全面解读锂离子电池石墨负极材料

合集下载

【干货】锂离子电池负极材料系列之-石墨类材料基础知识介绍

【干货】锂离子电池负极材料系列之-石墨类材料基础知识介绍

【干货】锂离子电池负极材料系列之-石墨类材料基础知识介绍作为锂离子电池四大主材之一的负极材料,其比容量以及工作电压直接决定着电池的能量密度和工作电压,虽然硅材料开始逐步走向产业化,但目前的主流负极材料仍然是石墨类负极材料,其在反应过程中具有较低的嵌锂电位,同时生成的插锂层间化合物代替金属锂负极,从而避免了金属锂枝晶的沉积, 因此安全性得以显著提高。

而作为锂电四大主材的最后一个主题,将通过对石墨类材料的基础知识、生产工艺、测试方法、失效模式分析等几个方面对其有一个系统的、直观的认识;今天将对石墨类材料的基础知识做一个简单的介绍。

石墨类材料主要分为人造石墨和天然石墨,人造石墨又会根据加工工艺的不同分为MCMB(中间相碳微球)、软碳和硬碳等,理想的石墨具有层状结构,每个平面类似于苯环,层面之间通过大π键连接;具有2H型六方晶系以及3R型菱面体晶系。

对于理想的石墨而言,其理论容量为372mAh/g,但在实际电池设计过程中,一般负极会过量5%-10%,同时在首次充电过程中形成SEI膜对负极表面形成保护,阻止电解液和负极的进一步反应,而这层膜的好坏将直接影响电池的各项性能。

随着石墨负极中锂离子嵌入越来越深入(Stage-4-Stage-1),负极的表面颜色也逐渐发生变化,从黑色到青黑色再到暗黄色最后到金黄,石墨负极也完成了C-----LiC12----LiC6的转变,从而完成了充电过程。

从上图中就可以看出天然石墨和人造水墨在形貌上的区别,天然石墨大小颗粒不一,粒径分布广,未经处理的天然石墨是不能作为负极材料直接使用的,需要经过一系列的加工后才能使用,而人造石墨在形貌以及粒径分布上就一致多了;一般认为,天然石墨的容量高,压实密度高,价格也比较便宜,但是由于颗粒大小不一,表面缺陷较多,与电解液的相容性比较差,副反应比较多;而人造石墨则各项性能比较均衡,循环性能好,与电解液的相容性也比较好,价格也会贵一些。

对于负极材料,常常会听到一个取向度的概念,也就是所谓的OI 值,它的大小将直接影响着负极的电解液浸润、表面的阻抗、大倍率充放电性能,也直接影响着负极在循环过程中的膨胀。

锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点锂离子电池是目前应用最广泛的可充电电池之一,其负极材料在电池性能和循环寿命方面起着重要作用。

本文将从几个常见的锂离子电池负极材料出发,分别介绍它们的优点和缺点。

1. 石墨(Graphite)优点:石墨是目前锂离子电池中最常用的负极材料之一,其优点如下:(1) 电化学稳定性好,具有较高的电导率和很好的循环寿命;(2) 能够实现相对较高的充放电容量;(3) 成本低廉,资源丰富,制备工艺成熟。

缺点:尽管石墨具有较好的性能,但也存在一些缺点:(1) 石墨的比容量相对较低,难以满足对高能量密度的要求;(2) 石墨材料存在一定的体积变化,会导致电池在循环过程中容量衰减;(3) 石墨材料在低温下的循环性能较差。

2. 硅(Silicon)优点:硅是一种具有高容量和高导电性的材料,逐渐成为锂离子电池负极材料的研究热点,其优点如下:(1) 硅具有较高的理论比容量,可以实现更高的能量密度;(2) 硅具有较好的导电性能,可以提高电池的功率密度;(3) 硅材料丰富,成本相对较低。

缺点:尽管硅具有较好的性能,但也存在一些缺点:(1) 硅材料在充放电过程中会发生体积膨胀,导致电极结构破坏和容量衰减;(2) 硅材料对于电解液中的锂离子扩散速率较慢,会影响电池的充放电速率;(3) 硅材料的制备工艺相对复杂,需要进一步提高工艺成熟度。

