2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷含答案
椒江书生初中数学试卷答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -1/3答案:D解析:有理数是可以表示为两个整数之比的数,其中分母不为零。
选项D可以表示为-1除以3,是有理数。
2. 下列方程中,解为x=2的是()A. x - 3 = 1B. 2x + 1 = 7C. x^2 - 4 = 0D. 3x - 5 = 11答案:B解析:将x=2代入选项B中,得到22 + 1 = 5,符合方程。
3. 下列图形中,是轴对称图形的是()A. 等边三角形B. 长方形C. 正方形D. 圆答案:D解析:轴对称图形是指图形关于某条直线对称,选项D中的圆无论沿任何直径都可以对称。
4. 下列命题中,正确的是()A. 两个平行四边形一定是矩形B. 两个等腰三角形一定是等边三角形C. 两个全等三角形一定是相似三角形D. 两个正方形一定是矩形答案:C解析:全等三角形指的是形状和大小完全相同的三角形,而相似三角形指的是形状相同但大小不一定相同的三角形。
因此,全等三角形一定是相似三角形。
5. 下列运算中,结果是正数的是()A. (-3) (-2)B. (-4) / (-2)C. (-5) / 3D. (-6) / (-3)答案:C解析:选项C中的负数除以正数,结果是负数,不符合题意。
其他选项中,负数乘以负数或正数除以负数,结果都是正数。
二、填空题(每题4分,共20分)6. √9的平方根是__________。
答案:±3解析:√9表示9的正平方根,即3,而平方根有两个解,分别是正数和它的相反数。
7. 若x - 2 = 5,则x = ________。
答案:7解析:将等式两边同时加2,得到x = 7。
8. 在直角三角形中,若两直角边的长度分别为3和4,则斜边的长度是__________。
答案:5解析:根据勾股定理,斜边长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
2016-2017学年浙江省台州市椒江区书生中学七年级(下)期中数学试卷(解析版)

2016-2017学年浙江省台州市椒江区书生中学七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列说法中,正确的是()A. 1的平方根是1B. 0没有立方根C. 的平方根是D. 没有平方根2.下列方程组中是二元一次方程组的是()A. B. C. D.3.如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=50°,则∠2的度数是()A. B. C. D.4.在平面直角坐标系中,点P(3,-x2-1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A. 1个B. 2个C. 3个D. 4个6.已知方程组的解满足x+y=2,则k的算术平方根为()A. 4B.C.D. 27.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为()A. B. C. D. 或8.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A. ①②③④B. ①②④C. ①③④D. ①②③9.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A. B. C. D.10.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放()只.A. 20B. 18C. 16D. 15二、填空题(本大题共6小题,共18.0分)11.的算术平方根是______.12.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、-π、、、,无理数的个数是______个.13.已知点P的坐标是(a+2,3a-6),且点P到两坐标轴的距离相等,则点P的坐标是______.14.如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2=______°.15.如图,将周长为16的三角形ABC向右平移2个单位后得到三角形DEF,则四边形ABFD的周长等于______.16.已知方程组的解是,则方程组的解是______.三、计算题(本大题共3小题,共18.0分)17.(1)计算:+×(-)2(2)求x值:(x-2)2=25.18.解方程组:(1)(2).19.已知是a+3b的算术平方根,是1-a2的立方根,求A+B的立方根.四、解答题(本大题共5小题,共34.0分)20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.22.已知方程组,王芳看错了方程①中的a得到方程组的解为,李明看错了方程②中的b得到方程组的解为,求原方程组的解.23.“全民阅读”深入人心,好读书,读好书,让人终身受益.我校上月举办了“读书节”活动.为了表彰优秀,主办单位王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以买几本?(3)若王老师用这钱恰好买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a、b值.24.如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN∥x轴;C是Y轴上一点,连接AC,作CD⊥CA.(1)如图(1),请直接写出∠CA0与∠CDB的数量关系.(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD的度数.(3)如图(2),在题(1)、(2)的条件下,∠CAX的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平分线相交于点P,∠APD的大小是否变化?若不变,直接写出其值;若变化,说明理由.答案和解析1.【答案】D【解析】解:由平方根的性质得,1的平方根是±1,所以A错误∵,∴的平方根是±,所以C错误,-1没有平方根,所以D正确,根据立方根的性质得,0的立方根是0,所以B错误,故选:D.直接根据平方根和立方根的意义和性质判断即可.此题是立方根和平方根题目,主要考查了平方根和立方根的性质,解本题的关键是熟记平方根和立方根的性质.2.【答案】C【解析】解:A、不是二元一次方程组,故此选项错误;B、不是二元一次方程组,故此选项错误;C、是二元一次方程组,故此选项正确;D、不是二元一次方程组,故此选项错误;故选:C.根据二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组进行分析即可.此题主要考查了二元一次方程组的定义,关键是掌握二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.3.【答案】B【解析】解:∵直线a∥b,∠1=50°,∴∠B=∠1=50°,又∵AC⊥AB,∴∠2=90°-∠B=40°.故选:B.先根据平行线的性质,求得∠B的度数,再根据直角三角形的性质,求得∠2的度数.本题主要考查了平行线的性质以及垂线的定义,解决问题的关键是掌握:两条平行线被第三条直线所截,同位角相等.4.【答案】D【解析】解:∵-x2-1≤-1,∴点P(3,-x2-1)所在的象限是第四象限.故选:D.根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.【答案】A【解析】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选:A.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.【答案】D【解析】解:,①+②得:3(x+y)=k+2,解得:x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故选:D.方程组中两方程相加表示出x+y,代入x+y=2中计算即可求出k的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.【答案】D【解析】解:如图1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如图2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°-∠A=160°.故选:D.首先根据题意画出图形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.此题考查了平行线的性质,比较简单,注意数形结合思想与分类讨论思想的应用,注意两直线平行,同位角相等;两直线平行,同旁内角互补定理的应用.8.【答案】C【解析】【分析】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.