统计学主要计算公式
统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。
在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。
本文将介绍一些统计学常用公式,并对其进行说明和用途解释。
一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。
2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。
当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。
3. 众数(Mode)众数是一组数据中出现频率最高的数值。
4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。
比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。
二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。
对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。
统计学公式大全

3 i1 N3
峰度
(概念要点)
• 1. 数据分布扁平程度的测度 • 2. 峰度系数=3扁平程度适中 • 3. 偏态系数<3为扁平分布 • 4. 偏态系数>3为尖峰分布 • 5. 计算公式为
K Xi X 4 Fi
4 i1 N 4
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
线性模型法
(a和b的最小二乘估计)
1. 根据最小二乘法得到求解 a 和 b 的标准方程为
Ynab t tYa tb
t2
解得:b
ntY tY
nt 2 t2
a Y bt
2. 取时间序列的中间时期为原点时有 t=0,上
式可化简为
Y na tY bt 2
a Y
解得:
b
tY t2
增1% 长 绝对环 值 逐 比 = 期 增 增 1长 0 长 0前 速 1量 期 0度 0水
甲企业增长1%绝对值=500/100=5万元 乙企业增长1%绝对值=60/100=0.6万元
时间序列的构成要素与模型
(要点)
1. 构成因素
– 长期趋势 (Secular trend ) – 季节变动 (Seasonal Fluctuation ) – 循环波动 (Cyclical Movement ) – 不规则波动 (Irregular Variations )
3. 平均数时间序列
– 一系列平均数按时间顺序排列而成
绝对数序列的序时平均数
(计算方法)
时期序列
n
•
计算公 式:
Y Y1 Y2
Yn
Yi
i1
n
n
【例11.1】 根据表11.1中的国内生产总值 序列,计算各年度的平均国内生产总值
统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。
在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。
本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。
1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。
对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。
其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。
方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。
方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。
标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。
相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。
相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。
回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。
6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。
样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。
统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。
在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。
公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。
3.众数:众数是一组数据中出现最频繁的值。
4.方差:方差是一组数据与其平均值的差的平方的平均值。
公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。
公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。
公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。
7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。
公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。
8.合并概率公式:用于计算多个事件同时发生的概率。
公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。
9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。
公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。
