北师大版八年级数学上轴对称与坐标变化

合集下载

北师大版数学八年级上册3《轴对称与坐标变化》教案2

北师大版数学八年级上册3《轴对称与坐标变化》教案2

北师大版数学八年级上册3《轴对称与坐标变化》教案2一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容,主要介绍了轴对称的概念及其在坐标变化中的应用。

本节课通过引导学生探究轴对称图形的性质,培养学生的观察能力、操作能力和推理能力。

教材内容安排合理,由浅入深,有利于学生掌握轴对称的知识。

二. 学情分析八年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。

但学生在解决实际问题时,还不能很好地运用轴对称的知识。

因此,在教学过程中,需要关注学生的认知水平,引导学生将理论知识运用到实际问题中。

三. 教学目标1.理解轴对称的概念,掌握轴对称图形的性质。

2.学会在坐标系中判断图形是否关于某条直线对称。

3.培养学生的观察能力、操作能力和推理能力。

4.提高学生解决实际问题的能力。

四. 教学重难点1.轴对称的概念及轴对称图形的性质。

2.在坐标系中判断图形是否关于某条直线对称。

五. 教学方法1.采用问题驱动的教学方法,引导学生探究轴对称的性质。

2.运用实例分析,让学生在实际问题中体验轴对称的意义。

3.利用小组合作,培养学生的团队协作能力。

4.运用多媒体辅助教学,提高教学效果。

六. 教学准备1.准备相关的教学课件和教学素材。

2.安排学生预习相关内容,了解轴对称的基本概念。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。

提问:什么是轴对称?学生在教师的引导下总结出轴对称的定义。

2.呈现(10分钟)教师展示一些图形,让学生判断它们是否关于某条直线对称。

学生在教师的指导下,通过观察、操作,总结出判断轴对称图形的方法。

3.操练(10分钟)学生分组讨论,每组选择一个图形,判断它是否关于某条直线对称。

学生通过实际操作,巩固所学知识。

4.巩固(10分钟)教师提出一些关于轴对称的问题,让学生回答。

如:轴对称图形的特点是什么?如何判断一个图形是否关于某条直线对称?学生在教师的引导下,进一步巩固轴对称的知识。

八年级数学上册第三章位置与坐标3轴对称与坐标变化教案北师大版 (1)

八年级数学上册第三章位置与坐标3轴对称与坐标变化教案北师大版 (1)

3 轴对称与坐标变化【知识与技能】1。

会由一点求关于坐标轴对称的点的坐标。

2.掌握两点关于坐标轴对称的坐标规律,并能利用这个规律在平面坐标系中作出一个图形的轴对称图形。

【过程与方法】在找两点关于坐标轴对称的坐标规律的过程中,培养学生的语言表达能力、观察能力、归纳能力,养成良好的自觉探索的习惯,体会数形结合的思想方法.【情感态度】在找点、描点的过程中让学生体会数形结合的思想,激发学生学习数学的乐趣。

【教学重点】会由一点求关于坐标轴对称的点的坐标.【教学难点】找两点关于坐标轴对称的坐标规律.一、创设情境,导入新课情境教材第68页例题上方的内容.【教学说明】学生通过观察和实际操作对关于坐标轴对称点的坐标特点有个初步的认识。

利用数形结合帮助他们进一步理解这一规律。

二、思考探究,获取新知关于坐标轴对称点的坐标特点.前面,我们已经对关于坐标轴对称点之间的关系有了一定的了解,利用这个关系,请看例题并思考。

例教材第68页例题【教学说明】一方面,通过学生描点对以前所学知识加以巩固;另一方面,让学生经历纵坐标不变,横坐标乘—1点的坐标变化形成的规律特征,印象深刻.做一做:教材第69页“做一做”【教学说明】相反的,当把上面的各个顶点的横坐标不变,纵坐标乘-1所形成的规律特征让学生形成鲜明的对比,有助于学生理解与记忆.【归纳结论】关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

三、运用新知,深化理解1。

平面直角坐标系中,点P(4,—5)关于x轴的对称点在()A。

第一象限B.第二象限C。

第三象限D.第四象限2.若P(x,y)的坐标满足等式(x—2)2+|y-1|=0,点P与P1(x1,y1)关于y轴对称,则x1,y1的对应值为()A。

—2,1 B.2,-1 C.2,1 D.—2,-13.已知点A(a+2b,1),B(-2,2a-b).(1)若点A、B关于x轴对称,求a、b的值。

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.

