SPSS第五章 回归分析

合集下载

spss中的回归分析

spss中的回归分析
All Cases:显示每一例的标准化残差、实测值和预测值、 残差。
7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。
(1)散点图:可选择如下任何两个变量为Y(纵轴变量)与X (横轴变量)作图。为 获得更多的图形,可单击“Next”按钮来重 复操作过程。
Variables
Model
Entered
1
INCOMEa
Variables
Removed
Method
. Enter
a. All requested variables entered.
b. Dependent Variable: FOODEXP
输 入 / 移 去 的 变 量b
模型 1
输入的变量 移去的变量
DEPENDENT:因变量。 *ZPRED:标准化预测值。 *ZRESID: 标准化残差。 *DRESID:删除的残差。 *ADJPRED:调整残差。 *SRESID:Student氏残差。 *SDRESID: Student氏删除残差。 (2)Standardized Residual Plots:标准化残差图。 Histogram:标准化残差的直方图,并给出正态曲线。 Normal Probality Plot:标准化残差的正态概率图(P-P图)。 (3)Produce all Partial plots:偏残差图。
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误

软件SPSS的回归分析功能-PPT课件

软件SPSS的回归分析功能-PPT课件


“残差”复选框组:

“模型拟合度”复选框:
“R方变化”复选框:
• 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检 验:R,R2和调整的R2, 标准误及方差分析表。 • 显示模型拟合过程中R2、F值和p值的改变情况。 • 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自 变量间的相关矩阵。
【选项】按钮
• 注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
• “步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。 • “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 • “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。


“描述性”复选框:
“部分相关和偏相关性”复选框:
• 显示自变量间的相关、部分相关和偏相关系数。


“共线性诊断”复选框:
• 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差 膨胀因子(VIF)等。

以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
【绘制】按钮
step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
• 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著 性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。 如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义, 应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我 们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验 的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价 与系数的检验,在多元回归中这两者是不同的。

SPSS回归分析过程详解

SPSS回归分析过程详解
线性回归模型的一般形式为:Y = b0 + b1X1 + b2X2 + ... + bnXn,其中Y是 因变量,X1、X2、...、Xn是自变量,b0、b1、b2、...、bn是回归系数。
线性回归的假设检验
01
线性回归的假设检验主要包括拟合优度检验和参数显著性 检验。
02
拟合优度检验用于检验模型是否能够很好地拟合数据,常 用的方法有R方、调整R方等。
1 2
完整性
确保数据集中的所有变量都有值,避免缺失数据 对分析结果的影响。
准确性
核实数据是否准确无误,避免误差和异常值对回 归分析的干扰。
3
异常值处理
识别并处理异常值,可以使用标准化得分等方法。
模型选择与适用性
明确研究目的
根据研究目的选择合适的回归模型,如线性回 归、逻辑回归等。
考虑自变量和因变量的关系
数据来源
某地区不同年龄段人群的身高 和体重数据
模型选择
多项式回归模型,考虑X和Y之 间的非线性关系
结果解释
根据分析结果,得出年龄与体 重之间的非线性关系,并给出 相应的预测和建议。
05 多元回归分析
多元回归模型
线性回归模型
多元回归分析中最常用的模型,其中因变量与多个自变量之间存 在线性关系。
非线性回归模型
常见的非线性回归模型
对数回归、幂回归、多项式回归、逻辑回归等
非线性回归的假设检验
线性回归的假设检验
H0:b1=0,H1:b1≠0
非线性回归的假设检验
H0:f(X)=Y,H1:f(X)≠Y
检验方法
残差图、残差的正态性检验、异方差性检验等
非线性回归的评估指标
判定系数R²