【答案】B【解析】解:设第n次跳动至点P n,观察发现:P(-1,0),P1(-1,1),P2(1,1),P3(1,2),P4(-2,2),P5(-2,3),P6(2,3),P7(2,4),P8(-3,4),P9(-3,5),…,∴P4n(-n-1,2n),P4n+1(-n-1,2n+1),P4n+2(n+1,2n+1),P4n+3(n+1,2n+2)(n为自然数).∵2017=504×4+1,∴P2017(504+1,504×2+1),即(505,1009).故选:B.设第n次跳动至点P n,根据部分点A n坐标的变化找出变化规律“P4n(-n-1,2n),P4n+1(-n-1,2n+1),P4n+2(n+1,2n+1),P4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2017=504×4+1即可得出点P2017的坐标.本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“P4n (-n-1,2n),P n+1(-n-1,2n+1),P n+2(n+1,2n+1),P n+3(n+1,2n+2)(n为自然数)”是解题的关键.10.【答案】C【解析】解:设碗底的高度为xcm,碗身的高度为ycm,由题意得,,解得:,设李老师一摞碗能放a只碗,3+2a≤35,解得:a≤16,∴一摞碗最多只能放16只,故选:C.设碗底的高度为xcm,碗身的高度为ycm,可得碗的高度和碗的个数的关系式为高度=个数×碗底高度+碗身高度,根据6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为21cm,列方程组求解,根据碗橱每格的高度为35cm,列不等式求解.本题考查了二元一次方程组和一元一次不等式的应用,关键是根据题意,找出合适的等量关系,列方程组和不等式求解.11.【答案】【解析】解:∵=3,∴的算术平方根是.故答案为:.先根据算术平方根的定义求出,再根据算术平方根的定义求解.本题考查了算术平方根的定义,熟记概念是解题的关键,要注意先求出的值.12.【答案】2【解析】解:-π、是无理数,故答案为:2.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.13.【答案】(6,6)或(3,-3)【解析】解:∵点P(a+2,3a-6)到两坐标轴的距离相等,∴a+2=3a-6或a+2+3a-6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,-3),综上所述,点P(6,6)或(3,-3).故答案为:(6,6)或(3,-3).分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.本题考查了点的坐标,难点在于分情况讨论.14.【答案】55【解析】解:∵AB∥CD,∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2===55°.故答案为:55°.先根据AB∥CD,∠1=110°求出∠3的度数,再根据图形翻折变换的性质即可求出∠2的度数.本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.【答案】20【解析】解:根据题意,将周长为16的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=16,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20.故答案为:20.根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.16.【答案】【解析】解:∵方程组的解是,∴方程组中的解是,即.故答案为:.根据方程组的解是,可得方程组中的解是,从而求解.考查了解二元一次方程组,关键是由方程组的解是,得到方程组中的解是.17.【答案】解:(1)原式=-4×=;(2)开方得:x-2=5或x-2=-5,解得:x=7或x=-3.【解析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出x的值.此题考查了实数的运算,以及平方根、立方根,熟练掌握各自的性质是解本题的关键.18.【答案】解:(1)方程组整理得:,②-①得:2x=4,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②-①得:3x+3y=3,即x+y=1③,③×12-①得:x=-1,把x=-1代入③得:y=2,则方程组的解为.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.19.【答案】解:已知是a+3b的算术平方根,是1-a2的立方根,,,A==3,B==-2A+B=3+(-2)=1,A+B的立方根是1.【解析】根据知是a+3b的算术平方根,可得a-1的值,根据是1-a2的立方根,可得2a-b-1的值,根据a、b的值,可得A、B,根据有理数的加法,可得答案.本题考查了立方根,先求出a、b的值,再求出A、B的值,最后求出A+B的值.20.【答案】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(-1,1),C′(3,1);(2)如图,P(0,1)或(0,-5)).【解析】(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可(2)求出△ABC中BC边上的高,进而可得出结论.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.21.【答案】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【解析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解决问题的关键.22.【答案】解:由题意可知:4×5+4b=12,解得b=-24a+5×5=15,解得:a=-∴解得:【解析】由题意可知是4x+by=12的一个解,是ax+5y=15的一个解,从而可求出a与b.本题考查二元一次方程的解,解题的关键是熟练运用二元一次方程的解的概念,本题属于基础题型.23.【答案】解:(1)根据题意得:60(2x+3y)=40(2x+6y),化简得:y=x.(2)60(2x+3y)÷y=360.答:若用这钱全部购买笔记本,总共可以买360本.(3)根据题意得:60(2x+3y)=30(ax+by),即4x+6y=ax+by,把y=x代入得:4x+4x=ax+bx,整理得:a+b=8.∵a、b均为正整数,∴b为3的整数倍,∴当b=3时,a=6;当b=6时,a=4;当b=9时,a=2.∴ ,,.【解析】(1)根据两种购买方案总钱数相同,即可得出关于x、y的二元一次方程,化简后即可得出结论;(2)根据数量=总钱数÷单价结合(1)结论,即可求出能够购买笔记本的本数;(3)根据总钱数为定值结合(1)结论,即可得出关于a、b的二元一次方程,再根据a、b均为正整数,即可求出二元一次方程的所有正整数解,此题得解.本题考查了二元一次方程的应用,解题的关键是:(1)根据两种购买方案总钱数相同,列出关于x、y的二元一次方程;(2)根据数量关系,列式计算;(3)根据总钱数为定值结合y=x,列出关于a、b的二元一次方程.24.【答案】解:(1)如图,∵CD⊥CA,∴∠ACO+∠DCB=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠DCB=∠OAC,又∵∠CBD=90°,∴∠DCB+∠CDB=90°,∴∠CAO+∠CDB=90°;(2)如图2,延长AP交MN于点E,∵AP平分∠CAO、DP平分∠CDB,∴∠1=∠CAO、∠2=∠CDB,∵∠CAO+∠CDB=90°,∴∠1+∠2=45°,∵MN∥OA,∴∠1=∠3,∴∠APD=∠2+∠3=∠1+∠3=45°;(3)∵AP平分∠OAC、AQ平分∠CAx,∴∠PAC=∠OAC、∠QAC=∠CAx,∵∠OAC+∠CAx=180°,∴∠PAQ=∠PAC+∠CAQ=(∠OAC+∠CAx)=90°,同理得∠PDQ=90°,∴∠APD+∠AQD=360°-(∠PAQ+∠PDQ)=180°;(4)∠APD的大小不变,为45°;设∠CAQ=2α,∠CQA=2β,∵∠ACD=90°,∴∠CAQ+∠CQA=90°,即2α+2β=90,α+β=45,∵AO∥MN,∴∠CQA=∠CDB=2β,∵AQ平分∠CAQ、DB平分∠CDB,∴∠QDP=∠CDB=β,∠CAQ=α,则∠CQA=90°-∠CAQ=90°-α,∴∠APD=∠CQA-∠CDB=90°-α-β=45°.【解析】(1)根据CD⊥CA、∠AOC=90°知∠DCB=∠OAC,由∠CBD=90°可得∠DCB+∠CDB=90°,即∠CAO+∠CDB=90°;(2)延长AP交MN于点E,结合(1)中结论,利用角平分线可得∠1+∠2=45°,再由平行线的性质和三角形外角性质可得;(3)由AP平分∠OAC、AQ平分∠CAx且∠OAC+∠CAx=180°可得∠PAQ=90°,同理知∠PDQ=90°,根据四边形内角和可得结论;(4)设∠CAQ=2α、∠CQA=2β,由∠ACD=90°得2α+2β=90°即α+β=45°,根据角平分线的性质及平行线性质可得∠QDP=β,∠CAQ=α,由∠CQA=90°-α利用外角性质可得答案.本题主要考查角平分线的性质、三角形外角性质、平行线的性质等知识点,熟练掌握角平分线的性质、三角形外角性质是解题的关键.。
