 中AB 和AC 不一定相等∴△ABD 和△ACD 周长不一定相等故④错误;综上,答案为①②③.【点睛】本题考查的是中线的性质,三角形全等的判定与性质和平行线的判定,能够根据中线得出BD=CD 证得△BDF ≌△CDE 是解题的关键.15.1.3-【解析】【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.12. 【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】解:由题意得,|x-2|+(y+1)2=0,则x-2=0,y+1=0,解得,x=2,y=-1, 则y 1x 2= 故答案为:12 . 【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.17.23; 【解析】【分析】利用树状图法列出所有的分配情况,再看小明和小刚被分配到不同项目组的情况,根据概率公式求解即可.【详解】解:画树状图如图所示:由图可知,共有9种情况,其中小明和小刚被分配到不同项目组有6种情况,根据概率公式,则可知小明和小刚被分配到不同项目组的概率是:61 =93.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.18.30°【解析】【分析】根据全等三角形的性质得到∠DCE=∠ACB=110°,然后利用三角形内角和定理求∠D即可. 【详解】解:∵△ABC≌△DEC,∠E=40°,∴∠DCE=∠ACB=110°,∴∠D=180°-∠E-∠DCE=180°-40°-110°=30°,故答案为:30°.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知三角形内角和为180°是解题关键. 19.40【解析】【分析】直接根据三角形内角和定理解答即可.【详解】∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°−∠A−∠B=180°−100°−40°=40°故答案为:40°【点睛】此题考查三角形内角和定理,难度不大20.32【解析】【分析】根据同底数幂的乘法,底数不变指数相加计算.【详解】解:∵a m =4,a n =8,∴a m +n =a m ×a n =4×8=32. 故答案为:32【点睛】题考查同底数幂的乘法,一定要记准法则才能做题.21.(1)BD CE ⊥;BC CD CE =+;(2)BD CE ⊥成立,数量关系不成立,关系为BC=CE-CD ;(3)DE =【解析】【分析】()1根据条件AB AC =,BAC 90∠=o ,AD AE =,DAE 90∠=o ,判定ABD V ≌()ACE SAS V ,即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE CD BC +=;()2根据已知条件,判定ABD V ≌()ACE SAS V,得出BD CE =,再根据BD BC CD =+,即可得到CE BC CD =+;()3根据条件判定ABD V ≌()ACE SAS V ,得出BD CE =,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,即可解决问题.【详解】()1如图1,BAC DAE 90∠∠==o Q ,BAD CAE ∠∠∴=,在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,B ACE 45∠∠==o ,BCE 454590∠∴=+=o o o ,即BD CE ⊥;由①可得,ABD V ≌ACE V, BD CE ∴=,BC BD CD CE CD ∴=+=+,故答案为BD CE ⊥,BC CD CE =+;()2BD CE ⊥成立,数量关系不成立,关系为BC CE CD =-.理由:如图2中,由()1同理可得,BAC DAE 90∠∠==o Q ,∴BAC CAD DAE CAD ∠∠∠∠+=+即BAD CA ∠∠=E ,∴在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,ACE ABC ∠∠=,AB AC =Q ,ABC ACB 45∠∠∴==o ,BD BC CD ∴=+,即CE BC CD =+,ACE ACB 90∠∠+=o ,BC CE CD ∴=-;BD CE ⊥;()3如图3中,由()1同理可得,BAC DAE 90∠∠==o Q ,BAC BAE DAE BAE ∠∠∠∠∴-=-,即BAD EAC ∠∠=,易证ABD V ≌()ACE SAS V, BD CE 2∴==,ACE ABD 135∠∠==o ,CD BC BD BC CE 8∴=+=+=,∵ACB 45∠=oDCE 90∠∴=o ,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,DE ∴=【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.22.(1)85o ;(2)见解析;(3)EDF A ∠=∠或180EDF A ∠+∠=o【解析】【分析】根据题意可知:(1)通过DE BA P 得到两同位角A DEC ∠=∠,DF CA ∥得到两内错角DEC EDF ∠=∠,然后等量代换.(2)通过延长BA ,构造出新的角BGD ∠,再用等量代换找到内错角EDF BGD ∠=∠,从而证明直线平行.(3)直线BA 与直线AC 相交分成四部分,分别考虑这四部分且在三角形ABC 外部的点,可知只有EDF A ∠=∠或180EDF A ∠+∠=o 这两种情况.【详解】(1)∵DE BA P ,DF CA ∥,∴A DEC ∠=∠,DEC EDF ∠=∠,∵85EDF ∠=o ,∴85A EDF ∠=∠=o ;(2)证明:如图1,延长BA 交DF 于G .∵DF AC P ,∴BAC BGD ∠=∠.又∵EDF BAC ∠=∠,∴EDF BGD ∠=∠.∴DE BA P .(3)EDF A ∠=∠或180EDF A ∠+∠=o证明如下:①按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形) 所以EDF A ∠=∠(平行四边形对角相等)②按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形)所以 EDF FAE ∠=∠(平行四边形对角相等)又因为180FAE BAC ∠+∠=o所以180EDF BAC ∠+∠=o BAC ∠即为原图中的A ∠BAC ∠即为原图中的A ∠,即180EDF A ∠+∠=o故答案为EDF A ∠=∠或180EDF A ∠+∠=o【点睛】本题运用到两直线平行内错角相等,内错角相等两直线平行的知识点。