10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。
公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。
这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。
统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
统计学公式

3
xi x 4 n(n 1) 3(n 1) 2 ( ) . s (n 1)(n 2)(n 3) (n 2)(n 3)
2
统计学公式
二、概率分布
一、度量事件发生的可能性:
1.事件 A 发生的概率: P ( A) 二、随机变量的概率分布:
统计学公式
一、用统计量描述数据
一、水平的度量:
x x2 x3 1.简单平均数: x 1 n
xn
X
i 1
n
i
n
.
k
M f M 2 f2 M k fk 2.加权平均数: x 1 1 f1 f 2 f k
M
i 1
i i
f
n
.(如果原始数据被分成 k 组,各
2
E2
.
四、假设检验
一、一个总体参数的检验
1.大样本的检验
(1)在大样本的情况下,样本均值的抽样分布近似服从正态分布,其抽样标准差为 /
2
n.
采用正态分布的检验统计量.设假设的总体均值为 0 ,当总体方差 已知时,总体均值检验 的统计量为: z
x 0
/ n
.
(2)当总体方差 未知时,可以采用样本方差 s 来代替,此时总体均值检验的统计量为:
组的组中值分别用 M1,M 2, ,M k 表示,各组的频数分别用 f1,f 2, ,f k 表示,则得到 样本平均数计算公式)
x n 1 2 3.中位数( M e ) : Me 1 x n x n 1 2 2 2
n
p ;
(1 )
统计学常用公式汇总

《统计学原理》常用公式汇总组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距111平均指标 1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=;加权σ= 3.标准差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析 1.相关系数2.配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-= (-)×(-)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。
公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。
公式为:(2)由相对指标或平均指标动态数列计算序时平均数基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;逐期增长量之和累积增长量二. 平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数(1)计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)。
统计学公式汇总

统计学公式汇总(1) αβδμσνπρυt u F X s 2χ(2) 均数(mean ):nX nX X X X n∑=+⋅⋅⋅++=21式中X 表示样本均数,X 1,X 2,Xn为各观察值。
(3) 几何均数(geometric mean, G ):)lg (lg )lg lg lg (lg 121121nX n X X X X X X G n nn ∑--=+⋅⋅⋅++=⋅⋅⋅∙=式中G 表示几何均数,X 1,X 2,X n 为各观察值。
(4) 中位数(median, M )n 为奇数时,)21(+=n X Mn 为偶数时,2/][)12()2(++=n n XX M式中n 为观察值的总个数。
(5) 百分位数 )%(L xx f x n f iL P ∑-⋅+= 式中L为Px 所在组段的下限,f x 为其频数,i 为其组距,L f ∑为小于L各组段的累计频数。
(6) 四分位数(quartile, Q ) 第25百分位数P 25,表示全部观察值中有25%(四分之一)的观察值比它小,为下四分位数,记作Q L;第75百分位数P 75,表示全部观察值中有25%(四分之一)的观察值比它大,为上四分位数,记作Q U。
(7) 四分位数间距 等于上、下四分位数之差。
(8) 总体方差 NX 22)(μσ-∑=(9) 总体标准差 NX 2)(μσ-∑=(10)样本标准差 1/)(1)(222-∑-∑=--∑=n nX X n X X s (11)变异系数(coefficient of variation, CV ) %100⨯=X sCV (12)样本均数的标准误 理论值nX σσ=估计值ns s X =式中σ为总体标准差,s为样本标准差,n 为样本含量。
(13)样本率的标准误 理论值np )1(ππσ-=估计值np p s p )1(-=式中π为总体率,p 为样本率,n 为样本含量。
(14)总体率的估计:正态分布法,(n p p u p n p p u p /)1(,/)1(-⋅+-⋅-αα) 式中p为样本均数,s 为样本标准差,n 为样本含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学主要计算公式(第三章)1111k i i ki i k i k i i i f f f f ====⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⋅∑∑∑∑∑N i i=1i i 一、算术平x 简单x=Nx 均数加权x=频数权数x=x 1i iHiiiim m x m mx x==∑∑∑∑二、调和平均数⎧=⎪⎪⎨⎪=⎪⎩G G 简单x 三、几何平均数加权x11/2/2m e m m e m f S M L i f f S M U if -+⎧-=+⨯⎪⎪⎨-⎪=-⨯⎪⎩∑∑下限公式四、中位数上限公式 10122012d M L i d d d M U i d d ⎧=+⨯⎪+⎪⎨⎪=-⨯⎪+⎩下限公式五、众数上限公式()()x x x x f fAD AD ⎧-⎪⎪⎨-⎪⎪⎩∑∑∑六、平均差简单=N加权=σσσσ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩七、标准差简单加权简捷公式简单加权100%100%AD ADV x V xσσ⎧⨯⎪⎪⎨⎪⨯⎪⎩平均差系数=八、离散系数标准差系数=统计学主要计算公式(第五章)()()11n n t t n ααααααμμμμμμ--⎧±±⎪⎪⎪⎪±±⎨⎪⎪⎪±±⎪⎩222222一、参数估计(随机抽样)1.