用窗函数法设计FIR数字滤波器

合集下载

实验三 窗函数法设计FIR数字滤波器

实验三 窗函数法设计FIR数字滤波器
d
h(n) hd (n) w(n)
h(n) 就作为实际设计的FIR数字滤波器的单
位脉冲响应序列,其频率响应函数H (e
H (e ) h(n)e jwn
jw n 0 N 1
jw
)

式中,N为所选窗函数 w(n) 的长度(阶数)。

如果要求线性相位特性,则h(n) 还必须满足:

p
s s
调用格式: w=boxcar(n),根据长度 n 产生一个矩形窗 w。 (2)三角窗(Triangular Window) 调用格式: w=triang(n),根据长度 n 产生一个三角窗 w。 (3)汉宁窗(Hanning Window) 调用格式: w=hanning(n),根据长度 n 产生一个汉宁窗 w。 (4)海明窗(Hamming Window) 调用格式: w=hamming(n),根据长度 n 产生一个海明窗 w。 (5)布拉克曼窗(Blackman Window) 调用格式: w=blackman(n),根据长度 n 产生一个布拉克曼窗 w。 (6)恺撒窗(Kaiser Window) 调用格式: w=kaiser(n,beta),根据长度 n 和影响窗函数旁瓣的β参数产 生一个恺撒窗w。

例2、 设计线性相位带通滤波器,其长度 N=15,上下边带截止频率分别为W1= 0.3π, W2=0.5π
Window=blackman(16); b=fir1(15,[0.3 0.5],Window); freqz(b,1)

例3 、用窗函数法设计一FIR带通滤波 器:
阻带下截止频率: ls 0.2

[h,w] = freqz(hd,n):离散系统频响特 性
abs(X) :绝对值(复数的幅值) P = angle(Z) :相位角 text(x,y,‘s’):在图面(x,y)位置 处书写字符注释。

FIR数字低通滤波器的(汉宁)窗函数法设计

FIR数字低通滤波器的(汉宁)窗函数法设计

语音信号的数字滤波——FIR数字滤波器的(汉宁)窗函数法设计设计题目:语音信号的数字滤波——FIR数字滤波器的(汉宁)窗函数法设计一、课程设计的目的通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;掌握利用数字滤波器对信号进行滤波的方法。

并能够对设计结果加以分析。

二、设计步骤2.1窗函数设计法的原理窗函数的基本思想:先选取一个理想滤波器(它的单位抽样响应是非因果、无限长的),再截取(或加窗)它的单位抽样响应得到线性相位因果FIR滤波器。

这种方法的重点是选择一个合适的窗函数和理想滤波器。

设x(n)是一个长序列,是长度为N的窗函数,用截断,得到N点序列,即在频域上则有由此可见,窗函数不仅仅会影响原信号在时域上的波形,而且也会影响到频域内的形状。

2.2汉宁窗函数简介汉宁窗、海明窗和布莱克曼窗,都可以用一种通用的形式表示,这就是广义余弦窗。

这些窗都是广义余弦窗的特例,汉宁(Hanning)窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是 3个 sinc(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。

适用于非周期性的连续信号。

公式如下:2.3进行语音信号的采集(1)按“开始”-“程序”-“附件”-“娱乐”-“录音机”的顺序操作打开Windows系统中的录音机软件。

如图1所示。

图1 windows录音机(2)用麦克风录入自己的声音信号并保存成wav文件。

如图2所示。

图2 保存文件保存的文件按照要求如下:1 音信号文件保存的文件名为“yuxuejiao.wav”。

②语音信号的属性为“8.000KHz,8位,单声道 7KB/秒” ,其它选项为默认。

plot(k(1:20000)*1,abs(S1(1:20000)));title('预处理语音信号单边带频谱')在m文件编辑器中输入相应的指令将自己的语音信号导入Matlab工作台,点击“run”或者“F5”运行文件。

用MATLAB结合窗函数法设计数字带通FIR滤波器

用MATLAB结合窗函数法设计数字带通FIR滤波器

武汉理工大学《Matlab课程设计》报告目录摘要 (I)Abstract (II)1 原理说明 (1)1.1 数字滤波技术 (1)1.2 FIR滤波器 (1)1.3 窗函数 (2)1.4 MATLAB简介 (4)1.5 MATLAB结合窗函数设计法原理 (4)2 滤波器设计 (2)2.1 滤波器设计要求 (2)2.2 设计函数的选取 (2)2.3 窗函数构造 (3)2.4 设计步骤 (4)2.5 利用MATLAB自带函数设计 (4)3 滤波器测试 (9)3.1 滤波器滤波性能测试 (9)3.2 滤波器时延测量................................................................................错误!未定义书签。

