2014理论力学实验指导

2014理论力学实验指导
2014理论力学实验指导

理论力学实验报告

实验一求不规则物体的重心 一、实验目的:用悬吊法和称重法求出不规则物体的重心的位置。 二、实验设备仪器:ZME-1型理论力学多功能实验台,直尺、积木、磅秤、胶带、白纸等。 三、实验原理方法简述 (一)悬吊法求不规则物体的重心 适用于薄板形状的物体,先将纸贴于板上,再在纸上描出物体轮廓,把物体悬挂于任意一点A,如图1-1(a)所示,根据二力平衡公理,重心必然在过悬吊点的铅直线上,于是可在与板贴在一起的纸上画出此线。然后将板悬挂于另外一点B,同样可以画出另外一条直线。两直线的交点C就是重心,如图1-1(b)所示。 A (a) 图1-1 (二)称重法求轴对称物体的重心 对于由纵向对称面且纵向对称面内有对称轴的均质物体,其重心必在对称轴上。

图1-2 首先将物体支于纵向对称面内的两点,测出两个支点间的距离l ,其中一点置于磅秤上,由此可测得B 处的支反力N1F 的大小,再将连杆旋转180O ,仍然保持中轴线水平,可测得N2F 的大小。重心距离连杆大头端支点的距离C x 。根据平面平行力系,可以得到下面的两个方程: C 1N N21N =?-?=+x W l F W F F 根据上面的方程,可以求出重心的位置: N2 N11N F F l F x C +?= 四、实验数据及处理 (一)悬吊法求不规则物体的重心 (二)称重法求对称连杆的重心。 a.将磅秤和支架放置于多功能台面上。将连杆的一断放于支架上,另一端放于支架上,使连杆的曲轴中心对准磅秤的中心位置。并利用积木块调节连杆的中心位置使它成水平。记录此时磅秤的读数 F N1=1375g b.取下连杆,记录磅秤上积木的重量F J1=385g c.将连杆转?180,重复a 步骤,测出此时磅秤读数F N2=1560g d.取下连杆,记录磅秤上积木的重量F J1=0g

理论力学练习题-基础题

理论力学练习 一、填空题 1、理论力学是研究物体______一般规律的科学,包括静力学、_____和_____。静力学主要研究物体______和物体在外力作用下的_________。2、平衡是指物体相对地球处于______或作______运运。 3、力是物体间的相互______,这种作用使物体的_____和____发生变化。4、力是矢量,具有_____和______。矢量的长度(按一定比例)表示力的_____,箭头的指向表示力的______,线段的起点或终点表示力的_____。 通过作用点,沿着力的方向引出的直线称为力的____。 5、只受两个力作用并处于_______的物体称______,当构件呈杆状时则称_______。 6、限制物体自由运动的_______称为约束。 7、物体所受的力分为主动力、____两类。重力属_____ 8、光滑面约束不能限制物体沿约束表面______的位移,只能阻碍物体沿接触面法线并向_______的位移。 9、确定约束反力的原则:(1)约束反力的作用点就是约束与被约束物体的_______或______;(2)约束反力的方向与该约束阻碍的运动趋势方向 ______;(3)约束反力的大小可采用______来计算确定。 10、作用在物体上的_____称力系。如果力系中的__________都在___内,且 ____________,则称平面汇交力系。人们常用几何法、_____研究平面汇交力系的合成和平衡问题。 11、任意改变力和作图次序,可得到______的力多边形,但合力的______ 仍不变,应注意在联接力多边形的封闭边时,应从第一个力的_______指向最后一个力的______。 12、共线力系的力多边形都在____上。取某一指向力为正,___指向力为负, 则合力的____等于各力代数和的______,代数和的___表示合力的_____。 13、平面汇交力系平衡的必要与充分几何条件是:该力系的___是______的。 14、平面汇交力系平衡的解析条件:力系中各力在两直角坐标上_______分 别等于______。其表达式为_______和________。 15、合力投影定理是指合力在任一坐标轴上的投影等于_____在同一轴上投 影的________。 16、为求解平面汇交力系平衡问题,一般可按下面解题步骤: (1)选择______;(2)进行_____分析;(3)选取合适的______计算各力的投 影;(4)列____,解出未知量。若求出某未知力值为负,则表明该力的_____与受力图中画出的指向______,并须在____中说明。 17、力F使刚体绕某点O的转动效应,不仅与F的____成正比,而且与O至力作 用线的____成正比。为此,力学上用乘积F·d加上适当的_____,称为_____,简称力矩。O点称为_____,简称矩心。矩心O到F作用线的_____称为力臂。 18、力矩的平衡条件:各力对转动中心O点的____的_____等于零,用公式表 示Σmo(F)=________。