2016-2017年浙江省台州市椒江区书生中学七年级(下)期中数学试卷(解析版)

2016-2017学年浙江省台州市椒江区书生中学七年级(下)期中数学试卷一、选择题(每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)下列说法中,正确的是()A.1的平方根是1B.0没有立方根C.的平方根是±2D.﹣1没有平方根2.(3分)下列方程组中是二元一次方程组的是()A.B.C.D.3.(3分)如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=50°,则∠2的度数是()A.50°B.40°C.25°D.20°4.(3分)在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个6.(3分)已知方程组的解满足x+y=2,则k的算术平方根为()A.4B.﹣2C.﹣4D.27.(3分)已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为()A.20°B.80°C.160°D.20°或160°8.(3分)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③9.(3分)如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)10.(3分)为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放()只.A.20B.18C.16D.15二、填空题(本大题共6个小题;每小题3分,共18分)11.(3分)的算术平方根是.12.(3分)在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、﹣π、、、,无理数的个数是个.13.(3分)已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.14.(3分)如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2=°.15.(3分)如图,将周长为16的三角形ABC向右平移2个单位后得到三角形DEF,则四边形ABFD的周长等于.16.(3分)已知方程组的解是,则方程组的解是.三、解答题(本大题分8个小题,共52分.解答应写出说理过程或演算步骤)17.(6分)(1)计算:+×(﹣)2(2)求x值:(x﹣2)2=25.18.(6分)解方程组:(1)(2).19.(6分)如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.20.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.21.(6分)已知是a+3b的算术平方根,是1﹣a2的立方根,求A+B的立方根.22.(6分)已知方程组,王芳看错了方程①中的a得到方程组的解为,李明看错了方程②中的b得到方程组的解为,求原方程组的解.23.(8分)“全民阅读”深入人心,好读书,读好书,让人终身受益.我校上月举办了“读书节”活动.为了表彰优秀,主办单位王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以买几本?(3)若王老师用这钱恰好买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a、b值.24.(8分)如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN∥x轴;C是Y轴上一点,连接AC,作CD⊥CA.(1)如图(1),请直接写出∠CA0与∠CDB的数量关系.(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD的度数.(3)如图(2),在题(1)、(2)的条件下,∠CAX的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平分线相交于点P,∠APD的大小是否变化?若不变,直接写出其值;若变化,说明理由.2016-2017学年浙江省台州市椒江区书生中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)下列说法中,正确的是()A.1的平方根是1B.0没有立方根C.的平方根是±2D.﹣1没有平方根【解答】解:由平方根的性质得,1的平方根是±1,所以A错误∵,∴的平方根是±,所以C错误,﹣1没有平方根,所以D正确,根据立方根的性质得,0的立方根是0,所以B错误,故选:D.2.(3分)下列方程组中是二元一次方程组的是()A.B.C.D.【解答】解:A、不是二元一次方程组,故此选项错误;B、不是二元一次方程组,故此选项错误;C、是二元一次方程组,故此选项正确;D、不是二元一次方程组,故此选项错误;故选:C.3.(3分)如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=50°,则∠2的度数是()A.50°B.40°C.25°D.20°【解答】解:∵直线a∥b,∠1=50°,∴∠B=∠1=50°,又∵AC⊥AB,∴∠2=90°﹣∠B=40°.故选:B.4.(3分)在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选:D.5.(3分)下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选:A.6.(3分)已知方程组的解满足x+y=2,则k的算术平方根为()A.4B.﹣2C.﹣4D.2【解答】解:,①+②得:3(x+y)=k+2,解得:x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故选:D.7.(3分)已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为()A.20°B.80°C.160°D.20°或160°【解答】解:如图1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如图2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选:D.8.(3分)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.9.(3分)如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)【解答】解:设第n次跳动至点P n,观察发现:P(﹣1,0),P1(﹣1,1),P2(1,1),P3(1,2),P4(﹣2,2),P5(﹣2,3),P6(2,3),P7(2,4),P8(﹣3,4),P9(﹣3,5),…,∴P4n(﹣n﹣1,2n),P4n+1(﹣n﹣1,2n+1),P4n+2(n+1,2n+1),P4n+3(n+1,2n+2)(n为自然数).∵2017=504×4+1,∴P2017(504+1,504×2+1),即(505,1009).故选:B.10.(3分)为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放()只.A.20B.18C.16D.15【解答】解:设碗底的高度为xcm,碗身的高度为ycm,由题意得,,解得:,设李老师一摞碗能放a只碗,3+2a≤35,解得:a≤16,∴一摞碗最多只能放16只,故选:C.二、填空题(本大题共6个小题;每小题3分,共18分)11.(3分)的算术平方根是.【解答】解:∵=3,∴的算术平方根是.故答案为:.12.(3分)在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、﹣π、、、,无理数的个数是2个.【解答】解:﹣π、是无理数,故答案为:2.13.(3分)已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3).【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).14.(3分)如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2= 55°.【解答】解:∵AB∥CD,∠1=110°,∴∠3=180°﹣∠1=180°﹣110°=70°,∴∠2===55°.故答案为:55°.15.(3分)如图,将周长为16的三角形ABC向右平移2个单位后得到三角形DEF,则四边形ABFD的周长等于20.【解答】解:根据题意,将周长为16的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=16,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20.故答案为:20.16.(3分)已知方程组的解是,则方程组的解是.【解答】解:∵方程组的解是,∴方程组中的解是,即.故答案为:.三、解答题(本大题分8个小题,共52分.解答应写出说理过程或演算步骤)17.