浙江省台州市椒江区书生中学2019-2020学年七年级上学期期中数学试卷
2019—2020学年上学期期中考试试卷 七年级数学

2019—2020学年上学期期中考试试卷七年级数学(第五章~第七章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间90分钟.第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.在平面直角坐标系中,点(0,6)位于 ()A .x 轴正半轴上B .y 轴负半轴上C .x 轴负半轴上D .y 轴正半轴上2.9的平方根是±3,用数学符号表示为 ()A .√9B .±√9C .√9=±3D .±√9=±33.已知点P 位于y 轴右侧,距离y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 的坐标为()A .(-3,4)B .(3,4)C .(-4,3)D .(4,3)4.下列结论正确的是 ()A .64的立方根是±4B .-18没有立方根C .立方根等于本身的数一定是0D .√-273=-√2735.下列命题中,是真命题的是()A .同位角相等B .邻补角一定互补C .相等的角是对顶角D .过一点有且只有一条直线与已知直线垂直6.在平面直角坐标系中,将三角形各点的横坐标都加上4,纵坐标保持不变,所得图形与原图形相比()A .向右平移了4个单位长度B .向左平移了4个单位长度C .向上平移了4个单位长度D .向下平移了4个单位长度图JD3-17.用两块相同的三角尺按如图JD3-1所示的方式作平行线AB和CD,能解释其中的道理的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,内错角相等8.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补9.如图JD3-2,表示√7的点在数轴上应在哪两个字母之间()图JD3-2A.C与DB.A与BC.A与CD.B与C10.如图JD3-3,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为()图JD3-3A.(14,9)B.(14,10)C.(14,11)D.(14,12)请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.若剧院里5排2号可以用(5,2)表示,则7排4号可以用表示.12.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是,结论是.13.在平面直角坐标系中点P-1,m4+1一定在第象限.14.已知3x-4是25的算术平方根,则x的值是.15.如图JD3-4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=°.图JD3-4图JD3-516.表示m的点在数轴上的位置如图JD3-5所示,化简√(m-1)2+√(m-2)2=.三、解答题(共52分)17.(6分)完成下面的推理过程.图JD3-6如图JD3-6,已知∠1=∠2.求证:∠3+∠4=180°.证明:∵∠1=∠2,∴a∥b(),∴∠3+∠5=180°().又∵∠4=∠5(),∴∠3+∠4=180°.18.(6分)如图JD3-7,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.(1)求∠DCA的度数;(2)求∠DCE的度数.图JD3-719.(6分)若a,b互为相反数,c,d互为倒数,|m|=√2,求a2-b2+cd÷(1+m2)的值.20.(6分)已知(1-3a)2+√b-3=0,求(ab)b的平方根与立方根.图JD3-821.(6分)已知:如图JD3-8,AD⊥BC,垂足为D,EF⊥BC,垂足为F,∠BEF=∠ADG.求证:DG∥AB.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(),∴EF∥( ),∴∠BEF=( ).∵∠BEF=∠ADG(已知),∴∠ADG=( ),∴DG∥AB( ).22.(6分)如图JD3-9,已知A村庄的坐标为(2,3),一辆汽车从原点O出发,在x轴上行驶.(1)汽车行驶到什么位置时离A村最近?在图中找出该点并写出此点的坐标;(2)这样的点有几个?为什么?图JD3-923.(8分)阅读下面的文字,并解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,于是小亮用√2-1来表示√2的小数部分,你同意小亮的表示方法吗?事实上,小亮的表示方法是有道理的,因为√2的整数部分是1,用原数减去其整数部分,差就是小数部分.请解答:已知10+√3的整数部分为x,小数部分为y,求x-y的相反数.24.(8分)如图JD3-10,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(3,0),(2,2).(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与三角形ABC的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.图JD3-10阶段综合测试三(期中二)1.D2.D3.B4.D5.[全品导学号:58834031]B6.A7.A8.D9.A 10.[全品导学号:58834032]B 11.(7,4)12.两条直线都与第三条直线平行 这两条直线互相平行 13.二 14.3 15.55 16.[全品导学号:58834033]117.同位角相等,两直线平行 两直线平行,同旁内角互补 对顶角相等 18.解:(1)∵∠DAB+∠D=180°, ∴DC ∥AB ,∴∠DCA=∠CAB. ∵AC 平分∠DAB ,∠CAD=25°, ∴∠CAB=∠CAD=25°, ∴∠DCA=25°.(2)∵DC ∥AB ,∠B=95°,∴∠DCE=∠B=95°. 19.解:∵a ,b 互为相反数, ∴a=-b ,∴a 2=b 2,∴a 2-b 2=0. ∵c ,d 互为倒数,∴cd=1.∵|m|=√2, ∴ m 2=2,∴a 2-b 2+cd÷(1+m 2)=0+1÷(1+2)=13. 20.解:∵(1-3a )2≥0,√b -3≥0,∴由题意知1-3a=0,b-3=0,∴a=13,b=3,∴(ab )b =(13×3)3=1,∴(ab )b 的平方根是±1,立方根是1.21.垂直的定义 AD 同位角相等,两直线平行 ∠BAD 两直线平行,同位角相等 ∠BAD 等量代换 内错角相等,两直线平行22.解:(1)如图,汽车行驶到点B 的位置时,离A 村最近,此时点B 的坐标为(2,0).(2)一个.理由:在同一平面内,过一点有且只有一条直线与已知直线垂直. 23.[全品导学号:58834034]解:因为√3的整数部分是1, 所以x=10+1=11,y=10+√3-11=√3-1. 所以x-y=11-(√3-1)=11-√3+1=12-√3. 所以x-y 的相反数为√3-12.24.[全品导学号:58834035]解:(1)S 三角形ABC =12×(2+3)×2-12×2×1-12×1×3=52. (2)如图,因为点P (a ,2)在第二象限,所以a<0,所以S 四边形ABOP =S 三角形AOP +S 三角形AOB =12×1×(-a )+12×1×3=32-a 2.(3)假设存在,由题意知32-a 2=52,解得a=-2,所以存在符合条件的点P ,点P 的坐标为(-2,2).。
2019-2020学年浙江省台州市椒江区七年级(上)期末数学试卷 (含解析)

2019-2020学年浙江省台州市椒江区七年级(上)期末数学试卷一、选择题(共10小题).1.四个有理数1-,0,3-,4,其中最小的有理数是( )A .1-B .0C .3-D .42.下列平面图形不能够围成正方体的是( )A .B .C .D .3.2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动.据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )A .41210⨯B .41.210⨯C .51.210⨯D .60.1210⨯4.下列计算正确的是( )A .2222x y xy x y -=-B .235a b ab +=C .2(3)23a b a b -=-D .336ab ab ab --=-5.有理数a ,b 在数轴上的对应的位置如图所示, 则( )A .0a b +<B .0a b ->C .0a b -=D .0ab >6.岛A 和岛B 处于东西方向的一条直线上,由岛A 、岛B 分别测得船C 位于北偏东40︒和北偏西50︒方向上,下列符合条件的示意图是( )A .B .C .D .7.下列运用等式性质进行的变形中,正确的是( )A .若x y =,则55x y -=+B .若a b =,则ac bc =C .若23x =,则23x =D .若a b =,则a b c c= 8.如图,点B 为线段AC 上一点,11AB cm =,7BC cm =,D 、E 分别是AB 、AC 的中点,则DE 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm9.已知关于x 的一元一次方程11233x x a +=+的解为1x =-,那么关于y 的一元一次方程1(2)12(2)33y y a ++=++的解为( ) A .1y =- B .1y = C .3y =- D .3y =10.