EDA实验指导 基于FPGA的动态扫描电路设计new

FPGA实验指导及记录 实验三基于FPGA的数码管动态扫描电路设计 1.实验目的: (1)掌握FPGA工作的基本原理、FPGA硬件平台的使用; (2)熟悉7段数码管显示译码电路的设计。 (3)掌握数码管动态扫描显示原理及动态扫描电路的设计。 2.实验任务:利用FPGA硬件平台上的6位数码管动态显示计数器输出数据。 3.电路设计 (1)顶层电路 由分频模块fre_div,计数器模块counter100,译码显示模块diaplay构成。分频模块fre_div将可将实验平台晶体振荡器提供的50MHz时钟信号分频,输出500Hz,1KHz及1Hz三种信号备用,conter100模块实现模100计数功能,display模块为数码管动态显示模块,实现计数数字在6位数码管上的动态显示。 (2)分频器模块fre_div 该模块已经设计完成,存放在F盘502文件夹里,使用时请自行拷贝至当前工程文件夹,并按设计需要选择合适的输出。 (3)计数器模块counter100 该计数器模块实现模100计数。此处同学们应掌握数据总线的画法。

(4)译码显示模块display 该模块由counter6模块,dig_select模块,seg_select模块以及decoder模块构成,请同学们自行完成该模块总体设计,当display模块的输入信号scanclk频率为1KHz时,数码管扫描周期为36ms,每次扫描每位数码管显示时长6ms。各子模块设计思路如下。 a)counter6模块 该模块需使用74390设计一个模6的计数器。请在空白处做预设计,画出电路图。 b)dig_select模块 该模块用于选择6位数码管中的某一位显示相应字形。74138为3-8译码器,功能表见附录。

理论力学转动惯量实验报告

理论力学转动惯量 实验报告

【实验概述】 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。 正确测定物体的转动惯量,~对于了解物体转动规律,~机械设计制造有着非常重要的意义。 然 而在实际工作中,大多数物体的几何形状都是不规则的, 难以直接用理论公式算出其转动惯~ 量,只能借助于实验的方法来实现。 因此,在工程技术中,用实验的方法来测定物体的转动 ’ 惯量就有着十分重要的意义。 IM-2刚体转动惯量实验仪,应用霍尔开关传感器结合计数计 ’ 时多功能毫秒仪自动记录刚体在一定转矩作用下, 的角加速度和刚体的转动惯量。 因此本实验提供了一种测量刚体转动惯量的新方法, 实验思 路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新 仪器。 【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1. 转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 即绳子的张力T=m(g-r p 2) 砝码与系统脱离后的运动方程 (2) 由方程(1) (2)可得 J=mr(g-r p 2)/( p 2- p 1) 2. 角加速度的测量 0=3 o t+? p t2 若在t 1 、t 2时刻测得角位移0 1、B 2 则 0 1 = 3 0 t 1+? p t2 0 2=3 0 t 2+? p t2 所以,由方程(5)、(6)可得 p =2 (0 2 t 1- 0 1 t 2) / t 1 t 2 (t 2- t 1) 【实验仪器】 转过n 角位移的时刻,测定刚体转动时 T X 叶M 严J p 2 (1) 由牛顿第二定律可知,砝码下落时的运动方程为: mg-T=ma (5)

答案2014年理论力学练习

精选 A C 判断题(正确的划√,错误的划×。请将答案写在答题框内。本大题共5小题,每小题2分,共10分) 1. 用解析法求平面汇交力系的平衡问题时,所建立的坐标系 x ,y 轴一定要相 互垂直。() 2. 点作曲线运动时,其加速度的大小等于速度的大小对时间的导数。( ) 3. 当质点系的动量守恒,各质点的动量不一定守恒。。( ) 4. 无论牵连运动为何种运动,点的速度合成定理a e r v v v =+r r r 都成立。( ) 5. 若刚体运动时,其上两点的轨迹相同,则该刚体一定作平动。( ) 二、选择题(请将答案写在答题框内。本大题共5小题,每小题3分,共15分) 1. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为 。 A. 0; B. 50N ; C. 70.7N ; D. 86.6N ; E. 100N 。 2. 下列静力学公理中,不只适用于刚体的是( )。 (A )力的平行四边形法则; (B )加减平衡力学原理; (C )二力平衡条件; (D )力的可传性。 3. 平行轴定理的表达式正确的是:( ) (A). 2zc z J J md =+ (B). 2z zc J J md =- (C). 2z zc J J md =+ (D). 以上都不对. 4. 如图所示,均质杆AB 直立在光滑的水平面上,当它从铅直位置无初速度地倒下时,其中质心C 的运动轨迹是( )。 (A )直线 (B )圆 (C )椭圆 (D )曲线

5. 均质等边直角弯杆OAB的质量共为2 m,以角速度ω绕O轴转动,则弯杆对O轴的动量矩的大小为( )。 (A) L O = 2 3ml 2ω; (B) L O= 4 3ml 2ω; (C) L O= 5 3ml 2ω; (D) L O= 7 3ml 2ω 三、填空题(本大题共3小题,每小题4分,共12分) 1. 曲杆ABC在图示平面内可绕A轴转动,已知某瞬时B点的加速 度为 B a=5 m/s,则求该瞬时曲杆的角速度ω=();角加 速度α=()。 2. 如图所示,均质杆AB的质量为m,长度为l,放在铅直平面内, 杆的一端A靠在墙壁,另一端B沿地面运动。已知当杆对水平面 的夹角60 ?? =时,B端的速度为v,则杆AB在该瞬时的动能T的 大小为;动量P的大小为。 3.曲柄OA以匀角速度转动,当系统运动到图示位置(OA//O1B, AB⊥OA)时,有 A v r B v r , A a r B a r , AB ω0, AB α0。(填写①或②) ①等于;②不等于。 四、作图题(本大题共2小题,每小题8分,共16分) 1. 试画出下图中系统整体和各物体的受力图。 B A ?