苏科版数学七年级下册第十章《二元一次方程组》实际应用培优专练习(四)(附答案)

苏科版数学七年级下册第十章《二元一次方程组》实际应用培优专练习(四)(附答案)

2020-2021学年七年级下册第十章《二元一次方程组》实际应用培优专练习(四)1.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a,b的值.(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量.阶梯电量x(单位:度)电费价格一档0<x≤180 a元/度二档180<x≤350 b元/度三档x>350 0.9元/度2.我区某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买A型14只,B型6只,学校共支付费用4240元;若购买A型8只,B 型12只,学校共支付费用4480元.求A型、B型垃圾分类回收箱的单价.3.节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某城市实行阶梯水价,月用水量在6吨以内按正常收费,超出部分则收较高水费,该市某户居民今年2月份用水9吨,交水费27元;3月份用水11吨,交水费37元,请回答下列问题.(1)每月在6吨以内的水费每吨多少元?每月超出6吨部分的水费每吨多少元?(2)某户居民4月份用水x吨,请用含有x的代数式表示该户居民4月份应交的水费.4.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.5.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃为1套),则:(1)一套“福娃”玩具和一枚徽章的价格各是多少元?(2)买5套“福娃”玩具和10枚徽章共需要多少元?7.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.8.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B两种纪念品有几种可行的方案,并写出具体的购买方案.9.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?10.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?参考答案1.解:(1)依题意得:,解得:.答:a的值为0.6,b的值为0.7.(2)若一个月用电量为350度,电费为180×0.6+(350﹣180)×0.7=227(元),∵285.5>227,∴小明家7月份用电量超过350度.设小明家7月份用电量为x度,依题意得:180×0.6+(350﹣180)×0.7+(x﹣350)×0.9=285.5,解得:x=415.答:小明家7月份的用电量为415度.2.解:设A型垃圾分类回收箱的单价为x元/只,B型垃圾分类回收箱的单价为y元/只,依题意,得:,解得:,答:A型垃圾分类回收箱的单价为200元/只;B型垃圾分类回收箱的单价为240元/只.3.解:(1)设该市居民用水基本价格为a元/吨,超过6吨部分的价格为b元/吨,根据题意,得,解这个方程组,得.答:该市居民用水基本价格为2元/吨,超过6吨部分的价格为5元/吨.(2)①当x≤6时,该户居民4月份应交的水费为2x元.②当x>6时,该户居民4月份应交的水费为:2×6+5(x﹣6)=5x﹣18(元).综上所述,该户居民4月份应交的水费是2x元或(5x﹣18)元.4.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.5.解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.6.解:(1)设一套“福娃”玩具的价格为x元,一枚徽章的价格为y元,依题意,得:,解得:.答:一套“福娃”玩具的价格为125元,一枚徽章的价格为10元.(2)125×5+10×10=725(元).答:买5套“福娃”玩具和10枚徽章共需要725元.7.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.8.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15m+13n=750,∴m=50﹣n.∵m,n均为正整数,∴n为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B 种纪念品.9.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.10.解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.。

