张量分析及公式
02张量分析

1.矢量场的旋度 令 a aP 是位置矢量P的矢量值函数,于是 aP 的左旋度 curla 定义为
Tik ek x i
divTk
类似地,二阶张量场 T TP 的右散度 d ivT 定义为
T i Tik ik Tik ,i xi
d ivT T
(2.2.19)
ij
a j xi
ai i ai xi
18
显然
a1 a 2 a3 x1 x 2 x3
(2.3.03)
但在T为对称张量的情况下, divT divT ,现证明如下:
divT
diva d iva
因此,今后我们对于矢量场的左散度和右散度不加区别,统一地记为
16
dQ T dQ Q Q dt dt
由式(1.9.10)知
(2.1.11)
dQ dQ T Q Q dt dt
于是
T
T
(2.1.12)
dQ T dQ T dt Q dt Q
所以
2.1
标量的张量值函数的导数
设 T Tt 是标量t(例如时间)的张量值函数。T对t的导数由下式定义:
dTij dT dT 的分量 给出。 由T的分量的导数 dt dt dt ij de 事实上,因为 Tij e i T e j ,又因 i 0 ,故有 dt dTij d ei T e j dt dt dT ei e j dt dT dt ij
(2.2.09)
f i
于是f的微分可写成
f x i
(2.2.04)
df f P dP f P f dx xi i
【张量分析ppt课件】张量分析课件第三章 张量代数

按§2.5节三中(g)式面积矢量记法有:
dH 0 r u(r ) (r )dV
试证明物体 Ω 对o点的动量矩为:
H0 J ω
Ω
式中 称为物体 Ω 对o点的二阶惯性矩张量(注:J 不是四阶单位张量。但 J表达式中的 I是二阶单位张量)。 u (r ) ω r 证: H (r u) dV r (ω r ) dV (r r )ω (r ω)r ) dV
I u (ii ii ) (u j i j ) u j iiij ui ii u
设存在另一二阶张量 I ,且满足 u I I u 。则: u I u I o ; uo ∵ I I O ; I I (唯一性) ∴ 3.
A : J ( Amn imin ) : (ii i j ii i j ) Amnmi jn ii i j Amn imin A
二阶张量与二阶张量的(一)点乘:
A B (Aij ii i j) ( Bmn imin) (Aij Bmn )ii (i j im )in Aij Bjn ii in
二阶张量与二阶张量的(双)点乘:
A : B ( Aij ii i j ) : ( Bmn imin ) ( Aij Bmn )(ii im )(i j in ) Aij Bij
A P2 A P2
A0 P2 Φ0 P4
Φ0 P4
(3.1-11)
A : Φ0 A
0 0
的 n ; A ; A ; ; 分别称为一阶单位张量、二阶单位张量和四 阶单位张量。 上式定义的一阶、二阶和四阶单位张量具有性质: u u V n 1. u A0 A0 ii ii ij ii i j (3.1-12) 2. I 为单位二阶张量。 ii i j 且记 A ; A 为 I 。即 I ii ii ij。并称
张量分析

g = g gj
i ij
式中 gij 是对偶基矢量在 gj 方向的分量,共有9个,称为相伴度量张量, 或共轭度量张量
B) 相伴(共轭)度量张量
gi ⋅ g j = gik gk ⋅ g j = gikδkj = gij
g = g ⋅gj
ij i
gi ⋅ g j = δ ij ⇒ gik gk ⋅ g j = δ ij
gik gkj = δ ij ⇒
类似
gi = gij g j
gi = gij g j gi = gij g j
协变基矢量和逆变基矢量之间可以通过度量张量和相伴度量张量变换, 提升或下降指标。
C) 矢量的逆变分量和协变分量
任何一个矢量V可以用它沿基矢量方向的分量表示:
V = v gi = vi g
可知:若坐标系由xi 变换为yi ,则基矢量gi按上述变换法则变换。基矢 量gi也称为协变基矢量。
三、基本度量张量
对于任何坐标系,首先必须知道在该坐标系中如何度量长度。 在曲线坐标系中,线元矢量dr长度的平方为下式。
ds2 = dr ⋅ dr =gi dxi ⋅ g j dx j = gi ⋅ g j dxi dx j
i j k a = aij = eijka1a2 a3
aeilm = e a a a
i ijk l
j k m n
E) 克罗内克符号与置换符号的关系
1 δ1 δi j = δ12 3 δ1 1 δ2 2 δ2 3 δ2 1 1 0 0 δ3 2 δ3 = 0 1 0 =1 3 δ3 0 0 1
δli δl j δlk
y j = y j (x1, x2 , x3 )
逆变换为:
( j =1 2,3) ,
张量分析课件-1.7 张量的代数运算