PWM控制芯片认识及外围电路设计实验汇编

实验三十五 PWM 控制芯片认识及外围电路设计实验 (电力电子学—自动控制理论综合实验) 一、 实验原理 1.PWM 控制 电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM ),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。 PWM 控制的原理可以简单通过图35-1理解。图中,V 1为变换器输出的反馈电压与一个三角波信号V tri 进行比较,比较电路产生的输出电压为固定幅值、宽度随反馈电压的增大而减小的PWM 脉冲方波,如图中阴影部分所示。若将该PWM 方波作为如图35-2所示的直流降压变换器的开关管的驱动信号,当输出电压升高时,输出电压方波宽度变窄,滤波后输出直流电压降低,达到稳定到某一恒定值的目的。 由PWM 控制的原理可知,实现PWM 控制应该具备以下条件: 图35-1 PWM 控制原理 V tri V 1 V 图35-2 直流-直流降压变换电路(Buck 电路) (1) 有三角波或阶梯波这样具有斜坡边的信号,作为调节宽度的调制基础信号;从 图35-1可以知道,三角波的频率就是使图35-2中开关管通断的开关频率。 (2) 有比较器以便将调制基础信号和反馈电压信号进行比较产生PWM 信号;

(3) 对反馈电压幅度的限制门槛电压,以使反馈电压不至于超过三角波最高幅值或 低于三角波最低值。一旦超出其最高值或低于最低值,2个信号没有交点,将出现失控情况; (4) 若同时需要控制多个开关管,尤其是桥式电路的上下桥臂上的一对开关管时, 应具有死区电路。死区即上下桥臂的两个开关管都没有开通脉冲、都不导通的时间,以便待刚关断的开关管经历恢复时间完全关断后,再让另一开关管开通; (5) 有反馈控制环节(即恒定的电压给定、误差放大器及调节器(或校正环节)、 功率放大电路); (6) 按照一定逻辑关系开放脉冲的逻辑控制电路。 按照上述原则,已经有很多集成的PWM 控制芯片面世,在芯片上集成了PWM 控制的许多环节,结合芯片的外围电路,具备了所有的PWM 控制功能。采用集成方式实现PWM 控制,具有很多优越性,不仅成本和体积上具有优势,而且在降低电磁干扰、降低设计难度上也有明显的优点。 本综合实验主要采用比较常用的PWM 集成芯片TL494,下面给出了有关它的介绍以及基本设计原则。其它常用的PWM 芯片如CW3524等,详见本实验附录,或自行查询相关资料,以便完成设计。 2.集成PWM 控制芯片TL494及外围电路介绍 TL494是美国德克萨斯公司研制的PWM 芯片,16端双列直插形式,具有两路输出(从T a 、T b 两个开关管输出)。它将PWM 控制所需要的功能,包括控制器(误差放大器等),都集成到一片芯片上,加上外围电路,组成了比较完善的PWM 控制器。图35-3是其电路功能方框图。其引脚说明及外围电路如下。 (1) 芯片电源 12端接输入工作电压,7端接地。工作电压由于电路的实际情况不同而在一定范围内变化。能工作于较宽的电源电压范围是PWM 控制芯片的一大特点,使它可以方便地应用于各种场合。 CC V 芯片内部还有一个稳压电源,将芯片12端输入的供电电源变换成稳定的5伏直流电压,供内部各电路用,也可供作为控制器(调节器)的标准给定电压,从14端引出。 (2) 输出方式控制端——13端: ① 若13端接地、V 13为低电位时,P = 0,D = 0,E = 0,G 1 = C = G 2,T a 、T b 两路输出相同,如图35-3中所示,即单路输出。若实验电路中只需要驱动一个开关管,则将13点接地用单路输出;若将两路并联可扩大输出容量。 ②若13端接+5V (可接芯片内的稳压直流5V 电源),V 13为高电位时,P = 1, C Q G +=1,C G +=2:

理论力学实验报告

F F B o C o W o A (a) (b) A A B W W X C l l ⑻ (b) x C A 7 F N 1 F N1 F N1 F N1 F N2 F N2 F N1 I 实验一求不规则物体的重心 一、 实验目的: 用悬吊法和称重法求出不规则物体的重心的位置。 二、 实验设备仪器:ZME-1型理论力学多功能实验台,直尺、积木、磅秤、胶带、白纸等。 三、 实验原理方法简述 (一)悬吊法求不规则物体的重心 适用于薄板形状的物体,先将纸贴于板上,再在纸上描出物体轮廓,把物体悬挂于任意一点 A ,如图 1-1( a )所示,根据二力平衡公理,重心必然在过悬吊点的铅直线上,于是可在与板贴在一起的纸上画出 此线。然后将板悬挂于另外一点 B ,同样可以画出另外一条直线。 两直线的交点C 就是重心,如图1-1(b ) 所示。 图1-1 (二)称重法求轴对称物体的重心 对于由纵向对称面且纵向对称面内有对称轴的均质物体,其重心必在对称轴上。 图1-2 首先将物体支于纵向对称面内的两点,测出两个支点间的距离 I ,其中一点置于磅秤上,由此可测得 B 处的支反力F N1的大小,再将连杆旋转 180°,仍然保持中轴线水平,可测得 F N2的大小。重心距离连杆 大头端支点的距离 x C 。根据平面平行力系,可以得到下面的两个方程: F N2二W 根据上面的方程,可以求出重心的位置: I -W x C =0 四、实验数据及处理 (一)悬吊法求不规则物体的重心

F NI =1375 g 4)连杆 a. 将磅秤和支架放置于多功 能台面上。将连杆的一断放于支架上,另一端放于支架上,使连杆的曲轴 中心对准磅秤的中心位置。 并利用积木块调节连杆的中心位置使它成水平。 记录此时磅秤的读数 b. 取下连杆,记录磅秤上积木的重量 F JI =385g c. 将连杆转180,重复a 步骤,测出此时磅秤读数 F N 2=1560g d. 取下连杆,记录磅秤上积木的重量 F JI =0 g e. 测定连杆两支点间的距离 I =221mm f. 计算连杆的重心位置 = (1375_385)_ _ 86mm 重心距离连杆大头端支点的距离 x C =86mm 。 1375 -385 1560 五、思考题 1. 在进行称重法求物体重心的实验中,哪些因素将影响实验的精度? 答:影响实验精度的因素有: 1)磅秤的精度;2)支点位置的准确度;3 )连杆中心线的水平度; 支点间距离测量的准确度,等。 实验四四种不同载荷的观测与理解 一、 实验目的: 通过实验理解渐加载荷,冲击载荷,突加载荷和振动载荷的区别。 二、 实验设备仪器:ZME-1型理论力学多功能实验台,磅秤,沙袋。 三、 实验原理方法:

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学组合实验

理论力学组合实验报告 使用设备名称与型号 同组人员 实验时间 一、实验目的 理论力学是一门理论性较强的技术基础课,是现代工程技术基础理论之一,在日常生活、工程技术各领域都有着广泛的应用。这门学科的理论比较抽象,真正掌握也较困难。本实验指导书介绍理论力学的六个小实验,让学生在做实验过程中既动手又动脑,培养学生的创新思维和科学实验能力。 二、实验设备与仪器 理论力学多功能实验台ZME-1型 三、实验原理 四、实验操作步骤 实验(1):求弹簧质量系统的固有频率 在高压输电线模型的砝码盘上,分四次挂上不同重量的砝码,观察并记录弹簧的变形。 实验(2):求重心的实验方法 (A)悬吊法 将求重心的型钢片状试件,用细绳将其挂吊在上顶板前端的螺钉上,再换一个位置挂吊,通过两次挂吊便可求出重心位置。 (B)称量法 使用连杆、积木、台称,利用已学力学知识,用称量法求连杆的重量及重心位置。实验(3):验证均质圆盘转动惯量的理论公式

转动实验台右边手轮,使圆盘三线摆摆长下降为60cm,左手给三线摆一初始角(一般小于60),释放圆盘后,三线摆发生扭转振动。右手拿秒表,记录扭转十次或以上的时间,并算出周期,比较实验与理论计算两种方法求得的转动惯量,确定误差,还可以求摆长(四种长度)对误差的影响。 由弹簧的变形计算该系统的等效刚度和固有频率。 实验(4):用等效方法求非均质物体转动惯量 分别转动左边两个三线摆的手轮,让有非均质摇臂的圆盘三线摆下降至摆长约60cm,也使配重相同的带有强磁铁的两个圆柱铁三线摆下降到相同的高度进行转动惯量等效实验,测出扭转振动的周期,再与两个圆柱的三线摆计算周期进行等效,从而求出非均质摇臂的转动惯量。 五、实验结果及分析计算 1、弹簧质量系统的固有频率 2、连杆的重心