3.3 滤波器稳定性测量............................................................................错误!未定义书签。

5 参考文献 (12)附件一: ........................................................................................................ 错误!未定义书签。

摘要现代图像、语声、数据通信对线性相位的要求是普遍的。

数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。

与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。

因此,具有线性相位的FIR数字滤波器在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。

FIR数字低通滤波器的(汉宁)窗函数法设计

FIR数字低通滤波器的(汉宁)窗函数法设计

)(9cos 15.0)(12cos 15.0)(1919n R n n R N n n w ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=ππ2.3进行语音信号的采集(1)按“开始”-“程序”-“附件”-“娱乐”-“录音机”的顺序操作打开Window s系统中的录音机软件。

如图1所示。

图1 wi ndows 录音机(2)用麦克风录入自己的声音信号并保存成wav 文件。

如图2所示。

图2 保存文件保存的文件按照要求如下:① 音信号文件保存的文件名为“y uxueji ao.wav ”。

②语音信号的属性为“8.000KH z,8位,单声道 7KB /秒” ,其它选项为默认。

2.4语音信号的分析将“yu xuejiao .wav ”语音文件复制到计算机装有Ma tlab 软件的磁盘中相应Mat lab目录中的“work ”文件夹中。

打开Matlab 软件,在菜单栏中选择“File ”-图3语音信号的截取处理图在图3中,其中第一个图为原始语音信号;第二个图是截短后的信号图。

图4频谱分析图其中第二个图是信号的FFT 结果,其横坐标的具体值是X (k)中的序号k;第三个图是确定滤波频率范围的参考图,其横坐标的具体值应当是遵循DFT 定义式和频率分辨率求得的:∑-===10)()]([)(N n k N W n x n x DFT k X π当k等于0时, 020j kn Njk knNe eW ==⋅-=π,从数字角频率上看,对应的正好是0=ω即直流的位置,也就是说,在取滤波频段时,当将主要能量(即红色框的部分)保留,其余频段部分的信号滤除。

)]([)(n x DFT k X =相当于是信号)(n x 的实际频谱)]([)(n x DFT ej X w =采样,而)(n x 又是连续时间语音信号)(t x 的采样。

)(k X 的每两个相邻取值之间的频率间隔大小对应到语音信号)(n x 的频谱中去,其频率间隔大小正好是采样结果的长度采样速率===∆L f f f s det f ∆称频率分辨率,其中Hz f s 8000=,10000=L ,p2=sum(s2.^2)-sum(s1.^2);SNR1=10*log10(p1/p2);p3=sum(s4.^2)/8000;p4=sum(s3.^2)/8000-sum(s4.^2)/8000;SNR2=10*log10(p3/p4);2.6 噪声叠加图5 语音信号与加噪声后语音信号对比图五为语音信号与加噪声后语音信号对。

数字信号实验(4) 用窗函数设计FIR滤波器

数字信号实验(4) 用窗函数设计FIR滤波器

实验四用窗函数设计FIR滤波器一、实验目的1.熟悉FIR滤波器设计的基本方法。

2.掌握用窗函数设计FIR数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。

3.熟悉线性相位FIR滤波器的幅频特性和相位特性。

4.了解各种不同窗函数对滤波器性能的响应。

二、实验原理与方法(一)FIR滤波器的设计目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。

常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。

本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。

它是从时域出发,用一个窗函数截取理想的得到h(n),以有限长序列h(n)近似理想的;如果从频域出发,用理想的在单位圆上等角度取样得到H(k),根据h(k)得到H(z)将逼近理想的,这就是频率取样法。

(二)窗函数设计法同其它的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。

一般是给定一个理想的频率响应,使所设计的FIR滤波器的频率响应去逼近所要求的理想的滤波器的相应。

窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数。

去逼近。

我们知道,一个理想的频率响应的傅理叶变换所得到的理想单位脉冲响应往往是一个无限长序列。

对经过适当的加权、截断处理才得到一个所需要的有限长脉冲响应序列。

对应不同的加权、截断,就有不同的窗函数。

所要寻找的滤波器脉冲响应就等于理想脉冲响应和窗函数的乘积。

即,由此可见,窗函数的性质就决定了滤波器的品质。

以下是几种常用的窗函数:1.矩形窗:2.Hanning窗:3.Hamming窗:4.Blackman窗:5.Kaiser窗:窗函数法设计线性相位FIR滤波器可以按如下步骤进行:1.确定数字滤波器的性能要求。