且 T ij S ij U ij ,
1.7.3 标量与张量相乘
若kT=U,则
kT ij U ij ,
且 kT ij U ij ,
张量相减:T-S=T + (-1)S
1.7.4 张量与张量并乘
若T,S 分别是m阶和n阶张量,则TS=U是m+n 阶张量。 U的分量指标的前后顺序和上下位置都与TS 的指标顺序和 上下位置相一致。例如
·
k l rs t ij rs l k t T S Tij g g g g S g g g T S δ g g g g g kl i j t r s kl t r i j s ls k t ij s k t Tij S g g g g g V g g g g g V kl t i j s k t i j s
·
S T T
·
ij kl
l k ij k i k gi g j g k g l Tij δ g g T g g S g g kl j i kj i k i
·
1.7.6 张量的点积
点积:若T,S分别是m阶和n阶张量,则 阶张量。例如: ·
TS U 是m+n-2
·
设S是T的转置。则有 1 A T S 为对称张量; 对称化运算: 2 1 反对称化运算: B T S 为反对称张量。 2
1.7.9 张量的商法则
设有一组数的集合(例如T(i, j, k, l, m)),如 果它满足对于任意一个q阶张量S(例如q=2,二阶张
量Slm)的内积均为一个p阶张量(例如p=3,三阶张量 Uijk),即在任意坐标系内以下等式均成立
t
张量分析及其应用

⎧1, i = j δ ij = ⎨ ⎩0, i ≠ j
δ 其中 i,j 为自由指标,取遍1,2,3;因此, i j 可确 定一单位矩阵:
⎡δ 11 δ 12 δ 13 ⎤ ⎡1 0 0⎤ ⎢δ δ 22 δ 23 ⎥ = ⎢0 1 0⎥ ⎢ 21 ⎥ ⎢ ⎥ ⎢δ 31 δ 32 δ 33 ⎥ ⎢0 0 1⎥ ⎣ ⎦ ⎣ ⎦
∂U i =0 ∂xi
或
∂U1 ∂U 2 ∂U 3 + + =0 ∂x1 ∂x2 ∂x3
∂U x ∂U y ∂U z + + =0 ∂x ∂y ∂z
1.4 指标记法的运算
1.4.5 例题 ——熟悉指标记法和普通记法的转换 不可压缩牛顿流体的Navier-Stokes方程:
∂U i ∂p ∂U i ∂U i ) = ρ bi − ρ( +U j +μ ∂x j∂x j ∂t ∂x j ∂xi
写出其普通记法
1.4 指标记法的运算
1.4.5 例题 ——熟悉指标记法和普通记法的转换 弹性力学平衡方程方程:
∂Txx ∂Txy ∂Txz + + + bx = 0 ∂x ∂z ∂y ∂Tyx ∂x + ∂Tyy ∂y + ∂Tyz ∂z + by = 0
∂Tzx ∂Tzy ∂Tzz + + + bz = 0 ∂x ∂z ∂y
是一个数值,即
δ ii = 3
δi j
的作用:1)换指标;2)选择求和。
例1:
Ai → Ak
δ k i Ai = δ k k Ak = Ak
思路:把要被替换的指标 i 变成哑标,哑标能 用任意字母,因此可用变换后的字母 k 表示
(完整版)《张量分析》报告

一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。
写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。
用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。
1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。
这是一个约定,称为求和约定。
例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。
不求和的指标称为自由指标。
1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。
置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。
张量与连续介质力学基本公式总结