实验2指导书 组合逻辑电路的设计

组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路设计的一般概念和方法。 2.掌握集成组合逻辑电路的使用和设计方法。 3.学习EDA软件Quartus II的基本使用方法。 二、实验预习 阅读《电工电子实验教程》第6.3节中组合逻辑电路的内容。 打印实验指导书,预习实验的内容。 查阅相关芯片的数据手册,了解芯片的逻辑功能、引脚排列及外形结构,完成实验电路设计,画出原理电路,标明芯片型号和引脚。自拟实验步骤和数据表格。 三、实验设备与仪器 数字电路实验箱。 四、实验原理 使用中规模的集成电路设计组合逻辑电路的一般方法为: 第一步:从题目中完成逻辑抽象。把实际问题转换为可行的逻辑设计要求。 第二步:根据逻辑设计的要求建立输入、输出变量,并列出真值表。 第三步:用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。不一定要最简形式,应以所要使用的中规模集成芯片的逻辑功能为依据,把要产生的逻辑函数变换为与器件的逻辑函数式类似的形式。对于变换后的逻辑函数式与所选器件的逻辑函数式差别非常大的应考虑更换元器件类型。 第四步:根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。 第五步:用实验来验证设计的正确性。 设计组合逻辑电路的一般步骤如图1所示。 图1 组合逻辑电路设计流程图

五、实验内容 题目A:4人表决电路 设计一个4人表决电路,多数通过(即当四个输入端中有三个或四个为“1”时,输出端才能为“1”),用发光二极管显示表决结果,通过点亮,否决不亮。(要求选用与非门电路实现,74LS10和/或74LS20) 题目B:大月指示器电路 设计一个大月(该月份天数为31)指示器,四个二进制输入变量表示月份,发光二极管表示输出,若该月份月份为大月,则发光二极管亮,其它情况发光二极管不亮(注意任意项的处理,要求使用74LS00和74LS151)。 六、实验要求 从实验内容所列的题目中选择一个题目进行设计,使用中规模集成电路芯片完成设计,具体方案不限。要求确保电路可以完成题目功能,并使用尽可能少的器件。 列出真值表,写出逻辑表达式并根据设计要求进行化简(化简形式根据采用的器件逻辑功能自行决定),全部用门电路实现。 在数字实验系统中完成实际操作,利用实验箱上已连接好的开关电路获得所需的逻辑电平输入,LED指示灯电路完成结果显示。 自行设计测试表格,完成实际电路的测试。 实验室可提供的芯片有:74LS00、74LS10、74LS20、74LS151。 七、实验报告(本部分请附加空白页手写完成) 在实验报告中写出完整的设计思路和设计过程,越详细报告分数起评点越高,内容应包括建立逻辑变量、列真值表、逻辑化简、逻辑表达式变换、电路图设计等。 用要求的器件设计出电路,画出电路图。 列出元器件清单。 写出实验结果及分析。 写出实验体会总结。 有能力的同学可画出仿真电路图和仿真结果。

2014理论力学复习题

理论力学复习题 一、判断题 1.在自然坐标系中,如果速度的大小v=常数,则加速度a=0。(╳)2.刚体处于瞬时平动时,刚体上各点的加速度相同。(╳)3.已知质点的质量和作用于质点的力,其运动规律就完全确定。(╳)4.两个半径相同,均质等厚的铁圆盘和木圆盘,它们对通过质心且垂直于圆面的回转半径相同。(╳)5.质心的加速度只与质点系所受外力的大小和方向有关,而与这些外力的作用位置无关。(√) 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。(╳)7.刚体作平面运动,若某瞬时其平面图形上有两点的加速度的大小和方向均相同,则该瞬时此刚体上各点的加速度都相同。(√)8.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平移。(╳)9.刚体平移时,若刚体上任一点的运动已知,则其它各点的运动随之确定。(√) 10、圆轮沿直线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。(√) 11、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0, 则一定有不为零的科氏加速度。(╳) 12、若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。(╳) 13、在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平移。(╳) 14、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。(√) 15、在平面任意力系中,若其力多边形自行闭合,则力系平衡。(╳) 16、某一力偶系,若其力偶矩矢构成的多边形是封闭的,则该力偶系向一点简化时,主矢一定等于零,主矩也一定等于零。(√) 17、设一质点的质量为m,其速度v与x轴的夹角为α,则其动量在x轴上的投影为mv =mvcosα。(√)x 16、已知直角坐标描述的点的运动方程为X=f1(t),y=f2(t),z=f3(t),则任一瞬时点 的速度、加速度即可确定。(√)17、一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定 该点是作直线运动还是作曲线运动。(√)18、刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等。(╳)

理论力学实验报告2017

《理论力学》实验报告 班级: 姓名: 学号: 成绩:

实验一 实验方法测定物体的重心 一、实验目的: 1、通过实验加深对合力概念的理解; 2、用悬挂法测取不规则物体的重心位置; 3、用称重法测物体的重心位置并用力学方法计算重量。 二、实验设备和仪器 1、理论力学多功能实验装置; 2、不规则物体(各种型钢组合体); 3、连杆模型; 4、台秤。 三、实验原理 物体的重心的位置是固定不变的。再利用柔软细绳的受力特点和两力平衡原理,我们可以用悬挂的方法决定重心的位置;又利用平面一般力系的平衡条件,可以测取杆件的重心位置和物体的重量。 物体的重量:21F F W +=;重心位置:W l F x C 1= 四、实验方法和步骤 A 、悬挂法 1、从柜子里取出求重心用的组合型钢试件,用将把它描绘在一张白纸上; 2、用细索将其挂吊在上顶板前面的螺钉上(平面铅垂),使之保持静止状 态; 3、用先前描好的白纸置于该模型后面,使描在白纸上的图形与实物重叠。 再用笔在沿悬线在白纸上画两个点,两点成一线,便可以决定此状态的重力作用线; 4、变更悬挂点,重复上述步骤2-3,可画出另一条重力作用线; 5、两条垂线相交点即为重心。

B、称重法 1、取出实验用连杆。将连杆一端放在台秤上,一端放在木架上,并使连杆保 持水平。 2、读取台秤的读数,并记录; 3、将连杆两端调换,并使摆杆保持水平; 4、重复步骤2; 五、数据记录与处理 A、悬挂法(请同学另附图) B、称重法 六、注意事项 1、实验时应保持重力摆水平; 2、台称在使用前应调零。

实验二、四种不同类型载荷的比较实验 一、实验目的 1、了解四种常见的不同载荷; 2、比较四种不同类型载荷对承载体的作用力特性。 二、实验仪器和设备 1、理论力学多功能实验装置; 2、2kg台秤1台; 3、0.5kg重石英沙1袋; 4、偏心振动装置1个。 三、实验原理 渐加载荷、突加载荷、冲击载荷和振动载荷是常见的四种载荷。不同类型的载荷对承载体的作用力是不同的。将不同类型的载荷作用在同一台秤上,可以方便地观察到各自的作用力与时间的关系曲线,并进行相互比较。 四、实验方法和步骤 1、将台秤置于实验装置合适的位置并放平稳; 2、渐加载荷:取出装有石英沙的袋子,将沙子缓慢、渐渐地倒入台秤上的 托盘中,仔细观察台秤指针的变化,并描绘出作用力的时程曲线示意图; 3、突加载荷:将托盘中的石英沙装回原袋子,用手将沙袋拎起至刚好与托 盘分离时突然松手,仔细观察台秤指针的变化,并描绘出作用力的时程 曲线示意图; 4、冲击载荷:再将沙袋拎起至某一高度(如5cm)后自由释放,沙袋对台秤 造成一定的冲击,仔细观察台秤指针的变化,并描绘出作用力的时程曲 线示意图; 5、振动载荷:用偏心振动装置代替沙袋。先打开偏心振动装置上的电源开 关让其上的电机旋转,然后轻轻置于台秤的托盘上。仔细观察台秤指针 的变化,并描绘出作用力的时程曲线示意图。 五、实验结果与数据处理

基本运算电路设计实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的和要求 1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2. 掌握基本运算电路的调试方法。 3. 学习集成运算放大器的实际应用。 二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路: 1212 12121 2 =( ) f o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+ 当R1=R2时, 121 () f o I I R u u u R =- +,输出电压与Ui1,Ui2之和成正 比,其比例系数为1f R R ,电阻R ’=R1//R2//Rf 。 2、减法器(差分放大电路) 专业:机械电子工程 姓名:许世飞 学号: 日期: 桌号:

11o I f u u u u R R ----= 由于虚短特性有:2 3 23 321231 1233211 11,() I f f o I I f f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+== ?+?? =+ - ?+??===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。 3、由积分电路将方波转化为三角波: 电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 4 、同相比例计算电压运算特性:

答案2014年理论力学练习

A C 判断题(正确的划√,错误的划×。请将答案写在答题框内。本大题共5小题,每小题2分,共10分) 1. 用解析法求平面汇交力系的平衡问题时,所建立的坐标系 x ,y 轴一定要相互垂直。() 2. 点作曲线运动时,其加速度的大小等于速度的大小对时间的导数。( ) 3. 当质点系的动量守恒,各质点的动量不一定守恒。。( ) 4. 无论牵连运动为何种运动,点的速度合成定理a e r v v v =+都成立。( ) 5. 若刚体运动时,其上两点的轨迹相同,则该刚体一定作平动。( ) 二、选择题(请将答案写在答题框内。本大题共5小题,每小题3分,共15分) 1. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为 。 A. 0; B. 50N ; C. 70.7N ; D. 86.6N ; E. 100N 。 2. 下列静力学公理中,不只适用于刚体的是( )。 (A )力的平行四边形法则; (B )加减平衡力学原理; (C )二力平衡条件; (D )力的可传性。 3. 平行轴定理的表达式正确的是:( ) (A). 2zc z J J md =+ (B). 2z zc J J md =- (C). 2z zc J J md =+ (D). 以上都不对. 4. 如图所示,均质杆AB 直立在光滑的水平面上,当它从铅直位置无初速度地倒下时,其中质心C 的运动轨迹是( )。 (A )直线 (B )圆 (C )椭圆 (D )曲线