3. 磷酸铁锂(LiFePO4)优点:磷酸铁锂是一种具有优良特性的锂离子电池负极材料,其优点如下:(1) 磷酸铁锂具有较高的电化学稳定性和循环寿命,能够实现长循环寿命和高安全性;(2) 磷酸铁锂具有较高的理论比容量和较好的电导率;(3) 磷酸铁锂材料无毒无害,环保性能好。

缺点:尽管磷酸铁锂具有较好的性能,但也存在一些缺点:(1) 磷酸铁锂的比容量相对较低,难以满足高能量密度的需求;(2) 磷酸铁锂材料的制备工艺相对复杂,成本较高;(3) 磷酸铁锂材料的电导率较低,在高功率应用中表现较差。

锂电池的负极材料

锂电池的负极材料

锂电池的负极材料锂电池的负极材料是锂离子电池中的重要组成部分,它直接影响着电池的性能和寿命。

目前主流的锂电池负极材料主要有石墨和硅基材料。

本文将详细介绍这两种材料的特点和应用领域。

一、石墨负极材料石墨是目前应用最广泛的锂电池负极材料之一。

它具有以下特点:1.高电导性:石墨具有良好的电导性能,可以有效地传导电子,使电池具有较低的内阻和较高的放电能力。

2.良好的循环性能:石墨负极材料具有较好的循环稳定性,能够承受大量的充放电循环,延长电池的使用寿命。

3.较低的价格:石墨是一种常见的材料,资源丰富,价格相对较低,适用于大规模生产。

石墨负极材料主要应用于锂离子电池、锂聚合物电池和磷酸铁锂电池等领域。

它们广泛应用于移动通信、电动汽车、储能系统等领域。

二、硅基负极材料硅基负极材料是近年来快速发展的一种新型材料。

与石墨相比,硅基材料具有以下特点:1.高容量:硅基负极材料具有较高的锂离子储存容量,可以存储更多的锂离子,提高电池的能量密度。

2.优异的循环性能:硅基负极材料经过改进和优化后,可以实现较好的循环稳定性,减少容量衰减,提高电池的使用寿命。

3.较高的成本:硅基材料的生产成本相对较高,目前尚处于研究和开发阶段,商业化应用还存在一定的挑战。

硅基负极材料在锂离子电池领域有着广阔的应用前景。

它可以提高电池的能量密度,延长电池的续航时间,适用于电动汽车、无人机等对能量密度要求较高的领域。

总结起来,石墨和硅基负极材料都具有各自的优势和适用领域。

石墨广泛应用于目前的锂电池市场,而硅基材料则代表了未来锂电池的发展方向。

随着科技的不断进步和创新,相信锂电池负极材料会有更多的突破和发展,为电池行业带来更多的可能性和机遇。

锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点锂离子电池是目前应用最广泛的电池之一,其负极材料是决定其性能的重要组成部分。