确定各临界频率{}和滤波器单位脉冲响应长度N。

2.根据性能要求和N值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而确定理想频率响应的幅频特性和相位特性。

用窗函数法设计FIR滤波器

用窗函数法设计FIR滤波器

用窗函数法设计FIR滤波器窗函数法是一种常用的数字滤波器设计方法,特别是FIR(Finite Impulse Response)滤波器设计的一种方法。

FIR滤波器是一种非递归滤波器,可以实现信号的滤波,特定频率的增强或抑制,抗混叠等功能。

FIR滤波器设计过程可以分为两个步骤:确定滤波器的理论参数和设计窗函数。

第一步,确定滤波器的理论参数。

这些参数包括滤波器的采样频率,截止频率,通带和阻带的衰减要求等。

一般情况下,FIR滤波器的理论参数由滤波器的应用需求决定。

第二步,设计窗函数。

窗函数是用来限制FIR滤波器的单位冲激响应的长度的。

它决定了滤波器的频率响应特性和频率选择性。

窗函数可以通过Fourier级数展开来实现。

常用的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

例如,以汉宁窗为例,下面是使用窗函数法设计FIR滤波器的具体步骤:1. 确定滤波器的理论参数。

如采样频率为fs,截止频率为fc,通带衰减要求为d1,阻带衰减要求为d22.将截止频率转化为数字频率。

由于数字信号是离散的,需要将模拟信号的截止频率转化为数字频率。

数字频率的单位为π。

3.根据截止频率和采样频率计算滤波器的长度N。

通常情况下,滤波器的长度N取一个奇数值,以确保能满足线性相位要求。

4.根据窗函数的性质确定窗函数的参数。

汉宁窗的参数为α=0.55.根据窗函数的长度N和参数α计算窗函数的系数。

例如,对于汉宁窗,窗函数的系数可通过下式计算得到:w(n) = 0.5 - 0.5 * cos(2πn/N) ,其中0≤ n ≤ N-16.根据窗函数的系数计算滤波器的单位冲激响应h(n)。

滤波器的单位冲激响应即为窗函数系数的离散时间傅里叶变换(DTFT),用于表示滤波器的频率响应特性。

7.根据滤波器的单位冲激响应h(n)可以计算出滤波器的频率响应H(f)。

频率响应可以通过滤波器的单位冲激响应h(n)的离散时间傅里叶变换(DTFT)计算得到。

8.根据设计要求来检验滤波器的频率响应特性是否满足要求。

用窗函数法设计FIR滤波器_C++程序

用窗函数法设计FIR滤波器_C++程序

float ino(float x); void cfft(float x[],float y[],int M,int N,int lc); void plot(float h[],int n,int color); int pow2(int k); void main() { float hd[NFFT],h[NFFT],w[NFFT],wc,pi,him[NFFT],R[NFFT]; float a,b,beta,bes,g,q,p,wf; int m,n,k,i; char ch; printf("this is a fir system design program.\n"); printf(" m represents window function.\n"); printf(" 1........rectangular window function.\n"); printf(" 2........kaiser window function.\n"); loop:printf("choose m, m is 1 or 2\n m=\n"); scanf("%d",&m); printf("choose window length n ...21,51,101,201.\n n=\n"); scanf("%d",&n); printf("choose wc,wc is between 0.1 to 0.99\n wc=\n"); scanf("%f",&wc); a=(n-1)/2; pi=4.0*atan(1.0); for(i=0;i<n;i++) { if(i==a) hd[i]=wc; else {b=i-a; hd[i]=sin(pi*b*wc)/(pi*b);} } switch(m)

用窗函数法设计FIR数字滤波器

用窗函数法设计FIR数字滤波器

用窗函数法设计FIR 数字滤波器一、实验目的1、加深对窗函数法设计FIR 数字滤波器的基本原理的理解2、学习用MATLAB 语言的窗函数法编写设计FIR 数字滤波器的程序3、了解MATLAB 有关窗函数法设计的常用子函数二、实验涉及的MATLAB 子函数1、boxcar :矩形窗2、triang :三角窗3、bartlett :巴特利特窗4、hamming :哈明窗5、hanning :汉宁窗6、blackman :布莱克曼窗7、chebwin :切比雪夫窗8、kaiser :凯瑟窗9、firl :基于窗函数的FIR 数字滤波器设计——标准频率响应,以经典方法实现加窗线性相位FIR 滤波器设计,可设计出标准的低通、带通、高通和带阻滤波器。