第一章:矢量和张量重要矢量等式:()()()⨯⨯=⋅-⋅c a b b c a a c b 指标记法:哑指标求和约定 自由指标规则 协变基底和逆变基底:张量概念i i'i'i β=g g i'i'i i β=g gi'i'i i v v β= i i 'i 'iv v β= i'j'i'j'k l ij..k'l'i j k'l'..kl T T ββββ= i i i i v v ==v g g ..kl i j ij k l T =⊗⊗⊗T g g g g度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v vT G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m )S U = ijk...lm T(i,j,k ,l,m )T =置换符号i i ir s t j j j ijk ijk ijkr s t rst rst rstk k kr s t e e δδδδδδεεδδδδ=== ijk j k j k jk ist s t t s st δδδδδδ=-2ijk k ijt t δδ= 6ijk ijk δ=置换张量i j k ijk ijk i j k εε=⊗⊗=⊗⊗εg g g g g gijk i j k ijk ()e ε=⋅⨯=g g gijkijki j k ()ε=⋅⨯=g g g ()::()i j k ijk ijk i j k a b a b εε⨯===⊗=⊗a b g g a b εεa b第二章: 二阶张量重要性质:T =T.u u.T 主不变量1.()i i Tr T ζ==T 212i j l ml m .i .j T T ζδ= 3()det ζ=T1()()(())(())()ζ⋅⋅⨯⋅⋅⨯⋅⨯⋅=⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()ξ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u (T v w +u T v T w)+T u (v T w u v w (()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w标准形1. 特征值、特征向量λ⋅=T v v ()λ-⋅=T G v 0 321230λζλζλζ-+-= 2. 实对称二阶张量标准形123112233i iλλλ=⋅⊗=⊗+⊗+⊗N N g g g g g g g g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())ϕϕϕϕ=+⊗+-+⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123μμμ=⊗-⊗=⨯Ωe e e e e G⋅=⨯Ωu ωu31:2μ=-=⨯ωεΩe u=-⋅Ωεω 5. 正则张量极分解 =⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λςλςλςςςς-+-=⇒-+-=T T T G 0 2.对称各向同性张量函数表示定理:2012()f k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。
张量定义及算法