常见的锂离子电池负极材料有石墨、硅及其合金、锡及其合金等,它们各自具有一定的优缺点。

1. 石墨石墨是目前最常用的锂离子电池负极材料之一。

它具有以下优点:(1) 高电导率:石墨具有优良的电导性能,可以快速地传递电子,提高电池的放电性能。

(2) 高循环稳定性:石墨经过表面处理后,可以提高锂离子的扩散速率,延长电池的循环寿命。

(3) 低成本:石墨是一种常见的材料,资源丰富,生产成本相对较低。

然而,石墨也存在一些缺点:(1) 低比容量:石墨的比容量较低,即单位质量材料所能储存的锂离子数量有限,限制了电池的能量密度。

(2) 高副反应:石墨在充放电过程中容易与电解液发生副反应,导致电池容量损失。

2. 硅及其合金硅及其合金是一种有潜力的锂离子电池负极材料。

它具有以下优点:(1) 高比容量:硅及其合金具有较高的比容量,可以储存更多的锂离子,提高电池的能量密度。

(2) 丰富资源:硅是地壳中第二丰富的元素,资源相对充足。

然而,硅及其合金也存在一些缺点:(1) 体积膨胀:硅在充放电过程中会发生体积膨胀,导致电极材料的破裂和容量衰减。

(2) 低电导率:硅及其合金的电导率较低,会导致电池内阻增加,影响电池的放电性能和循环寿命。

3. 锡及其合金锡及其合金是另一种常用的锂离子电池负极材料。

它具有以下优点:(1) 高比容量:锡及其合金具有较高的比容量,可以存储更多的锂离子,提高电池的能量密度。

(2) 良好的循环稳定性:锡及其合金经过表面处理后,可以提高电池的循环寿命。

然而,锡及其合金也存在一些缺点:(1) 体积膨胀:锡在充放电过程中同样会发生体积膨胀,导致电极材料的破裂和容量衰减。

(2) 低电导率:锡及其合金的电导率较低,会导致电池内阻增加,影响电池的放电性能和循环寿命。

总的来说,石墨、硅及其合金、锡及其合金是目前常用的锂离子电池负极材料。

锂离子电池石墨类负极材料测定

锂离子电池石墨类负极材料测定

锂离子电池石墨类负极材料测定随着电动汽车和可再生能源的快速发展,锂离子电池作为最常见的电池类型之一,也受到了广泛关注。

而其中的石墨类负极材料作为电池的重要组成部分,其性能参数的确定对电池的性能和稳定性有着重要的影响。

对于石墨类负极材料的测定工作显得尤为重要。

1. 石墨类负极材料的性质石墨类负极材料是锂离子电池中常用的一种负极材料,其主要成分是石墨,具有良好的导电性和循环稳定性。

其优势在于价格低廉、资源丰富,并且具有较高的比容量和循环寿命。

大多数商业化的锂离子电池都采用石墨类负极材料作为主要的储锂材料。

2. 石墨类负极材料的测定方法石墨类负极材料的测定方法通常包括石墨结构分析、电化学性能测试和物理性能测试等方面。

其中,石墨结构分析的方法主要包括X射线衍射、扫描电镜等方法,用于分析材料的晶体结构、表面形貌以及孔隙结构等;电化学性能测试则包括循环伏安曲线测试、恒流充放电测试等,用于评估材料的电化学活性和循环稳定性;物理性能测试则包括比表面积测试、孔隙分布测试等,用于研究材料的物理性能和吸附性能等。

3. 石墨类负极材料的表征技术为了更准确地测定石墨类负极材料的性能参数,需要借助各种先进的表征技术。

X射线衍射技术可以用于分析石墨材料的晶体结构和晶粒尺寸分布;扫描电镜技术可以观察材料的表面形貌和孔隙结构;比表面积测试和孔隙分布测试则可以用于研究材料的物理性能和吸附性能;循环伏安曲线测试和恒流充放电测试则可以评估材料的电化学活性和循环稳定性。