(6分)(1)计算:+×(﹣)2(2)求x值:(x﹣2)2=25.【解答】解:(1)原式=﹣4×=;(2)开方得:x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3.18.(6分)解方程组:(1)(2).【解答】解:(1)方程组整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②﹣①得:3x+3y=3,即x+y=1③,③×12﹣①得:x=﹣1,把x=﹣1代入③得:y=2,则方程组的解为.19.(6分)如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.【解答】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(﹣1,1),C′(3,1);(2)如图,P(0,1)或(0,﹣5)).20.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.【解答】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.21.(6分)已知是a+3b的算术平方根,是1﹣a2的立方根,求A+B的立方根.【解答】解:已知是a+3b的算术平方根,是1﹣a2的立方根,,,A==3,B==﹣2A+B=3+(﹣2)=1,A+B的立方根是1.22.(6分)已知方程组,王芳看错了方程①中的a得到方程组的解为,李明看错了方程②中的b得到方程组的解为,求原方程组的解.【解答】解:由题意可知:4×5+4b=12,解得b=﹣24a+5×5=15,解得:a=﹣∴解得:23.(8分)“全民阅读”深入人心,好读书,读好书,让人终身受益.我校上月举办了“读书节”活动.为了表彰优秀,主办单位王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以买几本?(3)若王老师用这钱恰好买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a、b值.【解答】解:(1)根据题意得:60(2x+3y)=40(2x+6y),化简得:y=x.(2)60(2x+3y)÷y=360.答:若用这钱全部购买笔记本,总共可以买360本.(3)根据题意得:60(2x+3y)=30(ax+by),即4x+6y=ax+by,把y=x代入得:4x+4x=ax+bx,整理得:a+b=8.∵a、b均为正整数,∴b为3的整数倍,∴当b=3时,a=6;当b=6时,a=4;当b=9时,a=2.∴,,.24.(8分)如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN∥x轴;C是Y轴上一点,连接AC,作CD⊥CA.(1)如图(1),请直接写出∠CA0与∠CDB的数量关系.(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD的度数.(3)如图(2),在题(1)、(2)的条件下,∠CAX的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平分线相交于点P,∠APD的大小是否变化?若不变,直接写出其值;若变化,说明理由.【解答】解:(1)如图,∵CD⊥CA,∴∠ACO+∠DCB=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠DCB=∠OAC,又∵∠CBD=90°,∴∠DCB+∠CDB=90°,∴∠CAO+∠CDB=90°;(2)如图2,延长AP交MN于点E,∵AP平分∠CAO、DP平分∠CDB,∴∠1=∠CAO、∠2=∠CDB,∵∠CAO+∠CDB=90°,∴∠1+∠2=45°,∵MN∥OA,∴∠1=∠3,∴∠APD=∠2+∠3=∠1+∠3=45°;(3)∵AP平分∠OAC、AQ平分∠CAx,∴∠PAC=∠OAC、∠QAC=∠CAx,∵∠OAC+∠CAx=180°,∴∠PAQ=∠PAC+∠CAQ=(∠OAC+∠CAx)=90°,同理得∠PDQ=90°,∴∠APD+∠AQD=360°﹣(∠PAQ+∠PDQ)=180°;(4)∠APD的大小不变,为45°;设∠CAQ=2α,∠CQA=2β,∵∠ACD=90°,∴∠CAQ+∠CQA=90°,即2α+2β=90,α+β=45,∵AO∥MN,∴∠CQA=∠CDB=2β,∵AQ平分∠CAQ、DB平分∠CDB,∴∠QDP=∠CDB=β,∠CA Q=α,则∠CQA=90°﹣∠CAQ=90°﹣α,∴∠APD=∠CQA﹣∠CDB=90°﹣α﹣β=45°.。
最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx

2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。
2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷(解析版)

2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷一、选择题(本大题共10小题,共30分)1.(3分)在有理数﹣3,|﹣3|,(﹣3)2,(﹣3)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个2.(3分)据统计,2011年经义乌海关出口小商品总价达98.7亿美元据统计,98.7亿美元用科学记数法表示为()A.9.87×107美元B.9.87×108美元C.9.87×109美元D.9.87×1010美元3.(3分)下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.(3分)如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>﹣y>﹣x B.﹣x>y>﹣y>x C.y>﹣x>﹣y>x D.﹣x>y>x>﹣y 5.(3分)如果多项式3x3﹣2x2+x+|k|x2﹣5中不含x2项,则k的值为()A.±2 B.﹣2 C.2 D.06.(3分)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)7.(3分)如果A和B都是5次多项式,则下面说法正确的是()A.A﹣B一定是多项式B.A﹣B是次数不低于5的整式C.A+B一定是单项式D.A+B是次数不高于5的整式8.(3分)|a|=﹣a,则a一定是()A.负数B.正数C.零或负数D.非负数9.(3分)根据等式的性质,下列变形正确的是()A.若2x=a,则x=2a B.若+=1,则3x+2x=1C.若ab=bc,则a=c D.若=,则a=b10.(3分)如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x1二、填空题(本大题共8小题,共24分)11.(3分)在方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有(填写序号).12.(3分)已知10名同学们演讲成绩,若以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+7,﹣3,+12,﹣7,﹣12,﹣1,﹣2,+6,0,+10,则这10名同学的总成绩是分.13.(3分)3x m+5y2与xy n是同类项,则m n的值是.14.(3分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为.15.(3分)在式子,﹣4x,π,,x+,﹣中,单项式有个.16.(3分)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图,S1、S2、S3、S4分别表示图中四个“月牙形”的面积.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是.17.(3分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2016个单项式是;第n个单项式是.18.(3分)某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于.三、解答题(本大题共6小题,共46.0分)19.(8分).计算:(1)﹣1×(﹣1)÷2﹣1.(2)1﹣[﹣+(1﹣×0.6)÷(﹣2)2].20.(8分)先化简再求值:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2),其中x=2,y=1.21.(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?22.(8分)小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?23.(6分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A是数轴上的点,完成下列各题:(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A、B两点间的距离为;一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是,A、B两点间的距离为.24.