1
可乘张量
设由逆变分量和协变分量所给定的两个矢量 a , b 是已知的,则由等式
i T ik a i b k , Tik ai bk , T.k a i bk , Tki ak b i
确定的都是二阶张量,称为可乘张量. 2
克罗内克尔符号
克罗内克尔符号 ij 是一阶逆变一阶协变的二阶混合张量,这是
[张量的商律] 任一指标 jk, j k' 使
' ' 1 m
k Tlm ail a jmT ijk , Tlmp ail a jm akpT ijk
i1 il il i i i 设 Tji11 jm 和 Tj ' j ' 各为一组 x 和 x 的函数,如果对任意逆变矢量 与 及
因为从
x i x i ij i j x x
可得
ij
x i x i x i x j i j x i x j x i x j
[二阶对称张量与反对称张量]
若张量满足等式
Tik Tki , T ik T ki , Tki Ti k
则分别称为二阶对称协变张量、二阶对称逆变张量和二阶对称混合张量.若张量满足等式
i
x j1 x jl x i1 x im j1 jl j j T i1im x 1 x l x i1 x im
N
j1 jl i1 im
jl 是 x i 的函数, 则量 Ti1j1 im (共有 n 个分量)称为 l 阶逆变(或抗变)m
r1 rl s1 s k r1 rl s1 s k Tp p t t T p p Tt t
1 m 1 h 1 m 1 h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I.2 符号ij δ与rst e
符号ij δ称为“Kronecker delta ”,它的定义是:
⎩⎨⎧=0
1ij δ
时
当时当j i j i ≠= ()n ,,2,1j ,i = (I.14)
定义表明它对指标i 和j 是对称的,即
ji ij δδ= (I.15)
ij δ的分量集合对应于单位矩阵。
例如,在三维空间中:
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000100013332
31232221131211δδδδδδ
δδδ (I.16)
利用ij δ可以把线元长度平方的公式(I.6)改写成
j i ij dx dx ds δ=2 (I.17)
这里ij δ起了换标的作用,即:如果ij δ符号的两个指标中,有一个和同项中其他因子的指标相重,则可以把该因子的那个重指标替换成ij δ的另一个指标,而ij δ自动消失。
这样:
i i j j j i ij dx dx dx dx dx dx ds ===δ2
类似地有
ik jk ij a a =δ;jk ik ij a a =δ
ki kj ij a a =δ;kj ki ij a a =δ (I.18)
以及
ik jk ij δδδ=;il kl jk ij δδδδ= (I.19)
所以,ij δ也称为换标符号。
符号rst e 的定义是:
⎪⎩
⎪
⎨⎧-=011
rst
e 个以上指标值相同时中有当为逆序排列时当为正序排列时当2t ,s ,r t ,s ,r t ,s ,r (I.20a) 或
)r t )(t s )(s r (2
1
e rst ---=
()3,2,1t ,s ,r = (I.20b) 其中,正序排列是指(l , 2 . 3 )及其轮流换位得到的(2 . 3 , l )和(3 , 1 , 2 ),逆序排列是指(3 , 2 , l )及其轮流换位得到的(2 , l , 3 )和(l , 3 , 2 )。
rst e 称为排列符号或置换符号。
它共有27 个元素,其中只有3个元素为1,3个元素为-1 ,其余的元素都是0。
定义表明rst e 对任何两个指标都是反对称的,即:
tsr rts srt rst e e e e -=-=-= (I.21)
当三个指标轮流换位时(相当于指标连续对换两次),rst e 的值不变:
trs str rst e e e == (I.22)
下面举几个常用实例:
1. 三个互相正交的单位基矢量构成正交标准化基。
它具有如下重要性质:
(l )每个基矢量的模为1,即i e ·1=j e
(当i =j 时) (2)不同基矢量互相正交,即i e ·0=j e
(当i ≠j 时) 这两个性质可用ij δ统一表示为
i e ·ij j e δ=
(I.23a)
(3)当三个基矢量i e ,j e ,k e
构成右手系(见图I-2)时有
k j i e e e =⨯
构成左手系时有
k j i e e e -=⨯
上两式可用rst e 统一写成
k kij k ijk j i e e e e e e
==⨯ (I.23b)
其中,i ,j ,k 的正序排列对应右手系,逆序排列对应左手系。
图I-2
2.两个矢量i i e a a =和j j e b b
=的点积(I.2a )式可利用(I.23a )式导出:
a ·()i i e a b
=·()(i j i j j e b a e b =·j j i i ij j i j b a b a b a e ===δ)
3.两个矢量的叉积(或称矢量积)可利用(I.23b )式导出:
()()()k j i ijk j i j i j j i i e b a e e e b a e b e a b a
)(=⨯=⨯=⨯ (I.24)
其中,i e ,j e ,k e 构成右手系。
若交换叉积顺序,注意到k e ,j e
,i e 为左手系,则有:
()()()b a e b a e e e a b e a e b a b k j i ijk i j i j i i j j
⨯-=-=⨯=⨯=⨯)( (I.25)
叉积的几何意义是“面元矢量”,其大小等于由矢量a 和b
构成的平行四边形面积,方向沿该面
元的法线方向。
4.三个矢量a
,b
,c
的混合积是一个标量,其定义为:
[]a c b a
=,,·b a c b
⨯=⨯·c
若交换混合积中相邻两个矢量的顺序,混合积的值反号。
当a ,b ,c
构成右手系时,混合积表
示这三个矢量所构成的平行六面体体积(见图I —3)。
若构成左手系,则为体积的负值。
利用(I.24 )和(I.23a )式有
[]a c b a =,,·()m
m
e
a c b
=⨯·()k j i ijk m i k j m ijk i k j ijk c b a e c b a e e c b e ==δ
(I.26)
由此可见符号ij δ和rst e 分别与矢量代数中的点积和叉积有关。
(I.23a , b )式是常用的基本公式。
5.三阶行列式的展开式为:
23321133122113223123123113322133221133
32
31
232221
13
1211
a a a a a a a a a a a a a a a a a a a a a a a a a a a a ij ---++==(I.27a) 用排列符号可简洁地表示成
t s r rst t s r rst ij a a a e a a a e a 321321== (I.27)
不难验证,当r ,s ,t 为正序排列时可得(I.27a )的前三项,为逆序排列时则得后三项。
(I.27)
式中第二个符号的含义是:转置(行与列对换)后行列式的值不变。