总体均值估计-单总体正态总体,方差已知=x z =x z 正态总体,方差未知=x =x 非正态总体,足够大=x z =x z()1211211)))pn n p t S S n ααμμμμμμ+-⎧-±⎪⎪⎪⎪-±⎪⎪⎨⎪=⎪⎪⎪⎪-±⎪⎩2122122221222.总体均值之差估计-双总体正态总体,方差已知-=(x x 正态总体,方差未知但相等-=(x x 非正态总体,,n 足够大-=(x x z12ˆˆˆˆP P P P ααα⎧±±⎪⎪⎪⎨⎪⎪-±⎪⎩22111122221223.总体成数估计单总体:np,nq 大于5=p z =p z 双总体(成数之差),n p ,n q 和n p ,n q 大于5-=(p p )z22212222212112221221//n S S S S S S F F αααασσχχσσ--⎧-<<<<⎪⎪⎪⎨⎪<<⎪⎪⎩22224.总体方差估计n-1单总体:双总体(方差之比)221121.11ˆˆˆˆLLh h h h h h st h h h h h N x S N S N Np x p S p q μ==⎧±==⎪⎨⎪⇒⇒⇒⎩∑∑st st st 二、参数估计(其他抽样方式)分层抽样(等比例)均值估计=x x 成数估计x22112.11()1ˆˆrr ibi i i i i x S x x r r x p x p μ==⎧±==-⎪-⎨⎪⇒⇒⎩∑∑整群抽样均值估计=x x 成数估计2200ˆ220000(1ˆˆ2.ˆˆ3.,,,ˆˆ,,,b n n n n n NpqS pqN R n r n r S N R n r n r pqαασσσσσσσ==∆∆+⇒∆⇒∆⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒22x x2x p 2222三、样本容量1.纯随机抽样Z Z 均值估计=重复)(不重复)成数估计分层抽样(等比例)均值估计成数估计整群抽样均值估计成数估计001002001000010000100(1)20010(1)01.(((((nnH H Z Z HH H Z Z HH H Z Z HH H t t Ht H H t t Hαααααμμμμμμμμμμμμμμμμμμμμ--⎧≠≥>≥<≤-⎪⎩≠≥>≥四、假设检验均值检验正态总体方差已知:=:拒绝双侧):=:拒绝单侧):=:拒绝单侧)正态总体方差未知(单总体):=:拒绝双侧):=:拒绝单侧0010(1)0(30nH H t t Hn sαμμμμσ-⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪<≤-⎪⎪⎩⎪≥⇒⎪⎪⎩):=:拒绝单侧)非正态总体,同正态总体方差已知,若方差未知:01211202012112001211200121120(1)2((((nH H Z Z Hx xH H Z Z HH H Z Z HH H t t Hx xt Hααααμμμμμμμμμμμμμμμμ-⎧≠≥⎪>≥<≤-≠≥2.均值之差检验两个正态总体方差已知:=:拒绝双侧):=:拒绝单侧):=:拒绝单侧)两个正态总体方差未知但相等:=:拒绝双侧)(双总体):12112(1)0012112(1)012((nnH t t HH H t t Hn nααμμμμμμμμ--⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪>≥⎨⎪⎪⎪<≤-⎪⎪⎩⎪⎪⎪⎪⎪⎩p2212=:拒绝单侧):=:拒绝单侧)S两个非正态总体,大,同两个正态总体方差已知,未知用S,S估计001002001000010002120202120(ˆ(((ˆˆ(H H p Z Z Hp pH H p Z Z HH H p Z Z HH H p Z Z HP PZ H H p Z Z HHααααα⎧≠≥⎪-⎪>≥⎨⎪<≤-⎪⎩≠≥->≥111113.成数检验单总体::p=p:p拒绝双侧)Z=:p=p:p拒绝单侧):p=p:p拒绝单侧)两成数之差检验:p=p:p拒绝双侧)=:p=p:p拒绝单侧):p2120(H p Z Z Hα⎧⎪⎪⎨⎪<≤-⎪⎩1=p:p拒绝单侧)0102201020100111122101222122((((1,1)(1,1)(H H Z Z HH H Z Z HH H Z Z HH H F n n F F n n HSFSααααασσσσχσσσσσσσσσσσσσ-⎧≠≥⎪⎪>≥⎨⎪<≤⎪⎩≠--≤≤--22220022222002222002222224.方差检验(正态总体)单总体::=:拒绝双侧)(n-1)S=:=:拒绝单侧):=:拒绝单侧)两方差之比检验:=:拒绝=011112001111210(1,1)((1,1)(H H F F n n HH H F F n n Hαασσσσσσσσ-⎧⎪⎪>≥--⎨⎪<≤--⎪⎩222222222222双侧):=:拒绝单侧):=:拒绝单侧)统计学主要计算公式(第六章)2()()1::(2)xy x yx yx x y y r n xy x yn xy x yr t rt t n ασρσσσσρρρρ--=--===≠=>-∑∑∑∑01一、相关系数1.公式:=2.显著性检验H H 拒绝原假设2222222222222222()ˆ//ˆˆ()()1()()2.ˆ()()()ˆ()n xy x y b n x x a y n b x ny y y y a y b xy ny r y y y y y ny b r y y b x x x x y y ε⎧-=⎪-⎨⎪=-⎩⎧--+-==-=⎪---⎪⎨⎪=-=--=⎪-⎩∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑二、一元线性回归1.模型:y=a+bx+ 拟合优度检验判定系数121122221.ˆ0:0ˆˆ(2):00:0ˆ()/1(2)(1,2)ˆ()/21b b b b b H t t t n H H R y y r n F F F F n y yn r ααβββσσσββ=≠==>-=≠=≠--==≥----∑∑000三、模型显著性检验回归系数b 检验-H :=拒绝原假设2.F 检验H :或H :R 或拒绝原假设002002222ˆ2.)