根据图形变化的规律,图中的省略号里黑色正方形的个数可能是( )A .2016B .2017C .2018D .2019二、填空题(本大题共6个小题,每小题3分,共18分)11.3-的倒数是 .12.请你写出一个解为1x =-的一元一次方程 .13.计算:67334838︒'-︒'= .14.儿子今年12岁,父亲今年40岁,则再过 年,父亲的年龄是儿子的年龄的2倍.15.已知||3x =,||2y =,且||x y y x -=-,则x y -= .16.若(2019)52p -⨯=,则201953⨯的值可以表示为 (用含p 的式子表示)三、解答题(共7题,共52分)17.计算:(1)3(8)(6)(10)---+-++(2)411|35|8(2)2-+--÷-⨯18.解方程:(1)3(21)15x -=(2)12423x x +-+= 19.先化简,再求值:223(21)(252)x x x x -+--+,其中1x =-.20.如图,平面上有线段AB 和点C ,按下列语句要求画图与填空:(1)作射线AC ;(2)用尺规在线段AB 的延长线上截取BD AC =;(3)连接BC ;(4)有一只蚂蚁想从点A 爬到点B ,它应该沿路径(填序号) (①AB ,②)AC CB +爬行最近,这样爬行所运用到的数学原理是 .21.请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,90AOB ∠=︒,90COD ∠=︒,OA 平分DOE ∠,若20BOC ∠=︒,求COE ∠的度数.解:因为90AOB ∠=︒,所以BOC ∠+ 90=︒.因为 90=︒,所以90AOD AOC ∠+∠=︒.所以BOC AOD ∠=∠.( )因为20BOC ∠=︒,所以20AOD ∠=︒.因为OA 平分DOE ∠,所以 2AOD =∠= ︒所以COE COD DOE ∠=∠-∠= ︒.22.春节临近,某市各商场掀起了促销狂潮,现有甲、乙、丙三个商场开展的促销活动方案如下表所示:商场促销活动方案甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(比如:顾客购衣服230元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减45元的优惠”(比如:某顾客购物230元,他只需付款140元)根据以上活动信息,解决以下问题:(1)这三个商场同时出售一件标价390元的上衣和一条标价300多元的裤子,李先生发现在甲、乙商场购买这一套衣服的付款额是一样的,请问这条裤子的标价是多少元?(2)请通过计算说明第(1)题中李先生应该选择哪家商场购买最实惠?23.如图,线段MN是周长为36cm的圆的直径(圆心为)O,动点A从点M出发,以3/cm s 的速度沿顺时针方向在圆周上运动,经过点N时,其速度变为1.5/cm s,并以这个速度继续沿顺时针方向运动之点M后停止.在动点A运动的同时,动点B从点N出发,以2/cm s的速度沿逆时针方向在圆周上运动,绕一周后停止运动.设点A、点B运动时间为()t s.(1)连接OA、OB,当4t>时,点A运t=时,AOB∠=︒,在整个运动过程中,当6动的路程为cm(第2空结果用含t的式子表示);(2)当A、B两点相遇时,求运动时间t.(3)连接OA、OB,当30∠=︒时,请直接写出所有符合条件的运动时间t.AOB参考答案一、选择题(每小题3分,共30分)1.四个有理数1-,0,3-,4,其中最小的有理数是( )A .1-B .0C .3-D .4解:3104-<-<<,∴最小的有理数是3-, 故选:C .2.下列平面图形不能够围成正方体的是( )A .B .C .D .解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”, 只有B 选项不能围成正方体.故选:B .3.2019年10月1日,中华人民共和国在北京天安门举行了盛大的建国70周年庆典活动.据统计,参加阅兵和群众游行的人数大约有12万人,12万用科学记数法表示为( )A .41210⨯B .41.210⨯C .51.210⨯D .60.1210⨯ 解:12万5120000 1.210==⨯,故选:C .4.下列计算正确的是( )A .2222x y xy x y -=-B .235a b ab +=C .2(3)23a b a b -=-D .336ab ab ab --=-解:A 、2x y 和22xy 不是同类项,不能合并,故原题计算错误;B 、2a 和3b 不是同类项,不能合并,故原题计算错误;C 、2(3)26a b a b -=-,故原题计算错误;D 、336ab ab ab --=-,故原题计算正确;故选:D .5.有理数a ,b 在数轴上的对应的位置如图所示, 则( )A .0a b +<B .0a b ->C .0a b -=D .0ab >解: 由数轴上点的位置, 得101a b <-<<<.A 、(||||)0a b a b +=--<,故A 符合题意;B 、0a b -<,故B 不符合题意;C 、0a b -<,故C 不符合题意;D 、0ab <,故D 不符合题意;故选:A .6.岛A 和岛B 处于东西方向的一条直线上,由岛A 、岛B 分别测得船C 位于北偏东40︒和北偏西50︒方向上,下列符合条件的示意图是( )A .B .C .D .解:符合题意的示意图为: .故选:D .7.下列运用等式性质进行的变形中,正确的是( )A .若x y =,则55x y -=+B .若a b =,则ac bc =C .若23x =,则23x =D .若a b =,则a b c c=55x y ∴+=+,5x -和5y +不相等,故本选项不符合题意;B 、a b =,ac bc ∴=,故本选项符合题意;C 、23x =,∴方程两边都除以2得:32x =,x 不等于23,故本选项不符合题意; D 、a b =,∴只有当0c ≠时,a c 才等于b c,当0c =时,两边不相等,故本选项不符合题意; 故选:B .8.如图,点B 为线段AC 上一点,11AB cm =,7BC cm =,D 、E 分别是AB 、AC 的中点,则DE 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm 解:11AB cm =,D 是AB 的中点,1111 5.5()22AD AB cm ∴==⨯=; 11AB cm =,7BC cm =,11718()AC AB BC cm ∴=+=+=,E 是AC 的中点,11189()22AE AC cm ∴==⨯=, 9 5.5 3.5()DE AE AD cm ∴=-=-=.故选:A .9.已知关于x 的一元一次方程11233x x a +=+的解为1x =-,那么关于y 的一元一次方程1(2)12(2)33y y a ++=++的解为( ) A .1y =- B .1y = C .3y =- D .3y =解:关于x 的一元一次方程11233x x a +=+的解为1x =-, ∴关于y 的一元一次方程1(2)12(2)33y y a ++=++中21y +=-,故选:C .10.根据图形变化的规律,图中的省略号里黑色正方形的个数可能是( )A .2016B .2017C .2018D .2019解:观察图形,可知:第2(n n 为正整数)个图形的末尾有一个白色正方形,设第2n 个图形有2n a 个黑色正方形,23a =,46a =,69a =,⋯,23n a n ∴=,∴图中的省略号里黑色正方形的个数35338n n =--=-.当675n =时,382017n -=,∴图中的省略号里黑色正方形的个数可能为2017.故选:B .二、填空题(本大题共6个小题,每小题3分,共18分)11.3-的倒数是 13. 解:3-的倒数是13-. 12.请你写出一个解为1x =-的一元一次方程 10x +=(答案不唯一) .解:10x +=.故答案是:10x +=(答案不唯一).13.计算:67334838︒'-︒'= 1855︒' .解:原式669348381855=︒'-︒'=︒'.故答案是:1855︒'.14.儿子今年12岁,父亲今年40岁,则再过 16 年,父亲的年龄是儿子的年龄的2倍. 解:设x 年后父亲的年龄是儿子的年龄的2倍,根据题意得:402(12)x x +=+,解得:16x =.答:16年后父亲的年龄是儿子的年龄的2倍, 故答案为:16.15.已知||3x =,||2y =,且||x y y x -=-,则x y -= 1-或5- . 解:||3x =,||2y =,3x ∴=±,2y =±,||0x y y x -=-,2y ∴=,3x =-或2y =-,3y =-,∴当3x =-,2y =时,325x y -=--=-;当3x =-,2y =-时,3(2)1x y -=---=-, 即x y -的值为1-或5-.故答案为1-或5-.16.若(2019)52p -⨯=,则201953⨯的值可以表示为 2019p -+ (用含p 的式子表示) 解:(2019)52p -⨯=,201952p ∴⨯=-,201953∴⨯2019(521)=⨯+2019522019=⨯+2019p =-+,故答案为:2019p -+.三、解答题(共7题,共52分)17.计算:(1)3(8)(6)(10)---+-++(2)411|35|8(2)2-+--÷-⨯ 解:(1)3(8)(6)(10)---+-++38610=-+-+918=-+9=;(2)411|35|8(2)2-+--÷-⨯122=-++3=.18.