八年级数学上册第3章位置与坐标3轴对称与坐标变化新版北师大版

八年级数学上册第3章位置与坐标3轴对称与坐标变化新版北师大版
(2)纵坐标都乘-1,横坐标不变,则所得三角形与原三角形关
于 x 轴 对称;
(3)横、纵坐标都乘-1,则所得三角形与原三角形关于
原点 对称.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. [2024枣庄市中区期中]如图,△ ABC 在平面直角坐标系内
的位置如图所示.
(1)写出点 C 的坐标;
解:点 C 的坐标为(-2,1).
称,则代数式 ab 的值为
1
2
3
4
5
6
7
.
8
8

9
10
11
12
13
14
15
11. [2024西安西工大附中月考]若点 A ( a ,3)与点 B (2, b )关

于 x 轴对称,则点 M ( a , b )在第
1
2
3
4
5
6
7
8
9
10
11
12
象限.
13
14
15
12. 好学的小刚拿着老师的等腰直角三角板放在黑板上画好
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2. 已知点 A ( m , n ) n ≠0)在平面直角坐标系中,则下列各
点中与点 A 关于 x 轴对称的是(
B
)
A. (- m , n )
B. ( m ,- n )
C. (- m ,- n )
D. ( n , m )

北师大版八年级数学上册轴对称与坐标变化课件

北师大版八年级数学上册轴对称与坐标变化课件
横坐标相等, 纵坐标互为相反数.
(2,6)
C2
B2
A2(2,-6)
自学互研 生成能力
知识模块 关于坐标轴对称点的坐标特点 自主探究: 1.前面,我们已经对关于坐标轴对称点之间的关系 有了一定的了解,利用这个关系,请看例题并思考.
例:在平面直角坐标系中依次连接下列各点:(0,0), (5,4) ,(3,0), (5,1) ,(5,-1), (3,0), (4,-2) ,(0,0), 你得到了一个怎样的图案?
③A、B关于原点对称;④A、B之间的距离为4.其中正确
的有( B )
A.1个 B.2个
C.3个
D.4个
6.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点
B(1,0),则光线从A点到B点经过的路线长是( B )
A.4
B.5
C.6 D.7
课堂小结
关于坐标轴对称
轴对称与 坐标变换
作图——关于轴 对称变化
教材第68页例题上方的内容.
如右图所示的平面直角坐 标系中,第一、二象限内各有 一面小旗. (1)两面小旗之间有怎样的位置关 系?对应点A与A1的坐标有什么 共同特点?其他对应的点也有这 个特点吗?
关于y轴成轴对称 纵坐标相等,横坐标互为相反数
想一想如果关 于x轴对称呢?
(2)在这个坐标系里画出小旗 ABCD关于x轴的对称图形,它 的各个“顶点”的坐标与本来 的点的坐标有什么关系?
5 4
3 2 1 0 12345678 –1
–2 –3 –4
–5
x 与原图形关于x轴对称 坐标变化为:
(x,y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) (x,-y) (0,0) (5,-4) (3,0) (5,-1) (5, 1) (3,0) (4, 2) (0,0)