(8分).阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=.2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,共30分)1.(3分)在有理数﹣3,|﹣3|,(﹣3)2,(﹣3)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:|﹣3|=3,(﹣3)2=9,(﹣3)3=﹣27,负数有:﹣3,(﹣3)3,故选:B.2.(3分)据统计,2011年经义乌海关出口小商品总价达98.7亿美元据统计,98.7亿美元用科学记数法表示为()A.9.87×107美元B.9.87×108美元C.9.87×109美元D.9.87×1010美元【解答】解:将98.7亿美元用科学记数法表示为:9.87×109美元.故选:C.3.(3分)下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选:D.4.(3分)如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>﹣y>﹣x B.﹣x>y>﹣y>x C.y>﹣x>﹣y>x D.﹣x>y>x>﹣y 【解答】解:∵x<0,y>0,x+y<0,∴|x|>y,∴y<﹣x,x<﹣y,∴x,y,﹣x,﹣y的大小关系为:x<﹣y<y<﹣x.故选:B.5.(3分)如果多项式3x3﹣2x2+x+|k|x2﹣5中不含x2项,则k的值为()A.±2 B.﹣2 C.2 D.0【解答】解:要使3x3﹣2x2+x+|k|x2﹣5中不含x2项,那么x2项的系数应为0,在多项式3x3﹣2x2+x+|k|x2﹣5中﹣2x2和|k|x2两项含x2,∴在合并同类项时这两项的系数互为相反数,结果为0,即﹣2=﹣|k|,∴k=±2.故选:A.6.(3分)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)【解答】解:A、x﹣(y﹣z)=x﹣y+z,错误;B、﹣(x﹣y+z)=﹣x+y﹣z,括号前是“﹣”,去括号后,括号里的各项都改变符号,错误;C、x+2y﹣2z=x﹣2(z﹣y),添括号后,括号前是“﹣”,括号里的各项都改变符号,错误;D、正确.故选:D.7.(3分)如果A和B都是5次多项式,则下面说法正确的是()A.A﹣B一定是多项式B.A﹣B是次数不低于5的整式C.A+B一定是单项式D.A+B是次数不高于5的整式【解答】解:如果A和B都是5次多项式,则A+B是次数不高于5的整式.故选:D.8.(3分)|a|=﹣a,则a一定是()A.负数B.正数C.零或负数D.非负数【解答】解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:C.9.(3分)根据等式的性质,下列变形正确的是()A.若2x=a,则x=2a B.若+=1,则3x+2x=1C.若ab=bc,则a=c D.若=,则a=b【解答】解:A、在等式2x=a的两边同时除以2,等式仍成立,即x=a.故本选项错误;B、在等式+=1的两边同时乘以6,等式仍成立,即3x+2x=6.故本选项错误;C、当b=0时,a=c不一定成立,故本选项错误;D、在等式=的两边同时乘以c,等式仍成立,即a=b,故本选项正确;故选:D.10.(3分)如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x1【解答】解:依题意,有x1=50+x3﹣55=x3﹣5=>x1<x3,同理,x2=30+x1﹣20=x1+10=>x1<x2,同理,x3=30+x2﹣35=x2﹣5=>x3<x2.故选:C.二、填空题(本大题共8小题,共24分)11.(3分)在方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有③④⑥(填写序号).【解答】解:方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有③④⑥.故答案为③④⑥.12.(3分)已知10名同学们演讲成绩,若以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+7,﹣3,+12,﹣7,﹣12,﹣1,﹣2,+6,0,+10,则这10名同学的总成绩是810分.【解答】解:(7﹣3+12﹣7﹣12﹣1﹣2+6+0+10)+80×10=810,故答案为:810.13.(3分)3x m+5y2与xy n是同类项,则m n的值是16.【解答】解:由题意可知:m+5=1,2=n,∴m=4,n=2,∴m n=16,故答案为:16,14.(3分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为8.【解答】解:当x=3时,2*x﹣4*x=2*3﹣4*3=9﹣(4﹣3)=8,故答案为:815.(3分)在式子,﹣4x,π,,x+,﹣中,单项式有3个.【解答】解:单项式有﹣4x,π,﹣中共3个,故答案为3.16.(3分)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图,S1、S2、S3、S4分别表示图中四个“月牙形”的面积.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是π.【解答】解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π,∴S3﹣S4=π.故答案为π.17.(3分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2016个单项式是2016a2016;第n个单项式是(﹣1)n na n.【解答】解:由前几项的规律可得:第2016个单项式为:2016a2016;第n个单项式的系数为:n×(﹣1)n,次数为n,故第n个单项式为:(﹣1)n na n.故答案为::2016a2016;(﹣1)n na n.18.(3分)某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于11.【解答】解:根据题意得到x前面的数字为9,后面的数字为2,则有9+x+2=20,即x=9,表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.三、解答题(本大题共6小题,共46.0分)19.(8分).计算:(1)﹣1×(﹣1)÷2﹣1.(2)1﹣[﹣+(1﹣×0.6)÷(﹣2)2].【解答】解:(1)原式=﹣×(﹣)×﹣1=﹣1=﹣;(2)原式=1﹣(﹣+×)=1+﹣=1.20.(8分)先化简再求值:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2),其中x=2,y=1.【解答】解:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2)=4x2﹣2xy+y2﹣2x2+12xy﹣y2=2x2+10xy当x=2,y=1时,原式=2×22+10×2×1=8+20=2821.(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?【解答】解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4﹣(﹣4.5)=8.5(千米);(3)这辆货车此次送货共耗油:(4+1.5+10+4.5)×0.05=1(升).答:小明家与小刚家相距8.5千米,这辆货车此次送货共耗油1升.22.(8分)小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?【解答】解:A=A﹣B+B=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=﹣3x2+5x+6+4x2﹣5x﹣6=x2.23.(6分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A是数轴上的点,完成下列各题:(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣92,A、B两点间的距离为88;一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是m+n﹣t,A、B两点间的距离为|n ﹣t| .【解答】解:(1)∵点A表示数3,∴点A向左移动7个单位长度,再向右移动5个单位长度,终点B表示的数是3﹣7+5=1,A,B两点间的距离是|3﹣7+5|=1,故答案为1,1;(2)∵点A表示数﹣4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣4+168﹣256=﹣92,A、B两点间的距离是|﹣4+92|=88;故答案为﹣92,88;∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动t个单位长度,那么点B表示的数为(m+n﹣t),A,B两点间的距离为|n﹣t|,故答案为m+n﹣t,|n﹣t|.24.(8分).阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.故+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.故++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则++═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.。