5. 均质等边直角弯杆OAB 的质量共为2 m ,以角速度ω绕O 轴转动,则弯杆对O 轴的动量矩的大小为( )。 (A) L O = 23 ml 2ω; (B) L O = 43 ml 2ω; (C) L O = 53 ml 2ω; 三、填空题(本大题共3小题,每小题4分,共12分) 1. 曲杆ABC 在图示平面内可绕A 轴转动,已知某瞬时B 点的加速 度为B a =5 m/s ,则求该瞬时曲杆的角速度ω=( );角加速度α=( ) 。 2. 如图所示,均质杆AB 的质量为m ,长度为l ,放在铅直平面内, 杆的一端A 靠在墙壁,另一端B 沿地面运动。已知当杆对水平面 的夹角60??=时,B 端的速度为v ,则杆AB 在该瞬时的动能T 的 大小为 ;动量P 的大小为 。 3.曲柄OA 以匀角速度转动,当系统运动到图示位置(OA //O 1B ,AB ⊥OA )时,有A v B v ,A a B a ,AB ω 0, AB α 0。(填写①或②) ①等于; ②不等于。 四、作图题(本大题共2小题,每小题8 分,共16分) 1. 试画出下图中系统整体和各物体的受力图。

理论力学实验报告指导答案

理论力学实验报告指导答案 实验一 振动测试系统组成及基本仪器使用方法 1—底座; 2—支座; 3—二(三)自由度系统; 4—薄壁圆板支承螺杆; 5—固定铰;6—非接触式激振器; 7—薄壁圆板;8—电动式激振器; 9—电机压板; 10—偏心电机;11—加速度传感器; 12—简支梁;13—活动铰;14—悬臂梁;15—圆支柱;16—质量;17—调压器; 18—电动式激振器支座; 19—ZK-4JCZ型激振测振仪; 20—信号源; 21—计算机及虚拟仪器库; 22—打印机 图1 实验装置与结构框图 传感器1输入

传感器2输入 一道振动幅值 二道振动幅值 频率/功率显示值 频率,周期,灵敏度调节 及步进,锁定旋钮 一道,二道增益及测试方式状态 设置选择及参数选择旋钮 扫频 选择 方式 选择 灵敏度选择 显示选择 功率输出选择 功率幅度调节 信号源调节 功率输出B道 功率输出A道 信号源 波形输出 ZK—4JCZ型激振测振仪功能分布图

ZK-4JCZ型激振测振仪是一种多功能测量仪器。它包括信号源、功率放大器及两个配接加速度计的测量通道,可对振动的加速度、加速度或位移进行测量。 16 实验二 简谐振动幅值测量 一、实验目的 1. 了解振动信号位移、速度、加速度的关系。 2. 学会用压电式加速度传感器测量简谐振动的位移、速度、加速度幅度。 二、实验装置与仪器框图 实验装置与仪器框图见图(1) 图(1) 实验装置与仪器框图 四、实验方法 1. 激振信号源输出端接电动式激振器,用电动式激振器对简支梁激振。 2. 用加速度传感器拾振,加速度传感器的输出接测振仪。

开启激振信号源的电源开关,对系统施加交变正弦激振力,使系统产生振动,调整信号源的输出调节开关便可改变振幅大小。调整信号源的输出调节开关时注意不要过载。 4. 分别用测振仪的位移X、速度V、加速度A各档进行测量和读数。 五、实验报告 1. 实验数据表1 频率f 位移X(um) 速度V(cm/s) 加速度A(cm/s2) 30 47 50 56 60 68 2. 根据位移X,按公式(2)计算速度V、加速度A。

电路原理图与电路板设计实验报告

电路原理图与电路板设计实验报告 学院: 班级: 专业: 姓名: 学号: 指导老师: 河南工业大学实验报告专业班级姓名 学号 同组者姓名完成日期 成绩评定 实验题目:(一)原理图设计环境画原理图实验 实验目的:

1.熟练PROTEL99se的原理图编辑环境。 2.掌握常用管理器,菜单的使用,电气规则检查。 3.掌握元器件的调用,属性含义。 实验内容: 教材: 1.1,1.2,1.3,1.4环境熟悉 2.1,2.2工具条对象,器件调用 2.3,2.4菜单使用,元件属性修改 4.2练习1---练习8 实验仪器:PROTEL99se软件 实验步骤: (1)放置元件:就是在元件库中找元件,然后用元件 管理器的Place按钮将元件放在原理图中。 放置元件时需要使用如下所示快捷键: 空格键:每单击一次空格键使元件逆时针旋转90度。 TAB键:当元件浮动时,单击TAB键就可以显示属性编辑窗口。