七年级数学培优班试题及答案

七年级数学培优班试题及答案

七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。

2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。

4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。

5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。

6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。

重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。

8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。

(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200 x≤0<b ≤400 200<x0.92400x>(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm ﹣进价(元/双) 20160双) 240/售价(元(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000每吨获利(元) 1000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b /台)a 价格(万元180240处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元.7.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

【解析版】初中数学七年级下期中经典复习题(课后培优)

【解析版】初中数学七年级下期中经典复习题(课后培优)

一、选择题1.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .92.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④ 3.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE4.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠5.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==8.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-9.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法10.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,还需添加条件是( )A .∠1=∠2B .∠1=∠3C .∠3=∠4D .∠2=∠411.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45° 12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 13.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°14.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和1215.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 二、填空题16.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.17.3a ++(b-2)2=0,则a b =______.18.不等式3342x x ->-的最大整数解是__________.19.若x +1是125的立方根,则x 的平方根是_________.20.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.21.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.22.若规定[]a 表示不超过a 的最大整数,例[]4.34=,[]2.13-=-,若[]M a a =-,则M 的取值范围________23.9的算术平方根是________.24.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.25.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________. 三、解答题26.解不等式(组):(1)解不等式5132x x -+>-,并把它的解集表示在数轴上; (2)解不等式组:253(2)1210.35x x x +≥+⎧⎪-⎨+>⎪⎩, 27.如图,AD//BC ,∠A=∠C .求证:AB//DC .28.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 29.“保护环境,人人有责”,为了更好的治理好金水河,郑州市污水处理厂决定购买A 、B 两型号污水处理设备共10台,其信息如下表:单价(万元/台) 每台处理污水量(吨/月)A 型 12 220B 型 10200 (1)设购买A 设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 之间的函数关系式;(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案更省钱,需要多少资金?30.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.C3.D4.C5.A6.A7.A8.A9.C10.B11.B12.C13.D14.B15.C二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解17.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为22521.±2【解析】【分析】首先估计出a的值进而得出M的值再得出N的值再利用平方根的定义得出答案【详解】解:∵M是满足不等式-的所有整数a的和∴M=-1+0+1+2=2∵N是满足不等式x≤的最大整数∴N=222.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析 【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C.【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.2.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.3.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.4.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.A解析:A【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.9.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x ,5元的数量为y .则1055000x y x y ⎧⎨≥≥⎩+=,, 解得010x y ⎧⎨⎩==,18x y ⎧⎨⎩==,26x y ⎧⎨⎩==,34x y ⎧⎨⎩==,42x y ⎧⎨⎩==,50x y ⎧⎨⎩==. 所以共有6种换法.故选C .【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.10.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF ∥BC ,找出符合要求的答案即可.【详解】解:∵EF ∥AB ,∴∠1=∠2(两直线平行,同位角相等),要使DF ∥BC ,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.11.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.13.D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°.故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.14.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A 2(3)-3,32(3)-B 、﹣|2|=﹣222,﹣|2|2)两数互为相反数,故本选项正确;C 38238-23838-D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B .【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.15.C解析:C【解析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.17.9【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b =(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的解析:0【解析】【分析】据解不等式的一般步骤:移项,合并,系数化为1解答.【详解】解:移项得:-3x-4x>-2-3.合并同类项得:-7x>-5.化系数为1得:57x .故不等式的最大整数解是0.【点睛】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a =2,∴2a +1=2×2+1=5, ∴m =5²=25. 故答案为2, 25.21.±2【解析】【分析】首先估计出a 的值进而得出M 的值再得出N 的值再利用平方根的定义得出答案【详解】解:∵M 是满足不等式-的所有整数a 的和∴M =-1+0+1+2=2∵N 是满足不等式x≤的最大整数∴N =2解析:±2【解析】【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M a <<a 的和, ∴M =-1+0+1+2=2,∵N 是满足不等式x ∴N =2,∴M +N 2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键. 22.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键解析:01M ≤<【解析】【分析】根据题意列出不等式组,解不等式组即可.【详解】解:由题意可知[]1a a a -<≤ ∴[]1a a a -≤-<-∴[]01a a ≤-<,即01M ≤< 故答案为:01M ≤<.【点睛】本题考查了解一元一次不等式组,根据题意得出不等式组是解题的关键.23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.三、解答题26.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132x x -+>- 去分母,得5226x x -+>-移项,得2652x x ->-+-合并同类项,得3x ->-.两边都除以-1,得3x <.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2)121035x x x +≥+⎧⎪-⎨+>⎪⎩ 化解为:23655(12)30x x x -≥-⎧⎨-+>⎩, 即:145x x ≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x ≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.27.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.28.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.29.(1)2100W x =+;202000y x =+ (2)见解析【解析】【分析】(1)根据所需资金共为W 万元=购买A 型设备x 台的资金+购买B 型设备(10-x)台的资金,可列出W 与x 的关系式;根据每月处理污水总量为=每月A 型设备处理污水量+每月B 型设备处理污水量可列出y 与x 的关系式;(2)根据购买设备的资金不超过106万元,月处理污水量不低于2040吨,列不等式组,求出方程组的整数解,分别计算各方案的资金,比较即可得答案.【详解】(1)购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨, 则W 与x 的函数关系式:()1210102100W x x x =+-=+;y 与x 的函数关系式:()22020010202000y x x x =+-=+.(2)由(1)可知:21001062020002040x x +≤⎧⎨+≥⎩, 解得:32x x ≤⎧⎨≥⎩, ∵x 为整数,∴2x =或3,当2x =时,104w =(万元);当3x =时,106w =(万元).∴购买方案有2种:方案一:A 型设备2台,B 型设备8台;方案二:A 型设备2台,B 型设备8台;购买A 型设备2台,B 型设备8台最省钱,需要104万元.【点睛】本题考查一次函数的应用及一元一次不等式组的应用,正确得出等量关系和不等关系是解题关键.30.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。