解方程:(1)3(21)15x -=(2)12423x x +-+= 解:(1)方程整理得:215x -=,移项合并得:26x =,解得:3x =;(2)去分母得:3(1)2(2)24x x ++-=,去括号得:332424x x ++-=,移项合并得:525x =,解得:5x =.19.先化简,再求值:223(21)(252)x x x x -+--+,其中1x =-. 解:原式2223632521x x x x x x =-+-+-=-+, 当1x =-时,原式1113=++=.20.如图,平面上有线段AB 和点C ,按下列语句要求画图与填空:(1)作射线AC ;(2)用尺规在线段AB 的延长线上截取BD AC =;(3)连接BC ;(4)有一只蚂蚁想从点A 爬到点B ,它应该沿路径(填序号) ① (①AB ,②)AC CB +爬行最近,这样爬行所运用到的数学原理是 .解:(1)如图所示,射线AC 即为所求;(2)如图所示,线段BD 即为所求;(3)如图所示,线段BC 即为所求;(4)有一只蚂蚁想从点A爬到点B,它应该沿路径AB爬行最近,这样爬行所运用到的数学原理是两点之间,线段最短.故答案为:①;两点之间,线段最短.21.请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,90BOC∠的∠,若20∠=︒,求COE AOB∠=︒,OA平分DOE∠=︒,90COD度数.解:因为90∠=︒,AOB所以BOC=︒.∠90∠+AOC因为90=︒,所以90∠+∠=︒.AOD AOC所以BOC AOD∠=∠.()因为20∠=︒,BOC所以20∠=︒.AOD因为OA平分DOE∠,所以2AOD=∠=︒所以COE COD DOE∠=∠-∠=︒.解:因为90∠=︒.AOB所以90∠+∠=︒BOC AOC因为90∠=︒COD所以90∠+∠=︒.AOD AOC所以BOC AOD∠=∠.(同角的余角相等)因为20∠=︒.BOC所以20∠=︒.AOD因为OA平分DOE∠所以240∠=∠=︒.DOE AOD所以50∠=∠-∠=︒COE COD DOE故答案为:AOC∠;COD∠;40;50.∠;同角的余角相等;DOE22.春节临近,某市各商场掀起了促销狂潮,现有甲、乙、丙三个商场开展的促销活动方案如下表所示:根据以上活动信息,解决以下问题:(1)这三个商场同时出售一件标价390元的上衣和一条标价300多元的裤子,李先生发现在甲、乙商场购买这一套衣服的付款额是一样的,请问这条裤子的标价是多少元?(2)请通过计算说明第(1)题中李先生应该选择哪家商场购买最实惠?解:(1)设这条裤子的标价为x元,根据题意得:(390)0.63901003+⨯=+-⨯,x x解得:380x=,答:这条裤子的标价为380元;(2)甲,乙商场的费用:(390380)0.6462+⨯=(元),丙商场的费用:390380745455+-⨯=(元),<,455462∴李先生应该选择丙商场购买最实惠.23.如图,线段MN是周长为36cm的圆的直径(圆心为)O,动点A从点M出发,以3/cm s 的速度沿顺时针方向在圆周上运动,经过点N时,其速度变为1.5/cm s,并以这个速度继续沿顺时针方向运动之点M 后停止.在动点A 运动的同时,动点B 从点N 出发,以2/cm s 的速度沿逆时针方向在圆周上运动,绕一周后停止运动.设点A 、点B 运动时间为()t s .(1)连接OA 、OB ,当4t =时,AOB ∠= 20 ︒,在整个运动过程中,当6t >时,点A 运动的路程为 cm (第2空结果用含t 的式子表示); (2)当A 、B 两点相遇时,求运动时间t .(3)连接OA 、OB ,当30AOB ∠=︒时,请直接写出所有符合条件的运动时间t .解:(1)如图1,当4t =时,点A 的运动路程为:3412⨯=,1236012036AOM ∠=⨯︒=︒, 点B 的运动路程为:248⨯=,83608036BON ∠=⨯︒=︒, 18020AOB AOM BON ∴∠=∠+∠-︒=︒;当点A 运动6s 时,路程为6318cm ⨯=,为周长的一半,∴当6t >时,运动路程为18 1.5(6)(9 1.5)t t cm +-=+,故答案为:20,9 1.5t +;(2)如图21-,当A 、B 两点第一次相遇时,132362t t +=⨯, 185t ∴=; 如图22-,当A 、B 两点第二次相遇时,19 1.5236362t t ++=+⨯, 907t ∴=,综上所述,当A 、B 两点相遇时,运动时间t 为185s 或907s ;(3)30363360cm ⨯=, 如图31-,当A 、B 两点第一次运动至使30AOB ∠=︒时, 18AM BN AB ++=,即32318t t ++=,3t ∴=;如图32-,当A 、B 两点第二次运动至使30AOB ∠=︒时, 18AM BN AB +-=,即32318t t +-=,215t ∴=; 如图33-,当A 、B 两点第三次运动至使30AOB ∠=︒时, 3618ANM NMB AB ++=+,即9 1.52354t t +++=,12t ∴=;如图34-,当A 、B 两点第四次运动至使30AOB ∠=︒时, 3618ANM NMB AB +-=+,即9 1.52354t t ++-=,967t ∴=, 综上所述,当30AOB ∠=︒时,符合条件的运动时间t 的值有3,215,12,967.。
台州市2020年七年级上学期期中数学试卷(II)卷

台州市2020年七年级上学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·醴陵期末) 下列计算正确的是()A . x2+x2=x4B . (x﹣y)2=x2﹣y2C . (﹣x)2•x3=x5D . (x2y)3=x6y2. (2分)如果两个最简二次根式与同类二次根式,那么使有意义的x取值范围是().A . ≤10B . ≥10C . <10D . >03. (2分) (2015七上·宜昌期中) 在有理数0,(﹣1)2 ,,﹣|﹣2|,(﹣2)3中正数有()个.A . 4B . 3C . 2D . 14. (2分)下列说法中正确的是()A . 没有最小的有理数B . 0既是正数也是负数C . 整数只包括正整数和负整数D . ﹣1是最大的负有理数5. (2分) (2015七上·宜昌期中) 2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A . 0.13397×1010B . 1.3397×109C . 13.397×108D . 13397×1056. (2分) (2015七上·宜昌期中) 下列说法错误的是()A . 2x2﹣3xy﹣1是二次三项式B . ﹣x+1不是单项式C . 的系数是D . ﹣22xab2的次数是67. (2分) (2015七上·宜昌期中) 下列各式中与多项式2x﹣3y+4z相等的是()A . 2x+(3y﹣4z)B . 2x﹣(3y﹣4z)C . 2x+(3y+4z)D . 2x﹣(3y+4z)8. (2分) (2015七上·宜昌期中) 若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A . 0B . 1C . ﹣1D . ﹣29. (2分) (2015七上·宜昌期中) 已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A . a+b>0B . ab<0C . b﹣a>0D . a>b10. (2分) (2015七上·宜昌期中) 解为x=﹣3的方程是()A . 3x﹣2=﹣7B . 3x+2=﹣11C . 2x+6=0D . x﹣3=0二、填空题 (共5题;共5分)11. (1分)(2017·宁波模拟) 因式分解: ________。
台州市2020版七年级上学期期中数学试卷(I)卷

台州市2020版七年级上学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)﹣3的倒数是()A . -B . ﹣3C . 3D .2. (2分) (2018八上·宜兴期中) 下列计算正确的是()A . =±1B . (- )2=3C . =-3D .3. (2分) (2016七上·赣州期中) 为加快赣州的交通发展,将建设赣州至深圳的高速铁路,项目总投资为641.3亿元,用科学记数法表示641.3亿元为()元.A . 6.41×102B . 641×108C . 6.41×1010D . 6.41×10114. (2分) (2016七上·赣州期中) 下列运算正确的是()A . 3a﹣5a=2aB . 2ab﹣3ab=﹣abC . a3﹣a2=aD . 2a+3b=5ab5. (2分) (2016七上·赣州期中) 下列说法中,正确的个数有()①倒数等于它本身的数有±1,②绝对值等于它本身的数是正数,③﹣ a2b3c是五次单项式,④2πr的系数是2,次数是2次,⑤a2b2﹣2a+3是四次三项式,⑥2ab2与3ba2是同类项.A . 4个B . 3个C . 2个D . 