X键:元件水平镜像。 Y键:元件垂直镜像。 (2)连接导线。使用划线工具连接导线。 (3)放置电源,地线和网络标记。放置电源和地线标记前要显示电源地线工具箱。 (4)自动元件编号:使用菜单Tool/Annotate对元件自动编号。 (5)编辑元件属性。单击元件,在弹出的属性窗口中输入元件的属性,注意一定要输入元件封装。(6)电气规则检查。使用Tool/ERC菜单,对画好的原理图进行电气规则检查,检查完毕后,出现报 表信息,就可以进行下一步。 (7)原件图元件列表。使用Edit/Export to Spread菜单,按照向导提示进行操作。 (8)建立网络表。使用菜单Design/Netlist。 实验截图: 注意事项: 连线:从器件的端点开始到端点结束,不要多余的线,

理论力学组合实验

理论力学组合实验 理论力学组合实验报告 使用设备名称与型号________________________________________ 同组人员__________________________________________________ 实验时间__________________________________________________ 一、实验目的 理论力学就是一门理论性较强的技术基础课,就是现代工程技术基础理论之一,在日常生活、工程技术各领域都有着广泛的应用。这门学科的理论比较抽象,真正掌握也较困难。本实验指导书介绍理论力学的六个小实验,让学生在做实验过程中既动手又动脑,培养学生的创新思维与科学实验能力。 二、实验设备与仪器 理论力学多功能实验台 ZME-1型 三、实验原理四、实验操作步骤实验(1):求弹簧质量系统的固有频率 在高压输电线模型的砝码盘上,分四次挂上不同重量的砝码,观察并记录弹簧的变形。实验(2):求重心的实验方法 (A)悬吊法 将求重心的型钢片状试件,用细绳将其挂吊在上顶板前端的螺钉上,再换一个位置挂吊,通过两次挂吊便可求出重心位置。 (B)称量法 使用连杆、积木、台称,利用已学力学知识,用称量法求连杆的重量及重心位置。实验(3):验证均质圆盘转动惯量的理论公式 转动实验台右边手轮,使圆盘三线摆摆长下降为60cm,左手给三线摆一初始角(一般小 于60),释放圆盘后,三线摆发生扭转振动。右手拿秒表,记录扭转十次或以上的时间,并算出 周期,比较实验与理论计算两种方法求得的转动惯量,确定误差,还可以求摆长(四种长度) 对误差的影响。 由弹簧的变形计算该系统的等效刚度与固有频率。 理论力学组合实验 实验(4):用等效方法求非均质物体转动惯量 分别转动左边两个三线摆的手轮,让有非均质摇臂的圆盘三线摆下降至摆长约60cm,

理论力学习题册答案

第一章 静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。 ( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。 ( ) 4、凡是受两个力作用的刚体都是二力构件。 ( ) 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有 ( ) ①二力平衡公理 ②力的平行四边形法则 ③加减平衡力系公理 ④力的可传性原理 ⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a (球A )b (杆AB )c (杆AB 、CD 、整体 )d (杆AB 、CD 、整体

)e(杆AC、CB、整体)f(杆AC、CD、整体 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame ) a(杆AB、BC、整体) b(杆AB、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体

《数字电路设计实训》实验指导书

数字电路设计实训实验指导书 编写人:许一男 审核人:金永镐 延边大学工学院 电子信息通信学科

目录 一、基础实验部分 实验一门电路逻辑功能及测试 (1) 实验二组合逻辑电路(半加器、全加器及逻辑运算) (5) 实验三 R-S,D,JK触发器 (9) 实验四三态输出触发器,锁存器 (12) 实验五集成计数器及寄存器 (15) 实验六译码器和数据选择器 (18) 实验七 555时基电路 (21) 二、选做实验部分 实验八时序电路测试机研究 (26) 实验九时序电路应用 (29) 实验十四路优先判决电路 (31) 三、创新系列(数字集成电路设计)实验部分 实验十一全加器的模块化程序设计与测试 (33) 实验十二串行进位加法器的模块化程序设计与测试 (35) 实验十三 N选1选择器的模块化程序设计与测试 (36)

实验一门电路逻辑功能及测试 一、实验目的 1. 熟悉门电路逻辑功能 2. 熟悉数字电路学习机及示波器使用方法 二、实验仪器及材料 1. 双踪示波器 2. 器件 74LS00 二输入端四与非门 2片 74LS20 四输入端双与非门 1片 74LS86 二输入端四异或门 1片 74LS04 六反相器 1片 三、预习要求 1. 复习门电路工作原理及相应逻辑表达式。 2. 熟悉所用集成电路的引线位置及引线用途。 3. 了解双踪示波器的使用方法。 四、实验容 实验前按学习机使用说明先检查学习机电源是否正 常,然后选择实验用的集成电路,按自己设计的实验 电路图接好连线,特别注意Vcc及接地线不能接错。 线接好后经实验指导教师检查无误方可通电实验。实 验中改动接线需先断开电源,接好线后再通电实验。 1. 测试门电路逻辑功能图1.1 (1)选用四输入与非门74LS20一只,插入面包板,按图1.1接线,输入端 接S 1~S 4 (电平开关输出端口),输出端接电平显示发光二极管(D 1 ~D 8 任意一个)。 (2)将电平开关按表1.1置位,分别测输出电压及逻辑状态。 表1.1

相关文档
最新文档