7年级数学培优竞赛试题1-25题(含详解)

7年级数学培优竞赛试题1-25题(含详解)

七年级第1题:已知0132=+-x x , 则 =++13242x x x 。

答案:0.1第2题:若,,a b c 互异,且x y a b b c c aZ ==---,求x y Z ++的值。

答案:0第3题:a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?答案:6.2<a <331第4题:方程 200422=-b a的正整数解有 组.答案:2组第5题:用一张长方形的纸,折出一个30°的角,如何折?答案:第6题:(1)若A 和B 都是4次多项式,则A+B 一定是( ) A 、8次多项式 B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式答案: C(2)如果316x +的立方根是4,求24x +的平方根___________。

答案:立方根是4,则这个数是43=64。

3x+16=64,解得x =16。

2x +4=2×16+4=36, 36=±6。

第7题:已知21x x +=,那么 . 答案: 2016解析:x 4+2x 3-x 2-2x +2017= x 4+2x 3+ x 2-2x 2-2x +2017=(x 2+x )2-2(x 2+x )+2017=12-2×1+2017=1-2+2017=2016。

第8题:若2a +5b +4c =0,3a +b -7c =0,则a +b -c 的值是___________________答案:2a +5b +4c =0 ① a +b -7c =0 ②将①×3得6a +15b +12c =0 ③将②×2得6a +2b -14c =0 ④由③-④得13b +26c =0 , b= -2c ⑤将⑤带入① 2a -10c +4c =0 , 2a =6c ,a =3c ⑥将⑤和⑥带入a +b -c =3c -2c-c =0。

第 9 题:如图所示,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且AB AE 21=,BC CF 31=,AF 与CE 相交于G ,如果矩形ABCD 的面积为120,那么可知AEG ∆与CGF ∆的面积之和为____________。