三、实验原理1、运用窗函数法设计FIR 数字滤波器 FIR 数字滤波器的系统函数为ωN-1-n n=0H(z)=h(n)z ∑N-1-n n=0H(z)=h(n)z ∑这个公式也可以看成是离散LSI 系统的系统函数M-m-1-2-m mm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其余a k 全都为0时的一个特例。

由于极点全部集中在零点,稳定和线性相位特性是FIR 滤波器的突出优点,因此在实际中广泛使用。

FIR 滤波器的设计任务是选择有限长度的h(n),使传输函数H(e jw )满足技术要求。

用窗函数法设计FIR 数字滤波器的基本步骤是:1)根据过渡带和阻带衰减设计指标选择窗函数类型,估算滤波器的阶数N ; 2)由数字滤波器的理想频率响应H(e jw )求出其单位冲击响应h d (n)。

2、各种窗函数特性的比较窗函数 旁瓣峰值/dB 近似过渡带宽 精确过渡带宽阻带最小衰减/dB矩形窗 -13 4/N π 1.8/N π 21 三角形窗 -25 8/N π 6.1/N π 25 汉宁窗 -31 8/N π 6.2/N π 44 哈明窗 -41 8/N π 6.6/N π 53 布莱克曼窗 -57 12/N π11/N π 74 凯塞窗-5710/N π803、用窗函数设计FIR 数字低通滤波器4、用窗函数法设计FIR 数字高通滤波器5、用窗函数法设计FIR 数字带通滤波器6、用窗函数法设计FIR 数字带阻滤波器四、实验内容选择合适的窗函数设计FIR 数字低通滤波器,要求:通带ωp =0.2π,Rp=0.05dB ;阻带ωs =0.3π,As=40dB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用窗函数法设计FIR 数字滤波器一、实验目的1.掌握用窗函数法设计FIR 数字滤波器的原理和方法。

2.熟悉线性相位FIR 数字滤波器特征。

3.了解各种窗函数对滤波特性的影响。

二、实验仪器微型计算机 matlab 软件 三、实验原理和方法如果所希望的滤波器的理想频率响应函数为 )(ωj d eH ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰-(2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。

由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为: )(ωj d eH =∑-=-1)(N n j e n h ω (2-3)式中,N 为所选窗函数)(n ω的长度。

由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。

设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。

这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。

)(ωj e H 是否满足要求,要进行验算。

一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。

如果要观察细节,补零点数增多即可。

如果)(ωj eH 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

如果要求线性相位特性,则)(n h 还必须满足)1()(n N h n h --±= (2-4)根据上式中的正负号和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。

要根据设计的滤波特性正确选择其中一类。

例如,要设计线性低通特征,可选择)1()(n N h n h --=一类,而不能选)1()(n N h n h ---=一类。

四、实验内容1.复习用窗函数法设计FIR 数字滤波器一节内容,阅读本实验原理掌握设计步骤。

2.编写程序① 编写能产生矩型窗、哈明窗、汉宁窗、莱克曼窗的窗函数子程序。

② 编写主程序。

主程序框图如图设 : [])()(n h DFT k H = (2-4) )()()(K jH k H k H I R += (2-5))()()(22k H k H k H I R += (2-6)画图时,20lg )(k H 打印幅度特性。

第k 点对应的频率k Nk πω2=。

为使曲线包络更 接近)(ωj e H 的幅度特性曲线,DFT 变换区间要选大些。

例如窗口长度N=33时,可通过在)(n h 末尾补零的方法,使长度变为64,再进行4点DFT ,则可得到更精确的幅度衰减特性曲线。

3.上机实验内容用四种窗函数设计线性相位低通FIR 数字滤波器,截止频率4πω=c rad ,N=256。

绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。

设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数)(ωj d eH ,即⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ee H ,0,)( 其中21-=N α (2-8))()(sin 21)(21)(απαωωπωπωωωωαππωω--===⎰⎰---n n d e e d ee H n h c n j j nj j d d cc(2-9)五、思考题1.如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?写出设计步骤。