2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
七年级上册数学期中考试卷及答案解析

七年级上册数学期中考试卷及答案解析2017年七年级上册数学期中考试卷及答案解析畏难只有输,爱拼才会赢,输赢一念间。
2017年七年级数学期中考试你拼搏了吗?以下是店铺为你整理的2017年七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.13.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a24.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×1025.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.56.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.27.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A.120元B.100元C.80元D.60元8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= .13.若∠1=35°21′,则∠1的余角是.14.如果x=6是方程2x+3a=6x的解,那么a的值是.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=度.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.三、细心解一解(每小题6分,满分18分)17.计算: .18.解方程:4x﹣6=2(3x﹣1)19.一个角的余角比它的补角的大15°,求这个角的度数.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐人;3张桌子拼在一起可坐人;n张桌子拼在一起可坐人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.2017年七年级上册数学期中考试卷答案与解析一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为8﹣(﹣2)=10℃.故选:C.2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.3.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a2【考点】合并同类项.【分析】分别根据合并同类项法则求出判断即可.【解答】解:A、3x+2y无法计算,故此选项错误;B、4x﹣3x=x,故此选项错误;C、ab﹣2ab=﹣ab,故此选项正确;D、2a+a=3a,故此选项错误.故选:C.4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35800=3.58×104,故选:B.5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.5【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故选:B.6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.2【考点】两点间的距离.【分析】首先根据AC=6,CB=3,求出AB的长度是多少;然后用它除以2,求出AO的长度是多少;最后用AC的长度减去AO的长度,求出OC的长等于多少即可.【解答】解:∵AC=6,CB=3,∴AB=6+3=9,∵O是线段AB的中点,∴AO=9÷2=4.5,∴OC=AC﹣AO=6﹣4.5=1.5.故选:C.7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的.进价为( )A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,等量关系为:售价=进价+利润,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种商品每件的进价为x元,则:x+20=200×0.5,解得:x=80.答:这件商品的进价为80元,故选B.8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“创”相对的字.【解答】解:结合展开图可知,与“创”相对的字是“明”.故选B.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°【考点】方向角.【分析】根据方向角,可得∠1,∠2,根据角的和差,可得答案.【解答】解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于﹣1 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是1,a=﹣1,那么a2017=﹣1,故答案为:﹣1.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= 16 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得x﹣3=1,2y﹣1=3,解得x=4,y=2.xy=24=16,故答案为:16.13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如果x=6是方程2x+3a=6x的解,那么a的值是8 .【考点】一元一次方程的解.【分析】将x=6代入方程得到关于a的一元一次方程,从而可求得a的值.【解答】解:当x=6时,原方程变形为:12+3a=36,移项得:3a=36﹣12,解得:a=8.故答案为:8.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=180 度.【考点】角的计算.【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为﹣2 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出(﹣3)*7的值为多少即可.【解答】解:(﹣3)*7=5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2故答案为:﹣2.三、细心解一解(每小题6分,满分18分)17.计算: .【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=10+8× ﹣2×5=10+2﹣10=2.18.解方程:4x﹣6=2(3x﹣1)【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:4x﹣6=6x﹣2,移项得:4x﹣6x=6﹣2,合并得:﹣2x=4,解得:x=﹣2.19.一个角的余角比它的补角的大15°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得:(90°﹣x)﹣=15°,解得x=40°.答:这个角是40°.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【考点】正数和负数.【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知,正数为超过的次数,负数为不足的次数.【解答】解:(1)这8名男生的达标的百分数是×100%=62.5%;(2)这8名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56个.21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【考点】整式的加减—化简求值;整式的加减.【分析】(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把代入上式计算.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2= .22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.【考点】比较线段的长短.【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.【解答】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐8 人;3张桌子拼在一起可坐10 人;n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.