2020-2021学年七年级数学下册尖子生同步培优题典 专题4

2020-2021学年七年级数学下册尖子生同步培优题典 专题4

专题4.6用尺规作三角形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•恩施市期末)按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,下列图形符合题意的是()A.B.C.D.2.(2020秋•邢台期中)如图是黑板上出示的尺规作图题,需要回答横线上符号代表的内容()A.♡表示点E B.☺表示PQC.⊗表示OQ D.⊕表示射线EF3.(2020•河北)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b DE的长C.a有最小限制,b无限制D.a≥0,b DE的长4.(2020秋•滦南县期末)如图,在△ABC中.∠C=90°,∠CAB=60°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.40°B.50°C.60°D.70°5.(2020秋•涪城区期末)根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,CA=7 B.AC=4,BC=6,∠A=60°C.∠A=45°,∠B=60°,∠C=75°D.AB=5,BC=4,∠C=90°6.(2020秋•丛台区校级期末)根据下列条件不能唯一画出△ABC的是()A.AB=5,BC=6,AC=7 B.AB=5,BC=6,∠B=45°C.AB=5,AC=4,∠C=90°D.AB=5,AC=4,∠C=45°7.(2020秋•莒南县期末)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1 B.2 C.3 D.48.(2020秋•卢龙县期末)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.79.(2020秋•卢龙县期末)如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5 B.5或10 C.10 D.6或1010.(2020秋•恩施市期末)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•海淀区校级期末)为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是.12.(2020秋•东城区校级期中)阅读下面材料:在数学课上老师提出如下问题:尺规作图:作∠A′O′B′=∠AOB.已知:∠AOB,求作:∠A′O′B′=∠AOB.小米的作法如下:如图:(1)作射线O′A′;(2)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;(3)以点O′为圆心,OC为半径作弧C′E′,交O′A′于点C′;(4)以点C′为圆心,CD为半径作弧,交弧C′E′于D′;(5)过点D′作射线O′B′.所以∠A′O′B′就是所求作的角.老师说:“小米的做法正确.”请回答:小米的作图依据是.13.(2019春•海淀区校级期末)阅读下面材料.数学课上,老师提出如下问题:小明解答如图所示,其中他所画的弧MN是以E为圆心,以CD长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:14.(2020秋•中山区期末)如图,已知AO=CO,若以“SAS”为依据证明△AOB≌△COD,还要添加的条件.15.(2020秋•鼓楼区校级月考)如图,在△ABC与△A′B′C′中,AC=A′C′,BC=B′C′,∠B=∠B′,且∠B和∠B′都是钝角,那么能否证明△ABC与△A′B′C′全等?.(填“能”或“否”)16.(2020秋•沂源县期中)如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM 摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明.17.(2020秋•天津期中)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB =CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为cm.18.(2020秋•长汀县期中)如图,在△ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF=54°,则∠A=°.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•天河区期末)如图,已知线段a和线段AB.(1)尺规作图:延长线段AB到C,使BC=a(不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=4,BC=2,取线段AC的中点O,求线段OB的长.20.(2020秋•西城区校级月考)尺规作图:已知:∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB.(不写作法,保留作图痕迹,画在答题纸的方框中)写出这样作图的两点依据:①;②.21.(2020春•碑林区校级期中)如图(1)利用尺规作∠CED,使得∠CED=∠A.(不写作法,保留作图痕迹).(2)判断直线DE与AB的位置关系:.22.(2020秋•武威期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.23.(2020秋•南关区校级期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A 出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连结PQ,当线段PQ经过点C时,求t的值.24.(2020秋•盘龙区期末)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)数学培优试题(四)含答案一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分) 1.下列各式计算结果正确的是( )A.2a a a =+ B .()2263a a = C.()1122+=+a a D .2a a a =⋅2.2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元; B .131.365210⨯元; C .121.36510⨯元; D .121.36510⨯元 3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个 D.4个 4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B .概率很大的事情必然发生;C .若一件事情肯定发生,则其发生的概率1≥P ;D.不太可能发生的事情的概率不为0 5.下列关于作图的语句中正确的是( )A .画直线=10厘米; B.画射线=10厘米;C.已知A.B.C 三点,过这三点画一条直线; D .过直线外一点画一条直线和直线平行 6.如图,已知∥,直线l 分别交、于点E 、F,平分∠,若∠40°,则∠的度数是( ) A .60° B .70° C .80° D .90° 7.如图,一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短 C .两点确定一条直线 D .垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是( ) A .()() B .()() C .()() D.