华中科技大学《电磁场与电磁波》课程仿真实验报告
电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
电磁场与电磁波实验报告 2

电磁场与电磁波实验报告实验一 电磁场参量的测量一、 实验目的1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。
2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。
二、 实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λπβ2=,βωλν==f得到电磁波的主要参量:β和ν等。
本实验采取了如下的实验装置设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在分界面上产生反射波r E 和折射波t E 。
设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。
在一次近似的条件下,接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+∆+=+=;其中12L L L -=∆。
又因为1L 为定值,2L 则随可动板位移而变化。
当2r P 移动L ∆值,使3r P 有零指示输出时,必有1r E 与2r E 反相。
故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。
从而测出电磁波的波长λ和相位常数β。
下面用数学式来表达测定波长的关系式。
在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成 ()⎪⎭⎫ ⎝⎛+-∆Φ-=200212cos 2φφj i c r eE T RT E (1-2)式中L ∆=-=∆Φβφφ221为了测量准确,一般采用3r P 零指示法,即02cos =∆φ或π)12(+=∆Φn ,n=0,1,2......这里n 表示相干波合成驻波场的波节点(0=r E )数。
电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)引言概述:电磁场与电磁波是近代物理学中的重要概念,对于理解电磁现象和应用电磁技术具有重要意义。
本实验报告旨在通过实验来探究电磁场和电磁波的基本特性,并深入了解其在不同情境下的行为和应用。
一、电磁场的产生与性质1. 静电场与磁场的产生机制2. 静电场与磁场的区别与联系3. 电磁场的力线分布与场强的概念4. 高斯定律与安培定律的应用5. 电磁场的矢量表示及其运算规则二、电磁辐射和电磁波的特性1. 辐射的概念与特点2. 电磁波的定义和分类3. 电磁波的传播速度和能量传播方式4. 电磁波的频率和波长关系5. 电磁波与物质的作用及与光的关系三、电磁波的实验测量1. 等幅比波法测量电磁波的速度2. 利用扩散法测量电磁波的波长3. 利用光栅光谱仪测量电磁波的频率和波长4. 利用双缝干涉测量电磁波的波长5. 利用驻波法测量电磁波的频率四、电磁波在通信中的应用1. 电磁波在无线通信中的传输原理2. 电磁波的调制与解调技术3. 电磁波的天线和传输介质选择4. 电磁波在卫星通信中的应用5. 电磁波在无线电和电视广播中的应用五、电磁波对人体健康的影响1. 电磁波对人体的生物效应与健康风险2. 电磁辐射的安全标准与防护措施3. 电磁波辐射源的评估与监测4. 电磁波辐射对儿童和孕妇的影响5. 电磁波辐射与癌症的关系研究总结:通过本实验的开展,我们深入了解了电磁场和电磁波的产生机制和特性,探讨了其在实验测量、通信技术和健康影响等方面的应用。
电磁场与电磁波作为现代科技中的基础理论和技术手段,对于推动科学技术发展和提高人们的生活水平具有重要意义。
在未来的研究中,我们将继续深入探索电磁场和电磁波的更多应用和相关问题,为推动科学进步和提高人类福祉做出贡献。
最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
电磁场与电磁波实验报告