【考点】规律型:图形的变化类.【分析】(1)根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答;(2)求出每一张大桌子可坐的人数与可拼成的大桌子数,然后相乘计算即可.【解答】解:(1)由图可知,2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…依此类推,每多一张桌子可多坐2人,所以,n张桌子拼在一起可坐2n+4;故答案为:8,10,2n+4;(2)当n=5时,2n+4=2×5+4=14(人),可拼成的大桌子数,45÷5=9,14×9=116(人);24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,用含x求出∠COE的表达式,然后根据∠COE=α列出方程即可求出∠BOE的度数.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD∴∠BOD=3x∴∠AOD=180°﹣∠BOD=180°﹣3x∵OC平分∠AOD∴∠COD= ∠AOD=90°﹣ x∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣∴90°﹣=α∴x=180°﹣2α,即∠DOE=180°﹣2α∴∠BOE=360°﹣4α25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。
初中数学七年级上期中测试卷(含答案解析)(1)

一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.94.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>05.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8676.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 7.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=12,y=38.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°10.如图,从左面看该几何体得到的形状是()A .B .C .D .11.-2的倒数是( ) A .-2B .12-C .12D .212.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 13.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣915.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0二、填空题16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.17.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).20.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.21.观察下列运算并填空. 1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.22.正整数按如图的规律排列,请写出第10行,第10列的数字_____.23.将从1开始的连续自然数按以下规律排列: 第1行1第2行2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行252423222120191817…则2018在第_____行.24.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)25.已知3x =是关于x 方程810mx -=的解,则m =__________.三、解答题26.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 27.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x-+-=. 28.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 29.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷一、选择题(本大题共10小题,共30分)1.(3分)在有理数﹣3,|﹣3|,(﹣3)2,(﹣3)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个2.(3分)据统计,2011年经义乌海关出口小商品总价达98.7亿美元据统计,98.7亿美元用科学记数法表示为()A.9.87×107美元B.9.87×108美元C.9.87×109美元D.9.87×1010美元3.(3分)下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.(3分)如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>﹣y>﹣x B.﹣x>y>﹣y>x C.y>﹣x>﹣y>x D.﹣x>y>x>﹣y 5.(3分)如果多项式3x3﹣2x2+x+|k|x2﹣5中不含x2项,则k的值为()A.±2 B.﹣2 C.2 D.06.(3分)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)7.(3分)如果A和B都是5次多项式,则下面说法正确的是()A.A﹣B一定是多项式B.A﹣B是次数不低于5的整式C.A+B一定是单项式D.A+B是次数不高于5的整式8.(3分)|a|=﹣a,则a一定是()A.负数B.正数C.零或负数D.非负数9.(3分)根据等式的性质,下列变形正确的是()A.若2x=a,则x=2a B.若+=1,则3x+2x=1C.若ab=bc,则a=c D.若=,则a=b10.(3分)如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x1二、填空题(本大题共8小题,共24分)11.(3分)在方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有(填写序号).12.(3分)已知10名同学们演讲成绩,若以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+7,﹣3,+12,﹣7,﹣12,﹣1,﹣2,+6,0,+10,则这10名同学的总成绩是分.13.(3分)3x m+5y2与xy n是同类项,则m n的值是.14.(3分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为.15.(3分)在式子,﹣4x,π,,x+,﹣中,单项式有个.16.(3分)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图,S1、S2、S3、S4分别表示图中四个“月牙形”的面积.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是.17.(3分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2016个单项式是;第n个单项式是.18.(3分)某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于.三、解答题(本大题共6小题,共46.0分)19.(8分).计算:(1)﹣1×(﹣1)÷2﹣1.(2)1﹣[﹣+(1﹣×0.6)÷(﹣2)2].20.(8分)先化简再求值:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2),其中x=2,y=1.21.(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?22.(8分)小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?23.(6分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A是数轴上的点,完成下列各题:(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A、B两点间的距离为;一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是,A、B两点间的距离为.24.(8分).阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=.2016-2017学年浙江省台州市椒江区书生中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,共30分)1.