SPSS回归分析

SPSS回归分析

SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。

在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。

接下来,我将详细介绍SPSS回归分析的步骤和意义。

一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。

在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。

二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。

数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。

2. 变量选择:选择需要作为自变量和因变量的变量。

自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。

可以通过点击"Variable View"选项卡来定义变量的属性。

3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。

然后将因变量和自变量添加到正确的框中。

4.回归模型选择:选择回归方法和模型。

SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。

然后,选择要放入回归模型的自变量。

可以进行逐步回归或者全模型回归。

6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。

可以使用SPSS的统计模块来生成残差,并进行残差分析。

7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。

要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。

因此,在解释回归结果时要慎重。

回归分析spss

回归分析spss

回归分析spss回归分析是一种常用的统计方法,用于探究变量之间的关系。

它通过建立一个数学模型,通过观察和分析实际数据,预测因变量与自变量之间的关联。

回归分析可以帮助研究者得出结论,并且在决策制定和问题解决过程中提供指导。

在SPSS(统计包括在社会科学中的应用)中,回归分析是最常用的功能之一。

它是一个强大的工具,用于解释因变量与自变量之间的关系。

在进行回归分析之前,我们需要收集一些数据,并确保数据的准确性和可靠性。

首先,我们需要了解回归分析的基本概念和原理。

回归分析基于统计学原理,旨在寻找自变量与因变量之间的关系。

在回归分析中,我们分为两种情况:简单回归和多元回归。

简单回归适用于只有一个自变量和一个因变量的情况,多元回归适用于多个自变量和一个因变量的情况。

在进行回归分析之前,我们需要确定回归模型的适用性。

为此,我们可以使用多种统计性检验,例如检验线性关系、相关性检验、多重共线性检验等。

这些检验可以帮助我们判断回归模型是否适用于收集到的数据。

在SPSS中进行回归分析非常简单。

首先,我们需要打开数据文件,然后选择“回归”功能。

接下来,我们需要指定自变量和因变量,并选择适当的回归模型(简单回归或多元回归)。

之后,SPSS将自动计算结果,并显示出回归方程的参数、标准误差、显著性水平等。

在进行回归分析时,我们需要关注一些重要的统计指标,例如R方值、F值和P值。

R方值表示自变量对因变量的解释程度,它的取值范围在0到1之间,越接近1表示模型的拟合效果越好。

F值表示回归模型的显著性,P值则表示自变量对因变量的影响是否显著。

我们通常会将P值设定为0.05作为显著性水平,如果P值小于0.05,则我们可以认为自变量对因变量有显著影响。

此外,在回归分析中,我们还可以进行一些额外的检验和分析。

比如,我们可以利用残差分析来检查回归模型的拟合优度,以及发现可能存在的异常值和离群点。

此外,我们还可以进行变量选择和交互效应的分析。

《SPSS回归分析》ppt课件

《SPSS回归分析》ppt课件

.
-3.666
.002
从表中可知因变量与自变量的三次回归模型为: y=-166.430+0.029x-5.364E-7x2+5.022E-12x3
9.2 曲线估计
➢拟合效果图
从图形上看出其拟合效果非常好。
8.3 曲线估计
说明:
曲线估计是一个自变量与因变量的非线性回归过程,但 只能处理比较简单的模型。如果有多个自变量与因变量呈非 线性关系时,就需要用其他非线性模型对因变量进行拟合, SPSS 19中提供了“非线性”过程,由于涉及的模型很多,且 非线性回归分析中参数的估计通常是通过迭代方法获得的, 而且对初始值的设置也有较高的要求,如果初始值选择不合 适,即使指定的模型函数非常准确,也会导致迭代过程不收 敛,或者只得到一个局部最优值而不能得到整体最优值。
8.1 回归分析概述
(3)回归分析的一般步骤
第1步 确定回归方程中的因变量和自变量。 第2步 确定回归模型。 第3步 建立回归方程。 第4步 对回归方程进行各种检验。
➢拟合优度检验 ➢回归方程的显著性检验 ➢回归系数的显著性检验
第5步 利用回归方程进行预测。
主要内容
8.1 回归分析概述 8.2 线性回归分析 8.3 曲线估计 8.4 二元Logistic回归分析
8.3 曲线估计
(2) 统计原理
在曲线估计中,有很多的数学模型,选用哪一种形式的回 归方程才能最好地表示出一种曲线的关系往往不是一个简单的 问题,可以用数学方程来表示的各种曲线的数目几乎是没有限 量的。在可能的方程之间,以吻合度而论,也许存在着许多吻 合得同样好的曲线方程。因此,在对曲线的形式的选择上,对 采取什么形式需要有一定的理论,这些理论是由问题本质决定 的。

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。

在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。

本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。

一、相关分析相关分析是一种用于确定变量之间关系的统计方法。

SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。

在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。

下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。

1. 打开SPSS软件并导入数据。

可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备相关分析的变量。

选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。

在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。

3. 进行相关分析。

点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。

4. 解读相关分析结果。

SPSS会给出相关系数的值以及显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。

显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。

二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。

SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。

下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。

1. 打开SPSS软件并导入数据。

同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备回归分析的变量。

SPSS-回归分析

SPSS-回归分析

SPSS-回归分析回归分析(⼀元线性回归分析、多元线性回归分析、⾮线性回归分析、曲线估计、时间序列的曲线估计、含虚拟⾃变量的回归分析以及逻辑回归分析)回归分析中,⼀般⾸先绘制⾃变量和因变量间的散点图,然后通过数据在散点图中的分布特点选择所要进⾏回归分析的类型,是使⽤线性回归分析还是某种⾮线性的回归分析。