(2)ˆ3.(2)()ˆ()xy xy E y yt n S y yt n S b x x y y αα==±-=±--=-∑∑xy 四、模型估计1.估计标准误S 平均值的估计(特定值的估计统计学主要计算公式(第七章)21222201122112)(1)()2.(1)(1)e e r c ij ij j i ij i i ij H f f k f H H O E n n E E n r c ααχχχχχχχ==⎧⎪-⎨>-⎪⎩⎧⎪⎪⎪-⨯⎨==⎪⎪⎪>--⎩∑∑∑000020一、检验H :服从某种分布:不服从某种分布(如均匀分布)1.拟合优度检验(=拒绝H H :两变量之间独立:两变量之间不独立H :两变量之间没有差别:两变量之间有差别独立性检验拒绝H01210.50.51.ˆ2.p T T H P H P S Z Z H T T U Z Z αασ⎧⎪≠⎪⎪⎨⎪⎪=≥⎪⎩⎧⎪⎪⎪⎨⎪-⎪=⎪⎩0p 00二、成对比较检验:=:符号检验小样本:一种符号明显居多,拒绝H p-p 大样本:Z =拒绝H S H :两样本没有显著差别:两个样本有显著差别n(n+1)威尔科克森带符号检验小样本:T=较小的值>T 接受H 2大样本:检验具体公式给出 111221212022(1)(1)22UUU H n n n n n n n n U U H U Z U U Z Z U Z ααασ-++=+=+>⎧-⎪=⎨⎪⎩0A B 三、检验H :两现象没有差异:两现象有差异小样本:U U 较小的接受大的大样本:公式给出检验小的01121220,20b rH H n n r r r r E r n n Z Z ασ<-<<四、游程检验:样本具有随机性,:样本不具有随机性小样本、游程个数r 接受原假设-()大样本、中>检验=010101221:2:3:61(1)i i i i i i i i i i i i i s H x y H x y H x y H x y H x y H x y d r r n n α=->-≥∑s 五、等级相关检验()和相互独立,:和相互不独立()和相互独立,:和相互正相关()和相互独立,:和相互负相关小样本<30例假设(2)r 拒绝原假设大样本30 Z 检验 Z =r统计学主要计算公式(第八章)1t tx y y y -⇒⇒一、自相关系数的计算计算公式同一元相关()2110121:0ntt i nti e e H H d eρρ-==-=≠∑∑二、回归模型的自相关检验:=d L d U 2 4-d U 4-d Ld 21321211121n n n n n a a a a a a a n a a a a a a f f f a f f a c b ---⎧⎧⎪⎪⎪⎪⎪⎪⎧++++⎪⎪⎪⎪⎪⎨⎪⎪-⎪⎪⎨⎨⎪+++⎪⎪+++⎪⎪⎪⎪⎪⎪++⎪⎩⎩⎪⎪=⎪⎩∑i 12n-11三、动态分析水平指标时期=n 2绝对数间隔相等 =序时平均数时点222间隔不等=相对数、平均数 0)(1)a a a a n n ⎧⎪⎪⎨-⎪⎪+⎩∑n 0i -水平法=n 平均增长量2(总和法= 1X ⎧==⎪⎨⎪⎩四、动态分析速度指标水平法平均发展速度方程法(P298)平均增长速度=平均发展速度-/(/C T S C I T S I T S C I T S C⨯⨯⨯⎧⎨⎩⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯五、时间序列分析分解模型Y=T S C I(乘法模型)长期趋势T 测定:y=a+bt同月平均/总平均季节变动S 测定:(同月平均-趋势增量b )/总平均循环变动的测定:移动平均计算得到)不规则I 的变动: 01'201201101ˆˆˆˆˆˆˆ(1)(1)(1)t t t t tt t t t y y b b t y yb b t b t y ab b b y ya y a a a a -⎧⎪∆=+⎪⎪∆=++⎨⎪⎪=⎪⎩=++++=+-=-+-t t-1t t-1t-2t-nt+1t t 六、时间序列预测一阶差分大致相同,趋势外推法模型测定二阶差分大致相同, (同回归模型)y环比发展速度大体相同,y 自回归预测y(同回归模型)y y y 移动平均n指数平滑y =ay y y 201(1)(1)n a a a a ++-++-t-1t-2t-n-1y y 统计学主要计算公式(第九章)10001101q p q p p q p q⎧=⎪⎪⎨⎪=⎪⎩∑∑∑∑q p 数量指数K 一、综合指数质量指数K000011111q q P p k q p K q p q p K q p k kw K ⎧⎪⎪=⎪⎪⎪=⎨⎪⎪⎪⎪⎪⎩∑∑∑∑∑∑数量指数(加权算术)二、平均数指数质量指数(加权调和)固定权数=w1110101111111101111///f f f f f f f f f f f f fffff f f f ff ff ---⨯∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑101010100三、总平均数指数可变构成指数x x xx 固定构成指数xx xx 结构影响指数x x x x 三者关系可变构成指数=固定构成指数结构影响指数11101100011100100011011111001101111011011100100(p q q p p q p q q p p qp q p q q p q p p q p q A B C A B C A B C A B C A B C A B C A B C A B CA B C A B CA B C ⨯==⨯+-=⨯⨯-=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑pq四、指数因素分析两因素:总额指数=数量指数质量指数K 绝对数关系:-=(-)()三因素:绝对数关系:000110100111110)()()A B C A B C A B C A B C A B C +-+-∑∑∑∑∑∑1001001⨯=⨯五、指数应用计算期居民消费价格指数测定通货膨胀率=-基期居民消费价格指数货币购买力指数=居民消费价格指数职工平均工资指数职工实际工资指数=居民消费价格指数职工平均工资指数货币购买力指数 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。