1个6. (2分) (2016七上·赣州期中) 观察下列各式数:﹣2x,4x2 ,﹣8x3 , 16x4 ,﹣32x5 ,…则第n 个式子是()A . ﹣2n﹣1xnB . (﹣2)n﹣1xnC . ﹣2nxnD . (﹣2)nxn二、填空题 (共6题;共7分)7. (1分)计算:4﹣6的结果为________.8. (1分) (2016七上·义马期中) 某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有________人(用含有m的代数式表示)9. (1分)(2019·岳麓模拟) 已知a<0,那么| ﹣2a|可化简为________.10. (2分) -的相反数是________ 倒数是________11. (1分)(2019·白山模拟) 计算:(﹣2a)2•a=________.12. (1分)(2018·南京模拟) 计算(-)× 的结果是________.三、解答题 (共11题;共99分)13. (20分)计算:(1) + ﹣(2)( + )2﹣(3) +(1﹣)0(4).14. (4分) (2019八上·绿园期末) 如图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图2的形状拼图.(1)图2中的图形阴影部分的边长为________;(用含m、n的代数式表示)(2)请你用两种不同的方法分别求图2中阴影部分的面积;方法一:________;方法二:________.(3)观察图2,请写出代数式(m+n)2、(m﹣n)2、4mn之间的关系式:________.15. (5分) (2016七上·赣州期中) 已知:a、b互为相反数,c、d互为倒数,|x|=2,且x>0,计算:(a+b)x2﹣cdx+x2的值.16. (5分) (2016七上·赣州期中) (a﹣2)2+|b+1|=0,求:3a﹣2ab(a+b)2的值.17. (5分) (2016七上·赣州期中) 某同学做数学题:已知两个多项式A,B,其中B=5x2﹣3x+6,他在求A ﹣B时,把A﹣B错看成了A+B,求得的结果为8x2+2x+1.请你帮助这位同学求出A﹣B的正确结果.18. (10分) (2016七上·赣州期中) 计算:(1) 3.75﹣22+(﹣1)4﹣3(2)﹣× +2× ﹣÷(﹣2 ).19. (5分) (2016七上·赣州期中) 先化简,再求值:4(a2﹣3b2+ab)﹣3(a2﹣4b2+2ab),其中a=2,b=﹣1.20. (5分) (2016七上·赣州期中) 已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|21. (10分) (2016七上·赣州期中) 探索规律:将连续的偶数2,4,6,8,…,排成如表:(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住五位数的和能等于2000吗?如能,写出这五位数,如不能,说明理由.22. (15分) (2016七上·赣州期中) 为加快赣南的经济发展,鼓励农民创业.某农户承包荒山若干亩种植脐橙,投资59000元种植脐橙果树4000棵;今年脐橙总产量预测为60000千克,脐橙在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售2000千克,需4人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天300元.(1)分别用a,b表示两种方式出售水果的收入?(2)若a=2.5元,b=2元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?(3)该农户加强果园管理,力争到明年纯收入达到84000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入﹣总支出)?23. (15分) (2016七上·赣州期中) 如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,5秒后,两点相距15个单位长度.已知点B的速度是点A的速度的2倍(速度单位:单位长度/秒).(1)求出点A,点B运动的速度,并在数轴上标出A,B两点从原点出发运动5秒时的位置;(2)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,再过几秒时,原点恰好处在点A,点B的正中间?(3)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从原点O位置出发向B点运动,且C的速度是点A的速度的一半;当C运动几秒后,C为AB的中点?参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共7分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共99分)13-1、13-2、13-3、13-4、14-1、14-2、14-3、15-1、16-1、17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2019-2020学年度七年级数学上册期中考试卷(有答案)

2019-2020学年度七年级数学上册期中考试卷(有答案)一、选择题(共8题;共16分)1.在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A. 0B. ﹣1C. 0.5D. (﹣1)22.将下列图形绕直线l旋转一周, 可以得到下图所示的立体图形的是( )A. B. C. D.3.把算式“(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)”写成省略加号和括号的形式,结果正确的是()A.2﹣5+3﹣1B.2+5﹣3+1C.﹣2﹣5+3﹣1D.﹣2+5﹣3+14.﹣2的相反数是()A. -2B. -C. 2D.5.﹣2的相反数是()A. ﹣B. ﹣2C.D. 26.如图,数轴上表示-2的点A到原点的距离是()A. -2.B. 2.C.D.7.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A. B. C. D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测32017的个位数字是()A. 1B. 3C. 7D. 9二、填空题(共8题;共16分)9.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为________10.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需________小时11.若代数式﹣2a3b m与3a n+1b4是同类项,则mn=________.12.若|x+y﹣7|+(3x+y﹣17)2=0,则x﹣2y=________ .13.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.14.若|a|=2,|b|=3,且ab<0,则a﹣b=________.15.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=________.16.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次).他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是________三、解答题(共7题;共68分)17.如图是由若干个相同的小正方体组成的几何体.(1)请画出这个几何体的主视图、左视图、俯视图(网格中所画的图形要画出各个正方形边框并涂上阴影).(2)如果在这个几何体上,再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体,最多可以拿掉几个?18.计算:(1)(2)19.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的代数式表示厨房的面积是________ m2;卧室的面积是________ m2;(2)写出用含x、y的代数式表示这套房的总面积是多少平方米?(3)当x=3,y=2时,求小王这套房的总面积是多少平方米?(4)若在(3)中,小王到某商店挑选了80cm×80cm的地砖来镶客厅和卧室,他应买多少块才够用?(结果保留整数)20.如图在数轴上A点表示数,B点表示数,且、满足,(1)点A表示的数为________;点B表示的数为________;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=3BC,则C点表示的数________;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲、乙两小球到原点的距离(用含t的代数式表示)21.如图,将一张长方形大铁皮切割成九块,切痕如图虚线所示,其中有两块是边长都为xdm的大正方形,两块是边长都为ydm的小正方形,五块是长宽分别是xdm、ydm的全等小长方形,且x>y.(1)用含x、y的代数式表示长方形大铁皮的周长为________ dm;(2)若每块小长方形的面积10dm2,四个正方形的面积为58dm2,试求该切痕的总长.22.出租车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-1,+6,-2,+2,-7,-4.(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?23.观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:(1)按以上规律列出第5个等式:a5=________.