回归分析与相关分析对⽐:在回归分析中,变量y称为因变量,处于被解释的特殊地位;;⽽在相关分析中,变量y与变量x处于平等的地位。

在回归分析中,因变量y是随机变量,⾃变量x可以是随机变量,也可以是⾮随机的确定变量;⽽在相关分析中,变量x和变量y都是随机变量。

相关分析是测定变量之间的关系密切程度,所使⽤的⼯具是相关系数;⽽回归分析则是侧重于考察变量之间的数量变化规律。

统计检验概念:为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性(sig)就是出现⽬前样本这结果的机率。

标准差表⽰数据的离散程度,标准误表⽰抽样误差的⼤⼩。

统计检验的分类:拟合优度检验:检验样本数据聚集在样本回归直线周围的密集程度,从⽽判断回归⽅程对样本数据的代表程度。

回归⽅程的拟合优度检验⼀般⽤判定系数R2实现。

回归⽅程的显著性检验(F检验):是对因变量与所有⾃变量之间的线性关系是否显著的⼀种假设检验。

回归⽅程的显著性检验⼀般采⽤F 检验。

回归系数的显著性检验(t检验): 根据样本估计的结果对总体回归系数的有关假设进⾏检验。

1.⼀元线性回归分析定义:在排除其他影响因素或假定其他影响因素确定的条件下,分析某⼀个因素(⾃变量)是如何影响另⼀事物(因变量)的过程。

SPSS操作2.多元线性回归分析定义:研究在线性相关条件下,两个或两个以上⾃变量对⼀个因变量的数量变化关系。

表现这⼀数量关系的数学公式,称为多元线性回归模型。

SPSS操作3.⾮线性回归分析定义:研究在⾮线性相关条件下,⾃变量对因变量的数量变化关系⾮线性回归问题⼤多数可以化为线性回归问题来求解,也就是通过对⾮线性回归模型进⾏适当的变量变换,使其化为线性模型来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元回归分析在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。

其回归模型为y 称为因变量,x称为自变量,称为随机误差,a,b 称为待估计的回归参数,下标i表示第i个观测值。

如果给出a和b的估计量分别为,,则经验回归方程:一般把称为残差,残差可视为扰动的“估计量”。

例子:湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。

表1-1 三月上旬平均温度与越冬代二化螟发蛾盛期的情况表数据保存在“DATA6-1.SAV”文件中。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”在SPSS数据编辑窗口中,创建“年份”、“温度”和“发蛾盛期”变量,并把数据输入相应的变量中。

或者打开已存在的数据文件“DATA6-1.SAV”。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图1-1所示的线性回归过程窗口。

图1-1 线性回归对话窗口3) 设置分析变量设置因变量:本例为“发蛾盛期”变量,用鼠标选中左边变量列表中的“发蛾盛期”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就自动调入“Dependent”显示栏里。

设置自变量:选择一个变量作为自变量进入“Independent(S)”框中。

用鼠标选中左边变量列表中的“温度”变量,然后点击“Independent(S)”栏左边的向右拉按钮,该变量就自动调入“Independent(S)”显示栏里。

注:SPSS中一元回归和多元回归以及多元逐步回归都是使用同一过程,所以该栏可以输入多个自变量。

设置控制变量“Selection Variable”为控制变量输入栏。

控制变量相当于过滤变量,即必须当该变量的值满足设置的条件时,观测量才能参加回归分析。

当你输入控制变量后,单击“Rule”按钮,将打开如图1-2所示的对话。

图1-2“Rule”对话框在“Rule”对话框中,右边的“Value”框用于输入数值,左边的下拉列表中列出了观测量的选择关系,其中各项的意义分别为:∙“equal to”等于。

∙“not equal to”不等于。

∙“less than”小于。

∙“less than or equal”小于或等于。

∙“greater than”大于。

∙“greater than or equal”大于或等于。

本例的控制变量是“计算”,将它选入“Selection Variable”变量栏里,在“Rule”对话框中选择“equal to”=1。

选择标签变量“Case Labels”框用于选择观测量的标签变量。

在输出结果中,可显示该观测量的值,通过该变量的值可查看相应的观测量。

本例子选择“年份”为标签变量。

选择加权变量在主对话框中单击“WLS”按钮,将在主对话框下方展开一个输入框,该框用于输入加权变量。

本例子没有加权变量,因此不作任何设置。

4)回归方式在“Method”框中选择一种回归分析方式。

其中,各项的意义为:∙全进入“Enter”所选择的自变量将全部进入建立的回归方程中,该项为默认方式。

∙逐步进入“Stepwise”根据“Options”对话框中的设置,在方程中加入或剔除单个变量直到所建立的方程中不再含有可加入或剔除的变量为止。

∙后进入“Remove”将进入方程中的自变量同时剔除。

∙先进入“Backward”自变量框中所有的变量同时进入方程中,然后根据“Options”对话框中的设置,剔除某个变量,直到所建立的方程中不再含有可剔除的变量为止。