(3分)在有理数﹣3,|﹣3|,(﹣3)2,(﹣3)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:|﹣3|=3,(﹣3)2=9,(﹣3)3=﹣27,负数有:﹣3,(﹣3)3,故选:B.2.(3分)据统计,2011年经义乌海关出口小商品总价达98.7亿美元据统计,98.7亿美元用科学记数法表示为()A.9.87×107美元B.9.87×108美元C.9.87×109美元D.9.87×1010美元【解答】解:将98.7亿美元用科学记数法表示为:9.87×109美元.故选:C.3.(3分)下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选:D.4.(3分)如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>﹣y>﹣x B.﹣x>y>﹣y>x C.y>﹣x>﹣y>x D.﹣x>y>x>﹣y 【解答】解:∵x<0,y>0,x+y<0,∴|x|>y,∴y<﹣x,x<﹣y,∴x,y,﹣x,﹣y的大小关系为:x<﹣y<y<﹣x.故选:B.5.(3分)如果多项式3x3﹣2x2+x+|k|x2﹣5中不含x2项,则k的值为()A.±2 B.﹣2 C.2 D.0【解答】解:要使3x3﹣2x2+x+|k|x2﹣5中不含x2项,那么x2项的系数应为0,在多项式3x3﹣2x2+x+|k|x2﹣5中﹣2x2和|k|x2两项含x2,∴在合并同类项时这两项的系数互为相反数,结果为0,即﹣2=﹣|k|,∴k=±2.故选:A.6.(3分)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)【解答】解:A、x﹣(y﹣z)=x﹣y+z,错误;B、﹣(x﹣y+z)=﹣x+y﹣z,括号前是“﹣”,去括号后,括号里的各项都改变符号,错误;C、x+2y﹣2z=x﹣2(z﹣y),添括号后,括号前是“﹣”,括号里的各项都改变符号,错误;D、正确.故选:D.7.(3分)如果A和B都是5次多项式,则下面说法正确的是()A.A﹣B一定是多项式B.A﹣B是次数不低于5的整式C.A+B一定是单项式D.A+B是次数不高于5的整式【解答】解:如果A和B都是5次多项式,则A+B是次数不高于5的整式.故选:D.8.(3分)|a|=﹣a,则a一定是()A.负数B.正数C.零或负数D.非负数【解答】解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:C.9.(3分)根据等式的性质,下列变形正确的是()A.若2x=a,则x=2a B.若+=1,则3x+2x=1C.若ab=bc,则a=c D.若=,则a=b【解答】解:A、在等式2x=a的两边同时除以2,等式仍成立,即x=a.故本选项错误;B、在等式+=1的两边同时乘以6,等式仍成立,即3x+2x=6.故本选项错误;C、当b=0时,a=c不一定成立,故本选项错误;D、在等式=的两边同时乘以c,等式仍成立,即a=b,故本选项正确;故选:D.10.(3分)如图为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x1【解答】解:依题意,有x1=50+x3﹣55=x3﹣5=>x1<x3,同理,x2=30+x1﹣20=x1+10=>x1<x2,同理,x3=30+x2﹣35=x2﹣5=>x3<x2.故选:C.二、填空题(本大题共8小题,共24分)11.(3分)在方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有③④⑥(填写序号).【解答】解:方程①3x﹣y=2,②x+=1,③=1,④x=0,⑤x2﹣2x﹣3=0,⑥=中,是一元一次方程的有③④⑥.故答案为③④⑥.12.(3分)已知10名同学们演讲成绩,若以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+7,﹣3,+12,﹣7,﹣12,﹣1,﹣2,+6,0,+10,则这10名同学的总成绩是810分.【解答】解:(7﹣3+12﹣7﹣12﹣1﹣2+6+0+10)+80×10=810,故答案为:810.13.(3分)3x m+5y2与xy n是同类项,则m n的值是16.【解答】解:由题意可知:m+5=1,2=n,∴m=4,n=2,∴m n=16,故答案为:16,14.(3分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为8.【解答】解:当x=3时,2*x﹣4*x=2*3﹣4*3=9﹣(4﹣3)=8,故答案为:815.(3分)在式子,﹣4x,π,,x+,﹣中,单项式有3个.【解答】解:单项式有﹣4x,π,﹣中共3个,故答案为3.16.(3分)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图,S1、S2、S3、S4分别表示图中四个“月牙形”的面积.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是π.【解答】解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π,∴S3﹣S4=π.故答案为π.17.(3分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2016个单项式是2016a2016;第n个单项式是(﹣1)n na n.【解答】解:由前几项的规律可得:第2016个单项式为:2016a2016;第n个单项式的系数为:n×(﹣1)n,次数为n,故第n个单项式为:(﹣1)n na n.故答案为::2016a2016;(﹣1)n na n.18.(3分)某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于11.【解答】解:根据题意得到x前面的数字为9,后面的数字为2,则有9+x+2=20,即x=9,表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.三、解答题(本大题共6小题,共46.0分)19.(8分).计算:(1)﹣1×(﹣1)÷2﹣1.(2)1﹣[﹣+(1﹣×0.6)÷(﹣2)2].【解答】解:(1)原式=﹣×(﹣)×﹣1=﹣1=﹣;(2)原式=1﹣(﹣+×)=1+﹣=1.20.(8分)先化简再求值:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2),其中x=2,y=1.【解答】解:4x2﹣2xy+(y2﹣2x2)+4(3xy﹣y2)=4x2﹣2xy+y2﹣2x2+12xy﹣y2=2x2+10xy当x=2,y=1时,原式=2×22+10×2×1=8+20=2821.(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?【解答】解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4﹣(﹣4.5)=8.5(千米);(3)这辆货车此次送货共耗油:(4+1.5+10+4.5)×0.05=1(升).答:小明家与小刚家相距8.5千米,这辆货车此次送货共耗油1升.22.(8分)小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?【解答】解:A=A﹣B+B=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=﹣3x2+5x+6+4x2﹣5x﹣6=x2.23.(6分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A是数轴上的点,完成下列各题:(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣92,A、B两点间的距离为88;一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是m+n﹣t,A、B两点间的距离为|n ﹣t| .【解答】解:(1)∵点A表示数3,∴点A向左移动7个单位长度,再向右移动5个单位长度,终点B表示的数是3﹣7+5=1,A,B两点间的距离是|3﹣7+5|=1,故答案为1,1;(2)∵点A表示数﹣4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣4+168﹣256=﹣92,A、B两点间的距离是|﹣4+92|=88;故答案为﹣92,88;∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动t个单位长度,那么点B表示的数为(m+n﹣t),A,B两点间的距离为|n﹣t|,故答案为m+n﹣t,|n﹣t|.24.(8分).阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.故+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.故++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则++═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.。