2.定性说明本实验中3dB 截止频率的理论值在什么位置?是否等于理想低通的截止频率ω?3.如果要求用窗函数法设计带通滤波器,且给定上、下边带截止频率为1ω和2ω,试求理想带通的单位脉冲响应)(n h 。

六、实验报告要求1.简述实验目的及原理。

2.按照实验步骤及要求,比较各种情况下的滤波性能,说明窗口长度N 和窗函数类型对滤波特性的影响。

3.总结用窗函数法设计FIR 滤波器的主要特点。

4. 简要回答思考题。

参考程序1:N=input('窗宽度N=');k=input('窗型:1.矩形窗,2.hanning(升余弦窗),3.hamming (改进的升余弦窗),4.Blackman 请选择:'); subplot(2,2,1); w=pi/5; a=(N-1)/2; n=0:(N-1); m=n-a+eps;h=sin(w*m)./(pi*m); if k==1B=bartlett(N); else if k==2B=hanning(N); else if k==3B=hamming(N);else if k==4B=blackman(N);endendendendhd=h.*(B');stem(n,hd,'.');xlabel('n');ylabel('h(n)');title('在矩形窗下的N=33时h(n)函数');subplot(2,2,2);[H,m]=freqz(hd,[1],1024);mag=abs(H);db=20*log10((mag+eps)/max(mag));plot(m/pi,db);xlabel('w/п');ylabel('20log[H(ejw)]');title('h(n)的幅频特性');grid;pha=angle(H);subplot(2,2,3);plot(m,pha);xlabel('n');ylabel('φ');title('h(n)的相频特性');subplot(2,2,4);plot(m,mag);xlabel('w');ylabel('H(ejw)');title('h(n)的幅频特性');参考程序2:b=1;close all;i=0;while(b);temp=menu('选择窗函数长度N','N=10','N=15','N=20','N=25','N=30','N=33','N=35','N=40','N=45','N=50','N=55' ,'N=60','N=64');menu1=[10,15,20,25,30,33,35,40,45,50,55,60,64];N=menu1(temp);temp=menu('选择逼近理想低通滤波器截止频率Wc','Wc=pi/4','Wc=pi/2','Wc=3*pi/4','Wc=pi','Wc=0.5','Wc=1.0','Wc=1.5','Wc=2.0' ,'Wc=2.5','Wc=3.0');menu2=[pi/4,pi/2,3*pi/4,pi,0.5,1,1.5,2,2.5,3];w=menu2(temp);n=[0:(N-1)];hd=ideal(w,N); %得到理想低通滤波器k=menu('请选择窗口类型:','boxcar','hamming','hanning','blackman');if k==1B=boxcar(N);string=['Boxcar','N=',num2str(N)];else if k==2B=hamming(N);string=['Hamming','N=',num2str(N)];else if k==3B=hanning(N);string=['Hanning','N=',num2str(N)];else if k==4B=blackman(N);string=['Blackman','N=',num2str(N)];endendendendh=hd.*(B)'; %得到FIR数字滤波器[H,m]=freqz(h,[1],1024,'whole'); %求其频率响应mag=abs(H); %得到幅值db=20*log10((mag+eps)/max(mag));pha=angle(H); %得到相位i=i+1;figure(i)subplot(2,2,1);n=0:N-1;stem(n,h,'.');axis([0,N-1,-0.1,0.3]);hold on;n=0:N-1;x=zeros(N);plot(n,x,'-');xlabel('n');ylabel('h(n)');title('实际低通滤波器的h(n)');text((0.3*N),0.27,string);hold off;subplot(2,2,2);plot(m/pi,db);axis([0,1,-100,0]);xlabel('w/pi');ylabel('dB');title('衰减特性(dB)');grid;subplot(2,2,3);plot(m,pha);hold on;n=0:7;x=zeros(8);plot(n,x,'-');title('相频特性');xlabel('频率(rad)');ylabel('相位(rad)');axis([0,3.15,-4,4]);subplot(2,2,4);plot(m,mag);title('频率特性');xlabel('频率W(rad)');ylabel('幅值');axis([0,3.15,0,1.5]);text(0.9,1.2,string);b=menu('Do You want To Continue ?','Yes','No'); if b==2b=0;endendtemp=menu('Close All Figure ?','Yes','No');if temp==1close allend。

相关文档
最新文档