(2)用含有n的代数式表示第n个等式:a n=________(n为正整数)(3)求a1+a2+a3+a4+…+a100的值.(4)探究计算:答案一、选择题1.B2.C3.D4. C5. D6. B7. C8. B二、填空题9.-1 10.4.8×10211.8 12.1 13.4或5 14.±5 15. 6 16.9分三、解答题17. (1)解:三视图如图所示:(2)解:保持这个几何体的俯视图和左视图不变,最多添加3个小正方体,最多可以拿掉1个小正方体18.(1)解:原式(2)解:原式=19.(1)2xy;4xy+2y(2)解:y(x+1)+x•2y+(2x+1)•2y+(2x+1)•4y =xy+y+2xy+4xy+2y+8xy+4y=15xy+7y(3)解:当x=3,y=2时,原式=15×3×2+7×2=90+14=104(平方米),即小王这套房的总面积是104平方米(4)解:(2x+1)•2y+(2x+1)•4y =4xy+2y+8xy+4y=12xy+6y当x=3,y=2时,原式=12×3×2+6×2=72+12=84(平方米),所以他应买地砖:84÷(0.8×0.8)=84÷0.64≈132(块),即他应买132块才够用20. (1)-5;7(2)4或13(3)解:甲:∵小球甲从点A处以1个单位/秒的速度向左运动,∴甲到原点的距离为|−5−t|=5+t,∵小球乙从点B处以2个单位/秒的速度也向左运动,∴乙到达原点的时间为7÷2=3.5,∴当0⩽t⩽3.5时,小球到原点的距离为7−2t,当t>3.5时小球到原点的距离为2t−7.21.(1)(6x+6y)(2)解:由题意可知:xy=10,2x2+2y2=58,即:x2+y2=29,∵(x+y)2=x2+2xy+y2=29+20=49∴x+y=7,∴切痕总长为6×7=42dm22.(1)解:(﹣1)+6+(﹣2)+2+(﹣7)+(﹣4)=﹣6,答:将最后一位乘客送到目的地时,小李在出发地的西边,距离出发地6km处(2)解:(|﹣1|+6+|﹣2|+2+|﹣7|+|﹣4|)×0.2=22×0.2=4.4(升),答:这天上午小李接送乘客,出租车共耗油4.4升23.(1)(2)(3)解:a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=;(4)解:=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.。
2019-2020学年度第一学期七年级期中考试数学试卷 (2)

绝密★启用前考试时间:100分钟;满分120分温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功!一、单选题 (计30分)1.(本题3分)-12的相反数是( )A . 21 B . - 21 C .2 D . -22.(本题3分)若0)2(12=-++y x , 则=+22y x ( ). A .、3 B 、 5 C 、-1 D 、-5 3.(本题3分)厦门市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月进行了公共日租车量的统计,估计4月份共租车2500000次,2500000用科学记数法表示为( )A . 25×105B . 2.5×106C . 0.25×107D . 2.5×1074.(本题3分)4.(本题3分)(2014•博白县模拟)下列说法正确的是( )A . 近似数0.010只有一个有效数字B . 近似数4.3万精确到千位C . 近似数2.8与2.80表示的意义相同D . 近似数43.0精确到个位5.(本题3分)若|x|=7,|y|=9,则x ﹣y 为( ) A . ±2 B. ±16 C. ﹣2和﹣16 D . ±2和±16 6.(本题3分)(2015秋•南郑县校级月考)下列式子中结果为负数的是( )A .|﹣2|B .﹣(﹣2)C .﹣|﹣2|D .(﹣2)2 7.(本题3分)下列各组两个数,相等的是( ) A . 23与32 B . (-2)2与-22 C . -(-2)与2- D .223⎛⎫⎪⎝⎭与2238.(本题3分)计算:()()10010122-+-的是( ) A.1002B.-1C.-2D.-10029.(本题3分)夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A.+4 B.﹣9 C.﹣4D.+910.(本题3分)观察下列算式:21=2 22=4 23=8 24=16 25=32 26=64 27=128 28=256 ……通过观察,用你所发现的规律得出227的末位数是()A、2B、4C、8D、611.(本题4分)有理数a在数轴上对应的点如图所示,则a, -a,1的大小关系 .12.(本题4分)-212的倒数是__________.13.(本题4分)若,,且,那么的值是_____________.14.(本题4分)数轴上与表示1 的点距离213的点表示的有理数是____________.15.(本题4分)已知从1,2,…,9 中可以取出m 个数,使得这m 个数中任意两个数之和不相等,则m 的最大值为______.16.(本题4分)有一数值转换器,原理如图,若开始输入的x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第99次输出的结果是________.17.(本题4分)计算:10-9+8-7+6-···+2-1=_______.18.(本题4分)如图,在2012年3月的月历上,任意圈出一个由3个数组成的竖列,如果它们的和为36,那么其中最小的数是2010年3月_________号.三、解答题(计58分) 19.(本题12分)计算:(1)﹣5﹣(﹣9)+13; (2)|﹣15|﹣(﹣2)﹣(﹣5);(3)()()8129--- (4)()()94811649-÷⨯÷-20.(本题7分)有一句谚语说:“捡了芝麻,丢了西瓜。
浙江省台州市椒江区2019-2020学年七年级上学期期末数学试卷 (含解析)

浙江省台州市椒江区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 在12,0,1,−2,−112这五个有理数中,最小的是( ) A. −112 B. 0 C. 1 D. −22. 下列各图中,不能围成正方体的是( )A. B. C. D.3. 2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举行,20余万军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞.20万用科学记数法表示为( )A. 2×102B. 2×104C. 2×105D. 2×1064. 下列运算正确的是( )A. −x 3+3x 2=2x 2B. 3a 2b −3ba 2=0C. −3(a +b)=−3a +3bD. 3y 2−2y 2=15. 有理数a 在数轴上对应的点如图,则a ,−a ,−1的大小关系是( )A. −a <a <−1B. −a <−1<aC. a <−1<−aD. a <−a <−16. 如图,从一艘船上测得一个灯塔的方向是北偏西47°,那么这艘船在这个灯塔的( )A. 南偏东47°B. 南偏东43°C. 南偏西47°D.南偏西43° 7. 如果x =y ,那么根据等式的性质下列变形不正确的是( )A. x +2=y +2B. 3x =3yC. 5−x =y −5D. −x 3=−y3 8. C ,D 是线段AB 上顺次两点,M ,N 分别是AC ,BD 中点,若CD =a.MN =b.则AB 的长为( )A. 2b −aB. b −aC. b +aD. 2a +2b9. 若关于x 的方程2x −3=a +5的解为x =2,则关于y 的方程3a +y =−2的解为( )A. y=−4B. y=−14C. y=−43D. y=1010.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32B. 29C. 28D. 26二、填空题(本大题共6小题,共18.0分)11.15的倒数是______.12.写出一个一元一次方程使它同时满足下列两个条件:①未知数的系数是2;②方程的解为2.则这个方程为________.13.计算:48°37′+53°35′=______.14.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是______ 岁.15.如果|a|=7,|b|=4,则a+b=____.16.已知长方形的长是a,面积是s,用含a、s的代数式表示长方形的宽是______.三、计算题(本大题共1小题,共6.0分)17.计算题(1)−|−(+17)+(+3)|+(−4)(2)−22+8÷(−2)3−2×(18−12)四、解答题(本大题共6小题,共46.0分)18.解方程:(1)5(x+8)=6(2x−7)+5;(2)2x−13=2x+16−1.19.先化简,再求值:−2x2−2[3y2−2(x2−y2)+6],其中x=−1,y=−2.20.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.21.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.22.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.23.用两种方法证明“圆的内接四边形对角互补”.