()()9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l .2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x(分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发30分钟; B.步行的速度是6千米/时; C.骑车的同学从出发到追上步行的同学用了20分钟;D.骑车的同学和步行的同学同时达到目的地l2306054506y(千米)x(分)l1FEDCBA10.如图,在△与△中,给出以下六个条件:(1)=,(2)=,(3)=,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能..判断△与△全等的是( ) A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4) D.(4)(6)(1) 二、耐心填一填(请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为.12.()32+-m()=942-m; ()232+-ab.13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= (摸到偶数)= .(第15题) (第17题) (第18题) 15.如图,直线l1∥l2,⊥l1,垂足为O,与l2相交与点E,若∠1=43°,则∠2= 度. 16.有一个多项式为a8-a7b+a6b2-a5b3+…,按照此规律写下去,这个多项式的第八项是.17.如图,∠=∠,请补充一个条件:,使△≌△.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是分钟.三、细心算一算:19.(4分)①)()(2322cabcab÷(4分)②2)())((yxyxyx++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:Δ的周长为24cm,10cm,边的垂直平分线交边于点E,垂足为D,求Δ的周长.四、用心想一想23.(6分)如图,是△的角平分线,⊥,垂足为E ,⊥,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的等式.25.(5分)已知如图,要测量水池的宽,可过点A 作直线 ⊥,再由点C 观测,在延长线上找一点B ’,使∠’= ∠ B,这时只要量出’的长,就知道的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P(摸到红球)=41;P (摸到黄球)=32;P(摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图与计算:27.(12分)如图所示,A 、B两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线和线段分别表示甲、乙所行驶的路程S 与该日下午时间t 之间的关系. 根据图象回答下列问题: (1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲? (4)描述一下甲的运动情况. (5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少? (2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.24681012周一周二周三周四周五周六周日答 案1~10:11.40°; 12.32--m ,912422+-ab b a ; 13.E 6395; 14.101,21; 15.133°; 16.7ab -; 17.或∠∠D ; 18.37.2;19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷= ②xy y 222+ 20.a a 332+,值为6. 21.21 22.Δ的周长24-10=14cm.23.△≌△.理由: 因为∠∠,∠∠,是公共边,所以它们全等().(或理由:因为角的平分线上的点到这个角的两边距离相等, 所以,是公共的斜边,所以它们全等().) 24.()()ab b a b a 422+==+等.25.对,用可以证明三角形全等. 26.红球3个,黄球8个,绿球1个. 27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B城,早了2个小时 (3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时. 28.(1)周三,1元,10元,(2)周一与周五都是6元,周六和周日都是10元,B ′C ′D ′O ′A ′O DC BA (第8题图) (3)()67101065146=÷++++++(元);(4)略.七年级数学试题(满分120分)题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A.某市5万名初中毕业生的中考数学成绩 B.被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷= B.623a a a ÷= C. 33x x x =⋅ D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -ﻩ B.221a a -+ﻩ C .221a a --ﻩ D.21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A .4个 B.5个 C .6个 D.无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 ﻩ B .两边和一角对应相等的两个三角形全等ﻩﻩ C.三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A.太阳从东方升起 B.2010年世博会在上海举行C.在标准大气压下,温度低于0摄氏度时冰会融化 D.某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠的依据是A .ﻩﻩ B. C. D.二、填空题(每小题3分,计24分) 9.生物具有遗传多样性,遗传信息大多储存在分子上.一个分子的直径约为0..这个数量用科学记数法可表示为 . 10.将方程225写成用含x 的代数式表示y的形式,则 . 11.如图,∥,∠1=110°,∠70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为.14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据: 试验者 试验次数n 正面朝上的次数m正面朝上的频率nm 布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠平分线上的点,点P 、P′分别在、上,如果要得到=′,需要添加以下条件中的某一个即可:①=P′C;②∠=∠′C ;③∠=∠′;④′⊥.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△全等且有一条公共边的格点△C B A ''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(4) (4)19.分解因式:(每小题4分,本题共8分) (1)x x -3 (2)-22+120.解方程组:(每小题5分,本题共10分)OAC P P′ (第16题图)(1)⎩⎨⎧=+-=300342150y x yx (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值.22.(本题共9分)如图,,,CBF ABE ∠=∠.和相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形 的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

相关文档
最新文档