∙条件进入“Forward”根据“Options”对话框中的设置,在方程中每次加入一个变量,直至加入所有符合条件的变量为止。

本例子是一元回归,只能选第一项。

5)设置输出统计量单击“Statistics”按钮,将打开如图1-3所示的对话框。

该对话框用于设置相关参数。

其中各项的意义分别为:图1-3 “Statistics”对话框①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。

“Confidence interval”回归系数的95%置信区间。

“Covariance matrix”回归系数的方差-协方差矩阵。

本例子选择“Estimates”输出回归系数和相关统计量。

②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验。

“Casewise diagnostic”输出满足选择条件的观测量的相关信息。

选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量。

本例子都不选。

③ 其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。

“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。

“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。

“Part and partial correlation”相关系数和偏相关系数。

“Collinearity diagnostics”显示单个变量和共线性分析的公差。

本例子选择“Model fit”项。

6)绘图选项在主对话框单击“Plots”按钮,将打开如图1-4所示的对话框窗口。

该对话框用于设置要绘制的图形的参数。

图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。

图1-4“Plots”绘图对话框窗口左上框中各项的意义分别为:∙“DEPENDNT”因变量。

∙“ZPRED”标准化预测值。

∙“ZRESID”标准化残差。

∙“DRESID”删除残差。

∙“ADJPRED”调节预测值。

∙“SRESID”学生氏化残差。

∙“SDRESID”学生氏化删除残差。

“Standardized Residual Plots”设置各变量的标准化残差图形输出。

其中共包含两个选项:“Histogram”用直方图显示标准化残差。

“Normal probability plots”比较标准化残差与正态残差的分布示意图。

“Produce all partial plot”偏残差图。

对每一个自变量生成其残差对因变量残差的散点图。

本例子不作绘图,不选择。

7) 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图1-5所示的对话框。

图1-5 “Save”对话框①“Predicted Values”预测值栏选项:Unstandardized 非标准化预测值。

就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回归模型拟合的预测值。

Standardized 标准化预测值。

Adjusted 调整后预测值。

S.E. of mean predictions 预测值的标准误。

本例选中“Unstandardized”非标准化预测值。

②“Distances”距离栏选项:Mahalanobis: 距离。

Cook’s”: Cook距离。

Leverage values: 杠杆值。

③“Prediction Intervals”预测区间选项:Mean: 区间的中心位置。

Individual: 观测量上限和下限的预测区间。

在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。

Confidence Interval:置信度。

本例选中“Individual” 观测量上限和下限的预测区间。

④“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中。

本例不选。

⑤ “Export model information to XML file”导出统计过程中的回归模型信息到指定文件。

本例不选。

⑥“Residuals” 保存残差选项:“Unstandardized”非标准化残差。

“Standardized”标准化残差。

“Studentized”学生氏化残差。

“Deleted”删除残差。

“Studentized deleted”学生氏化删除残差。

本例不选。

⑦“Influence Statistics” 统计量的影响。

“DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。

“Standardized DfBeta(s)”标准化的DfBeta值。

“DiFit” 删除一个特定的观测值所引起的预测值的变化。

“Standardized DiFit”标准化的DiFit值。

“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。

本例子不保存任何分析变量,不选择。

8)其它选项在主对话框里单击“Options”按钮,将打开如图1-6所示的对话框。

图1-6 “Options”设置对话框①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。

其中各项为:“Use probability of F”如果一个变量的F值的概率小于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值(Removal),则该变量将从回归方程中被剔除。

由此可见,设置“Use probability of F”时,应使进入值小于剔除值。

“Ues F value”如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。

同时,设置“Use F value”时,应使进入值大于剔除值。

②“Include constant in equation”选择此项表示在回归方程中有常数项。

本例选中“Include constant in equation”选项在回归方程中保留常数项。

③“Missing Values”框用于设置对缺失值的处理方法。

其中各项为:“Exclude cases listwise”剔除所有含有缺失值的观测值。

“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。

“Replace with mean”用变量的均值取代缺失值。

本例选中“Exclude cases listwise”。

9)提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中。

见表1-2至表1-5。

10) 结果分析结果:表1-2 给出了回归的方法是全回归模式,模型编号为1,自变量是“温度”,因变量是“发蛾盛期”。

相关文档
最新文档