已知:如图①,四边形ABCD内接于⊙O.求证:∠B+∠D=180°.证法1:如图②,作直径DE交⊙O于点E,连接AE、CE.∵DE是⊙O的直径,∴______.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°−∠DAE−∠DCE=360°−90°−90°=180°.⏜,∵∠B和∠AEC所对的弧是ADC∴______.∴∠B+∠ADC=180°.请把证法1补充完整,并用不同的方法完成证法2.证法2:-------- 答案与解析 --------1.答案:D解析:解:易知,−2<−112<0<12<1,所以最小的有理数是−2.故选:D.根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.答案:A解析:本题考查了立方体的展开图,属于基础题,根据正方体的展开图的特征依次分析各选项即可判断.解析:解:根据常见的不能围成正方体的展开图的形式:一线不过四,田、凹应弃之,可判断:所有选项中只有A选项出现“凹”字状,所以不能组成正方体.故选A.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:20万=200000=2×105.故选C.4.答案:B解析:解:A、−x3与3x2不是同类项,不能合并,故本选项错误;B、3a2b−3ba2=0,故本选项正确;C、−3(a+b)=−3a−3b,故本选项错误;D、3y2−2y2=y2,故本选项错误;故选:B.根据合并同类项的法则判断A、B、D;根据去括号法则判断C.本题考查了整式的加减,掌握去括号与合并同类项法则是解题的关键.5.答案:C解析:本题考查利用数轴比较两个数的大小,由数轴上a的位置可知a<−1<0,根据数轴上未知数的位置估算其大小,再设出符合条件的数值进行比较大小,由此即可求解.解:依题意得a<−1<0,设a=−2,则−a=2.∵−2<−1<2,∴a<−1<−a.故选C.6.答案:A解析:解:∵从一只船上测得一灯塔的方向是北偏西47°,∴这艘船在这个灯塔的南偏东47°.故选:A.结合题意图形可知,灯塔位于这艘船的方向与船位于灯塔的方向正好相反,但度数不变.本题考查了方向角的意义及表示方法,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南).7.答案:C解析:解:A、x+2=y+2,正确;B、3x=3y,正确;C、5−x=5−y,错误;D、−x3=−y3,正确;故选:C.利用等式的性质变形得到结果,即可作出判断.本题考查了等式的性质,熟记等式的性质是解题的关键.8.答案:A解析:解:∵M是AC的中点,N是BD的中点∴AC=2MC,BD=2DN∵MN=b,CD=a∴AB=AC+CD+BD=2MC+CD+2DN=2(MC+CD+DN)−CD=2MN−CD=2b−a.故选A.由M是AC的中点,N是BD的中点,则AC=2MC,BD=2DN,故AB=AC+CD+BD可求.考查了两点间的距离,首先根据线段的中点概念,写出需要的关系式.再根据题意,结合图形进行线段的和与差的计算.9.答案:D解析:本题考查了一元一次方程的解法,先将x=2代入2x−3=a+5中,求出a的值,再代入3a+y=−2中,求出y的值.解:将x=2代入2x−3=a+5,得:4−3=a+5,a=−4.将a=−4代入3a+y=−2,得:−12+y=−2,y=10.故选D.10.答案:B解析:解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2−1)=5个黑色正方形,图③中有2+3×(3−1)=8个黑色正方形,图④中有2+3×(4−1)=11个黑色正方形,…,图n中有2+3(n−1)=3n−1个黑色的正方形,当n=10时,2+3×(10−1)=29,故选:B.仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n=11后即可求解.本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.11.答案:5×5=1,解析:解:∵15∴1的倒数是5.5根据倒数的定义.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.答案:2x−4=0(答案不唯一)解析:本题考查了一元一次方程的解的定义,理解定义是关键.根据方程的解的定义,把x=2代入方程,方程左右两边一定相等即可求解.解:这样的方程可写为:2x−4=0(答案不唯一).故答案为2x−4=0(答案不唯一).13.答案:102°12′解析:解:48°37′+53°35′=101°72′=102°12′,故答案为:102°12′.1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.本题主要考查了度分秒的换算,在进行度、分、秒的运算时也应注意借位和进位的方法.14.答案:7解析:解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x−x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄−小郑的年龄=28是解决问题的关键.15.答案:11或3或−3或−11解析:本题主要考查的是绝对值,有理数的加法的有关知识,属于基础题.先根据|a|=7,|b|=4,求出a,b,然后代入代数式求值即可.解:∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,a+b=7+4=11;当a=7,b=−4时,a+b=7−4=3;当a =−7,b =4时,a +b =−7+4=−3;当a =−7,b =−4时,a +b =−7−4=−11;∴a +b =11或3或−3或−11.故答案为11或3或−3或−11.16.答案:s a解析:解:由题意可得:长方形的宽是:s a ,故答案为:s a .根据题意可以用含a 、s 的代数式表示长方形的宽.本题考查列代数式,解答本题的关键是根据面积公式找出a ,s 和宽之间的关系式,列出相应的代数式. 17.答案:解:(1)原式=−|−14|+(−4)=−14+(−4)=−18;(2)原式=−4+8×(−18)−14+1=−4−1−14+1 =−414.解析:此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)首先进行绝对值里的加法运算,去绝对值之后再与−4相加即可;(2)首先进行乘方和乘除的运算,再进行加减运算即可.18.答案:解:(1)5x +40=12x −42+5,5x −12x =−42+5−40,−7x =−77,x =11;(2)2(2x−1)=2x+1−6,4x−2=2x+1−6,4x−2x=1−6+2,2x=−3,x=−1.5.解析:(1)方程去括号,移项合并,把x的系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x的系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数的数化为1,求出解.19.答案:解:−2x2−2[3y2−2(x2−y2)+6]=−2x2−2[3y2−2x2 +2y2+6]=−2x2−6y2 +4x2 −4y2−12=2x2−10y2−12,当x=−1,y=−2时原式=2×(−1)2−10×(−2)2−12=2×1−10×4−12=2−40−12.=−50.解析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.20.答案:解:如图所示:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.解析:本题主要考查了直线,射线及线段,解题的关键是利用直线,射线及线段的定义画图.(1)根据要求画出射线及直线即可;(2)射线AP上截取线段AD=AB即可;(3)延长线部分画虚线;(4)连接两点D、E.21.答案:解:∵∠AOC=90°,∠DOE=90°,E,O,B三点在同一条直线上,∴∠BOD=90°=∠AOC,∴∠COD=∠AOB=56°,∵OF平分∠DOE,∠DOE=90°,∴∠DOF=1∠DOE=45°,2∴∠COF=∠COD+∠DOF=56°+45°=101°.解析:依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即∠DOE=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.可得到∠DOF=12本题考查了角的计算,角平分线的定义以及余角的定义,本题中熟练运用角平分线是解题的关键.22.答案:解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140−x)元,根据题意得:(1−40%)x+(1−20%)(140−x)=100,解得:x=60,∴140−x=80.答:甲商品原销售单价为60元,乙商品的原销售单价为80元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1−25%)a=(1−40%)×60,(1+25%)b=(1−20%)×80,解得:a=48,b=51.2,∴100−a−b=100−48−51.2=0.8.