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。

通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。

二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。

但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。

2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。

3.培养学生的观察能力、操作能力和思维能力。

四. 教学重难点1.轴对称的概念和性质。

2.坐标变化的应用。

五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。

2.准备坐标纸,以便学生进行坐标操作。

3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。

2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。

引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。

3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。

然后,让学生将对称轴沿坐标轴移动,观察图形的变化。

通过操作,让学生理解坐标变化对轴对称图形的影响。

4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。

通过解决问题,巩固学生对轴对称和坐标变化的理解。

5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
金戈铁骑整理制作
轴对称与坐标变化
一、选择题(共8小题,每小题4分,满分32分)
1.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)
2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()
A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)
3.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以﹣1,纵坐标不变,则所得的三角形与原三角形()
A.关于x轴对称 B.关于y轴对称
C.关于原点对称 D.无任何对称关系
4.若某四边形顶点的横坐标变为原来的相反数,而纵坐标不变,此时图形位置也不变,则这四边形不是()
A.矩形 B.直角梯形 C.正方形D.菱形
5.(4分)已知点M与点P关于x轴对称,点N与点M关于y轴对称,若点N(1,2),则点P的坐标为()
A.(2,1) B.(﹣1,2)C.(﹣1,﹣2) D.(1,﹣2)
6.坐标平面上有一个轴对称图形,、两点在此图形上且互为对称点.若此图形上有一点C (﹣2,﹣9),则C 的对称点坐标为何( )
A .(﹣2,1)
B .
C .
D .(8,﹣9)
7.(4分)点P (a ﹣1,b ﹣2)关于x 轴对称与关于y 轴对称的点坐标相同,则P 点坐标为( )
A .(﹣1,﹣2)
B .(﹣1,0)
C .(0,﹣2)
D .(0,0)
8.在平面直角坐标系中,正方形ABCD 的顶点分别为A (1,1)、B (1,﹣1)、C (﹣1,﹣1)、D (﹣1,1),y 轴上有一点P (0,2).作点P 关于点A 的对称点P 1,作P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作P 5关于点B 的对称点P 6┅,按如此操作下去,则点P 2011的坐标为( )
A .(0,2)
B .(2,0)
C .(0,﹣2)
D .(﹣2,0)
二、填空题(共4小题,每小题4分,满分16分)
9.若点A (m+2,3)与点B (﹣4,n+5)关于y 轴对称,则m+n=______.
10.如图,在方格纸上建立的平面直角坐标系中,Rt △ABC 关于y 轴对称的图形为Rt △DEF ,则点A 的对应点D 的坐标是______.
11.如图,等边△ABC ,B 点在坐标原点,C 点的坐标为(4,0),点A 关于x 轴对称点A′的坐标为______.
12.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为______.
三、解答题
13.△ABC 在平面直角坐标系中的位置如图.请画出△ABC 关于y 轴对称的△A 1B 1C 1,并求出A 1、B 1、C 1三点的坐标.
14.在直角坐标系中,将坐标是(3,0),(3,2),(0,3),(3,5),(3,2),(6,
3),(6,2),(3,0),(6,0)的点用线段依次连接起来形成一个图案.
(1)作出原图案关于x 轴对称的图案.两图案中的对应点的坐标有怎样的关系?
(2)作出原图案关于y 轴对称的图案.两图案中的对应点的坐标有怎样的关系?
15.在图(1)中编号①②③④的四个三角形中,关于y 轴对称的两个三角形的编号为______;关于x 轴对称的两个三角形的编号为______.在图(2)中,画出△ABC 关于x 轴对称的图形△A 1B 1C 1,并分别写出点A 1,B 1,C 1的坐标.
16.在平面直角坐标系中,直线l 过点M (3,0),且平行于y 轴.
(1)如果△ABC 三个顶点的坐标分别是A (﹣2,0),B (﹣1,0),C (﹣1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标;
(2)如果点P 的坐标是(﹣a ,0),其中a >0,点P 关于y 轴的对称点是P 1,点P 1关于直线l 的对称点是P 2,求PP 2的长.
答案
一、选择题
1.B;2.B;3.B;4.B;5.C;6.A;7.D;8.D;
二、填空题9.0;10.(2,1);11.(2,-2);12.5;
三、解答题
13.
14.
15.
16.。

相关文档
最新文档