4. 石墨类负极材料的应用前景石墨类负极材料作为锂离子电池的重要组成部分,具有广阔的应用前景。

随着电动汽车和储能技术的快速发展,对于石墨类负极材料的需求也将逐渐增加。

对于石墨类负极材料的性能参数测定和表征工作具有重要的意义,可以为其在锂离子电池领域的应用提供有力的支撑。

总结:石墨类负极材料作为锂离子电池的重要组成部分,其性能参数的测定对于电池的性能和稳定性具有重要的影响。

石墨类负极材料

石墨类负极材料

石墨类负极材料1. 简介石墨类负极材料是一种常用于锂离子电池中的负极材料。

它由石墨微晶结构组成,具有良好的导电性、高比容量和长循环寿命等优点,被广泛应用于电动汽车、移动设备和储能系统等领域。

2. 石墨类负极材料的特性2.1 导电性石墨类负极材料具有良好的导电性,能够有效地传递锂离子。

其导电性主要取决于石墨中的导电路径和晶格结构。

石墨类负极材料通常具有较低的内阻和较高的电导率,可以提供稳定可靠的电子传输。

2.2 高比容量石墨类负极材料具有高比容量,即单位质量或体积可以存储更多的锂离子。

这是由于石墨结构中存在大量的插层间隙,可以容纳锂离子进出。

因此,使用石墨类负极材料可以提高锂离子电池的能量密度,延长其使用时间。

2.3 长循环寿命石墨类负极材料具有较好的循环稳定性,可以经受多次充放电循环而不产生明显的容量衰减。

这是由于石墨结构中的插层间隙可以缓冲锂离子的体积变化,并防止电极材料的机械破坏。

此外,石墨类负极材料还具有较低的自放电率,能够减少能量损失。

3. 石墨类负极材料的制备方法3.1 碳化法碳化法是一种常用的石墨类负极材料制备方法。

该方法通过将碳源和金属催化剂共同加热,使碳源发生碳化反应生成石墨结构。

常用的碳源包括天然石墨、人工石墨、焦炭等。

金属催化剂通常选择铁、镍等。

3.2 氧化还原法氧化还原法是另一种常用的制备石墨类负极材料的方法。

该方法通过在高温下使氧化物与还原剂反应,将氧化物还原为石墨结构。

常用的氧化物包括氧化锂、氧化钠等。

常用的还原剂包括碳、氢等。

3.3 化学气相沉积法化学气相沉积法是一种新兴的制备石墨类负极材料的方法。

该方法通过在适当的反应条件下,使有机气体在金属催化剂表面发生裂解和重组反应,生成石墨结构。

常用的有机气体包括甲烷、乙烷等。

4. 石墨类负极材料在锂离子电池中的应用石墨类负极材料是目前最常用的锂离子电池负极材料之一。

它具有良好的导电性、高比容量和长循环寿命等优点,被广泛应用于各种类型的电池中。

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。

2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。

石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。

二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。

石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。

2、导热性:导热性超过钢、铁、铅等金属材料。

导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。

3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。

石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。

4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。

由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。

5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。

6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。

三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。

以及黑龙江省的七台河市、鹤岗市和双鸭山市等。

2、山东省莱西市为我国石墨重要产地之一。

3、吉林省磐石市也是石墨产地之一。

4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。

5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。

四、石墨世界着名产地:1、纽约Ticonderoga。

2、马达加斯加。

3、斯里兰卡(Ceylon)。

五、石墨分类:1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。

2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。

石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。

二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。

石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。

2、导热性:导热性超过钢、铁、铅等金属材料。

导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。

3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。

石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。

4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。

由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。

5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。

6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。

三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。

以及黑龙江省的七台河市、鹤岗市和双鸭山市等。

2、山东省莱西市为我国石墨重要产地之一。

3、吉林省磐石市也是石墨产地之一。

4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。

5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全面解读锂离子电池石墨负极材料
锂离子电池,又称为摇椅电池,他的主要组成部分是正极、负极、隔膜及电解液。

当前锂离子动力电池正极一般采用尖晶石型LiMn2O4或镍基层状氧化物,负极以石墨为主,电解液为含LiPF6 的碳酸酯(EC,EMC)有机溶液。

LiMn2O4是一种被认为最安全的材料,也是最廉价的正极材料,已经被多种型号的动力电池采用。

Li(NiCo)O2 容量高,但安全性能较差,需通过掺杂改性并限制其使用电压等手段来改善其安全性能;从整车安全和电池成本考虑,磷酸铁锂LiFePO4 安全性好、寿命长是最适合在汽车动力电池上应用的锂离子电池正极材料。

锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。

石墨具有六元环碳网层状结构,碳碳之间是SP2 杂化的,层层之间是分子作用力连接。

石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。

2H相具有ABABA特征堆积,3R 相的堆积结构则是ABCABC。

两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了良好的基础。

天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。

理论容量为372 mAh/g。

无定形石墨纯度低,石墨晶面间距(d002)为0.336 nm。

主要为2H晶面排序结构,即石墨层按ABAB顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。

且形成的块状颗粒容易粉碎成形状较好的颗粒。

在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260 mAh/g,不可逆比容量在100 mAh/g 以上。

鳞片石墨的结晶度高,片层结构单元化大,具有明显的。

相关文档
最新文档