答:商场在这次促销活动中盈利,盈利了0.8元解析:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140−x)元,根据优惠后购买甲、乙各一件共需100元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入100−a−b中即可找出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.答案:∠DAE+∠DCE=90°∠AEC=∠B解析:解:证法1:如图②,作直径DE交⊙O于点E,连接AE、CE.∵DE是⊙O的直径,∴∠DAE+∠DCE=90°.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°−∠DAE−∠DCE=360°−90°−90°=180°.∵∠B和∠AEC所对的弧是ADC⏜,∴∠AEC=∠B.∴∠B+∠ADC=180°.故答案为:∠DAE=∠DCE=90°,∠AEC=∠B;证法2:如图①,连接OA、OC,∵∠B、∠1所对的弧是ADC⏜,∠D、∠2所对的弧是ABC⏜,∴∠B=12∠1,∠D=12∠2,∵∠1+∠2=360°,∴∠B+∠D=12(∠1+∠2)=12×360°=180°.(1)由圆周角定理即可解答;(2)连接OA、OC,由同弧所对的圆周角等于圆心角的一半,可得∠B=12∠1,∠D=12∠2,求出∠B+∠D=180°即可得出结论.本题考查了圆周角定理,圆内接四边形的性质,熟知圆周角与弧的关系是解答此题的关键.。
2019-2020学年上学期期中考试七年级数学试卷

2019-2020学年上学期期中考试七年级数学试卷一、选择题(每题3分) 1. 在2213223,0,2,1,,,32354x y x a ab b x x y----++这些代数式中,整式的个数为( ) A. 2个B. 3个C. 4个D. 5个专题】常规题型;整式.【分析】根据整式的定义即可得.【点评】本题主要考查整式,解题的关键是掌握整式的定义2. 下列计算正确的是( )A. 2x x x ⋅=B. 321x x -=C. 222()a b a b -=-D. 224()a a -=-【分析】根据同底数幂的乘法法则,合并同类项法则,完全平方公式即可作出判断.【解答】解:A 、正确; B 、3x-2x=x ,故选项错误;C 、(a-b )2=a 2-2ab+b 2,故选项错误;D 、(-a 2)2=a 4,故选项错误. 故选:A .【点评】本题考查了同底数幂的乘法法则,合并同类项法则,完全平方公式,熟记公式的几个变形公式对解题大有帮助.3. 如果一个两位数的个位、十位上的数字分别是a 、b ,那么这个数可用代数式表示为( )A. baB. 10b a +C. 10a b +D. 10()a b +【专题】应用题.【分析】两位数=10×十位数字+个位数字,把相关字母代入即可求解. 【解答】解:∵个位上的数字是a ,十位上的数字是b , ∴这个两位数可表示为 10b+a . 故选:B .【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.4. 下列乘法中,能应用平方差公式的是( )A. ()()x y y x --B. (23)(23)x y y x -+C. ()()x y y x --+D. (23)(32)x y y x ---【专题】计算题.【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(-2x-3y )(3y-2x )=4x 2-9y 2. 故选:D .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5. 若22()(7)x px q x +++的计算结果中,不含2x 项,则q 的值是( )A. 0B. 7C. -7D. 7±【分析】把式子展开,找到所有x 2项的系数,令它的系数分别为0,列式求解即可.【解答】解:∵(x 2+px+q )(x 2+7) =x 4+7x 2+px 3+7px+qx 2+7q =x 4+px 3+(7+q )x 2+7px+7q . ∵乘积中不含x 2项, ∴7+p=0, ∴q=-7. 故选:C .【点评】考查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.6. 我们规定:!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯,如:1!1,2!21,3!321,,100!100999821==⨯=⨯⨯=⨯⨯⨯⨯,那么,1!2!3!100!++++的个位数字是( ) A. 1 B. 2C. 3D. 4【专题】规律型.【分析】由于1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0,依此可求1!+2!+3!+…+100!的个位数字.【解答】解:∵1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0, 1+2+6+24=33,∴1!+2!+3!+…+100!的个位数字是3. 故选:C .【点评】本题主要考查了尾数特征,规律型:数字的变化类,在解题时要注意找出规律列出式子并运用简便方法的计算是本题关键.二、填空题(每题2分)7. 已知正方形的边长为a ,用含a 的代数式表示正方形的周长,应为____________.【分析】利用正方形的周长计算公式直接列式即可. 【解答】解:正方形的边长为a ,周长为4a . 故答案为:4a .【点评】此题考查列代数式,掌握正方形的周长计算方法是解决问题的关键. 8. 单项式233a bc -的次数是____________. 【分析】根据单项式次数的概念求解. 【解答】解:单项式-3a 2bc 3的次数是6. 故答案为:6.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.9. 当4a =时,代数式1(2)2a a -的值为____________. 【专题】计算题;实数.【分析】把a 的值代入代数式计算即可求出值. 【解答】故答案为:4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 10. 把多项式23324133535a b a b a --+按字母a 的降幂排列是____________. 【专题】常规题型.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【解答】【点评】此题主要考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.11. 如果122x ab -与315y a b +-是同类项,那么x y ⋅=____________.【专题】整式.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关. 【解答】解:由题意,得 x-1=3,y+1=2, 解得x=4,y=1, xy=4, 故答案为:4.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.12. 计算:239632ab ab a b ⎛⎫--+= ⎪⎝⎭____________. 【专题】常规题型.【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】故答案为:-6a 2b 2+a 2b-4ab 2.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.13. 计算:(34)(2)a b a b --=____________. 【专题】整式.【分析】根据多项式乘多项式,可得答案. 【解答】解:原式=3a 2-6ab-4ab+8b 2 =3a 2-10ab+8b 2,故答案为:3a 2-10ab+8b 2.【点评】本题考查了多项式乘多项式,利用多项式的乘法是解题关键.14. 三个连续偶数,中间一个数为n ,则这三个数的积为____________. 【专题】常规题型.【分析】根据连续偶数的特征表示出另外两个偶数,再求出它们的积即可.【解答】解:根据题意得:(n-2)•n•(n+2)=n (n 2-4)=n 3-4n . 故答案为:n 3-4n .【点评】此题考查了列代数式以及单项式乘多项式,正确表示出另外两个偶数是解本题的关键.15. 若231m n +-的值为4,则代数式2263m n +-的值为____________.【专题】计算题;实数.【分析】由题意确定出m 2+3n 的值,原式变形后代入计算即可求出值. 【解答】解:由题意得:m 2+3n-1=4,即m 2+3n=5, 则原式=2(m 2+3n )-3=10-3=7, 故答案为:7【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 16. 若2,3mna a ==,则32m na+=____________.【分析】利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形,进而求出答案.【解答】解:∵a m =2,a n =3, ∴a 3m+2n=(a m )3×(a n )2 =23×32 =72.故答案为:72.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.17. 若多项式2925x mx ++是一个完全平方式,则m =____________. 【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m 的值. 【解答】解:∵9x 2+mx+25是一个完全平方式, ∴m=±30. 故答案为:±30.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省台州市椒江区书生中学2019-2020学年七年级上学期期中数学试卷一、单选题(共10题;共20分)1.下列各对量中,不具有相反意义的是()A. 胜2局与负3局B. 盈利3万元与亏损3万元C. 向东走100m与向北走100mD. 转盘逆时针转6圈与顺时针转6圈2.下列去括号正确的是()A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d3.把351000用科学记数法表示,正确的是()。
A. 0.351×106B. 3.51×105C. 3.51×106D. 35.1×1044.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,A,B,C,D哪个球最接近标准()A. -3.5B. +0.7C. -2.5D. -0.65.在代数式x2+5,﹣1,x2﹣3x+2,,中,整式有()A. 3个B. 4个C. 5个D. 6个6.单项式-3x2y系数和次数分别是()A. -3和2B. 3和-3C. -3和3D. 3和27.四位同学解方程,去分母分别得到下面四个方程:① ;② ;③ ;④ .其中错误的是()A. ②B. ③C. ②③D. ①④8.已知x是整数,并且-3<x<4,在数轴上表示x可能取的所有整数值有()个A. 8B. 7C. 6D. 59.如图,数轴上的A,B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是()A. ab<0B. a+b<0C. a-b<0D. a2b<010.下列说法中:① 若a<0时,a3=-a3;② 若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③ 若a、b互为相反数,则;④ 当a≠0时,|a|总是大于0;其中正确的说法个数是()A. 1B. 2C. 3D. 4二、填空题(共6题;共6分)11.近似数2.018精确到百分位结果是________.12.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为________.13.已知3x-8与2互为相反数,则x=________.14.一个两位数,个位数字是十位数字的2倍,若个位数字为a,则这个两位数可表示为________15.观察下面的数的排列规律,在空格处填上恰当的数:-1,3,-9,27,________,243,…16.x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,则(﹣2※3)△(﹣4)=________.三、解答题(共8题;共62分)17.计算:(1)(2)18.解下列方程(1)3(x-1)-2(2x+1)=12(2)19.先化简,再求值:,其中.20.已知,m、n互为相反数,p、q互为倒数,的绝对值为2,求的值.21.(1)若代数式﹣4x6y与x2n y是同类项,求(4n﹣13)2015的值.(2)若2x+3y=2015,求2(3x﹣2y)﹣(x﹣y)+(﹣x+9y)的值.22.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b +10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?23.数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;(问题背景)对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.(尝试探究):(1)正整数1和2的“神秘值”分别是________(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在如图中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在如图中绐出计算正整数7的“神秘值”的过程.(结论猜想)结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为________,(用含字母n的代数式表示,直接写出结果)24.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、单选题1.【答案】C【解析】【解答】A、胜2局与负3局具有相反意义,不符合题意;B、盈利3万元与亏损3万元具有相反意义,不符合题意;C、向东走100m与向北走100m不具有相反意义,符合题意;D、转盘逆时针转6圈与顺时针转6圈具有相反意义,不符合题意;故选:C.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.2.【答案】B【解析】【解答】A、a-(b-c)=a-b+c,原式计算错误,故本选项错误;B、x2-[-(-x+y)]=x2-x+y,原式计算正确,故本选项正确;C、m-2(p-q)=m-2p+2q,原式计算错误,故本选项错误;D、a+(b-c-2d)=a+b-c-2d,原式计算错误,故本选项错误;故选B.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可。
3.【答案】B【解析】【解答】科学记数法是指:a× ,1≤ <10,n是指这个数的整数位数减1.即原数=3.51× . 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此判断即可.4.【答案】D【解析】【解答】通过求五个排球的绝对值得:|-0.6|=0.6,|+0.7|=0.7,|-2.5|=2.5,|-3.5|=3.5,|5|=5,-0.6的绝对值最小.所以最后一个球是接近标准的球.故答案为:D.【分析】根据题意即得:绝对值越小越接近标准,所以比较各数的绝对值即可。
5.【答案】C【解析】【解答】在代数式x2+5,﹣1,x2﹣3x+2,,中,整式有x2+5,﹣1,x2﹣3x+2,, ,一共5个.故选:C.【分析】根据整式的概念分析各个式子即可解答.6.【答案】C【解析】【解答】∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故答案为:C.【分析】单项式的系数即字母因数;次数即所含字母的次数之和。
7.【答案】D【解析】【解答】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x-1)-(x+2)=3(4-x),故③正确;去括号得:2x-2-x-2=12-3x,故②正确,故选:D.【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断.8.【答案】C【解析】【解答】∵x为整数,并且-3<x<4,∴x=-2,-1,0,1,2,3.如图所示:共有6个.故答案为:C.【分析】首先,画出数轴,然后在数轴上找到-3与4,再在这两个数之间找到描出各个整数,数出个数即可。
9.【答案】D【解析】【解答】A、由ab异号得,ab<0,故A不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B不符合题意;C、由b>0,a<0,|得a-b<0,故C不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D符合题意;故答案为:D.【分析】根据数轴可得:a<0,b>0,且|a|>|b|;所以ab<0,a+b<0,a-b>0;所以D项不正确10.【答案】A【解析】【解答】①若a<0时,a3=a3,故错误;②当其中一个因数为零时,积为零,故错误;③若a、b(不为0)互为相反数,则,故错误;④当a≠0时,|a|总是大于0是正确的;故选:A.【分析】依据相反数的定义,绝对值的性质,以及有理数的乘法法则、乘方法则进行判断即可.二、填空题11.【答案】2.02【解析】【解答】近似数2.018精确到百分位结果为2.02.故答案为:2.02.【分析】将千位上的数字8利用四舍五入求值即可.12.【答案】2【解析】【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.13.【答案】2【解析】【解答】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.【分析】相反数:只有符号不同的两个数,我们说其中一个是另一个的相反数。
互为相反数的两数和为0。
14.【答案】6a【解析】【解答】解:个位数字是十位数字的2倍,若个位数字为a,则十位数是则这个数是故答案为:6a。
【分析】个位数字是十位数字的2倍,若个位数字为a,则十位数字是根据各个数位上的数字所表示的意义即可表示出该两位数,进而根据整式混合运算的顺序即可算出答案。
15.【答案】-81【解析】【解答】观察可得,后面的数等于前面的数乘以-3,所以空格处应填27×(-3)=-81.【分析】通过观察分析可得后面的数等于前面的数乘以-3,据此解答即可.16.【答案】-36【解析】【解答】由定义新运算可知,(-2 ※ 3)△(-4)=3×[6×(-2)+5×3)]×(-4)=3×3×(-4)=-36。