电磁场与电磁波实验报告09024126 张亦驰一.实验目的使用简单迭代法与超松弛迭代法求解电磁场金属槽边值问题二.实验步骤1.简单迭代法:源程序:#include<xxgc.h>main(){int i;double a[50][3][3];a[0][0][0]=a[0][1][0]=a[0][2][0]=25;a[0][0][1]=a[0][1][1]=a[0][2][1]=50;a[0][0][2]=a[0][1][2]=a[0][2][2]=75;for(i=0;i<50;i++){printf("a[%d][0][0]=%.3f,a[%d][1][0]=%.3f,a[%d][2][0]=%.3f\n",i,a[i][0][0],i,a[i][1][0],i,a[i ][2][0]);printf("a[%d][0][1]=%.3f,a[%d][1][1]=%.3f,a[%d][2][1]=%.3f\n",i,a[i][0][1],i,a[i][1][1],i,a[i ][2][1]);printf("a[%d][0][2]=%.3f,a[%d][1][2]=%.3f,a[%d][2][2]=%.3f\n\n",i,a[i][0][2],i,a[i][1][2],i,a[i][2][2]);getch();a[i+1][0][0]=0.25*(0+0+a[i][1][0]+a[i][0][1]);a[i+1][0][1]=0.25*(0+a[i][0][0]+a[i][1][1]+a[i][0][2]);a[i+1][0][2]=0.25*(0+a[i][0][1]+a[i][1][2]+100);a[i+1][1][0]=0.25*(a[i][0][0]+0+a[i][2][0]+a[i][1][1]);a[i+1][1][1]=0.25*(a[i][0][1]+a[i][1][0]+a[i][2][1]+a[i][1][2]);a[i+1][1][2]=0.25*(a[i][0][2]+a[i][1][1]+a[i][2][2]+100);a[i+1][2][0]=0.25*(a[i][1][0]+0+0+a[i][2][1]);a[i+1][2][1]=0.25*(a[i][1][1]+a[i][2][0]+0+a[i][2][2]);a[i+1][2][2]=0.25*(a[i][1][2]+a[i][2][1]+0+100);}getch();}实验结果如图2.超松弛迭代法源程序:#include<stdio.h>#include<math.h> #include<iostream> using namespace std;#define pi 3.1415926void Boundary_conditions_initialize(float Boundary_areas[5][5]) {for(int j=0;j<5;j++){ Boundary_areas[0][j]=0;Boundary_areas[4][j]=100; }for(int i=0;i<5;i++){Boundary_areas[i][0]=0;Boundary_areas[i][4]=0;j =100 Vj =0j =0}}void nodes_Field_region_Initialization(float Field_region[5][5]) {for(int i=1;i<4;i++){ for(int j=1;j<4;j++){Field_region[i][j]=0; }}}void Output_nodes_value (float all_nodes[5][5],int count){if(count==0){cout<<"场内各点的初始值为:"<<'\n' ;}else{cout<<"迭代次数N="<< count<<'\n'<<"迭代最终结果为:" <<'\n'; }for(int i=4;i>=0;i--){ for(int j=0;j<5;j++){cout<<all_nodes[i][j]<<'\t'<<'\t';}cout<<'\n';}}void main(void){int a=4 ;int h=a/4;float areas[5][5] ;int N=0 ;const float e=0.00001;float Maxerror ;float a0=2/(1+sin(pi/4));Boundary_conditions_initialize(areas);nodes_Field_region_Initialization(areas);Output_nodes_value (areas,N) ;cout<<"加速因子a="<<a0<<'\n';do{ N=N+1 ;for(int i=1;i<4;i++){ for(int j=1;j<4;j++){ float areasK=areas[i][j];areas[i][j]=areas[i][j]+(a0/4)*(areas[i-1][j]+areas[i][j-1]+areas[i+1 ][j]+areas[i][j+1]-4*areas[i][j]);float error=fabs(areas[i][j]-areasK);if(i==1&&j==1){Maxerror=error; }else{if (Maxerror<error) Maxerror=error ;}}}} while(Maxerror>e) ;Output_nodes_value(areas,N);}。
电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
《电磁场与电磁波》仿真实验

年《电磁场与电磁波》仿真实验————————————————————————————————作者:————————————————————————————————日期:《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》课程仿真实验报告
学号 *********
姓名 Crainax
专业光学与电子信息学院
院(系) ******
2016 年 11月27日
1.实验目的
1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;
2)了解HFSS 仿真的基本原理、操作步骤;
3)会用HFSS 对金属波导的导波特性进行仿真;
4)画出波导主模的电磁场分布;
5)理解波导中的模式、单模传输、色散与截止频率等概念。
2.实验原理
2.1导波原理
如图1,z轴与金属波导管的轴线重合。
假设:
1)波导管内填充的介质是均匀、线性、各向同性的;
2)波导管内无自由电荷和传导电流;
3)波导管内的场是时谐场。
图1 矩形波导
以电场为例子,将上式代入亥姆霍兹方程∇2E+k2E=0,并在直角坐标内展开,即有:
∇2E+k2E=ð2E
ðx2
+
ð2E
ðy2
+
ð2E
ðz2
+k2E
=ð2E
ðx2
+
ð2E
ðy2
−β2E+k2E =∇T2E+k c2E=0
其中{
∇T2E=ð2E
ðx2
+ð2E
ðy2
k c2=k2−β2
k c表示电磁波在与传播方向相垂直的平面上的波数。
如果导波沿z方向传播,则k c2=k x2+k y2
对波导中传播的电磁波进行分析可知:
1)场的横向分量可由纵向分量表示;
2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)
3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。
2.2 矩形波导中传输模式的纵向传输特性
波导中的电磁波在传输方向的波数β由下式给出:
β2=k2−k c2=2π
−
2π
c
式中k为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即
k2>k c2或λ<λc(f>f c)
如上式不满足,则电磁波不能在波导内传输,即截止。
矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足
a<λ<2a λ>2b
当工作波长给定时,则波导尺寸必须满足
λ2<a<λ b<
λ
2
3.实验内容
在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。
模型半径为:4.20mm.
1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;
2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;
3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)
4.仿真实验步骤
1)理论计算(给出截止频率计算过程及结果);
圆波导中的TM波:
容易得到TM模式下对应截至频率
(c)TM01=(h)TM01/2 =
a√με
(HZ)
即为TM模式下的极限频率。
圆波导中的TE波
容易得到TE模式下对应截至频率
(c)TE11=(h)TE11/2 =0.293
a√με
(HZ)
即为TE模式下的极限频率。
可以看出圆波导的主模为TE11模。
2)模型参数(半径,高等参数);
圆波导的半径为4.20mm,高为10mm
代入可以得到极限频率为20.8GHZ
圆波导参数设置
3)仿真模型(附图说明,给出仿真参数设置,比如求解频率设置和扫频频率设置等等)。
求解频率设置
扫频频率设置5.实验结果及分析
5.1 电场分布图和磁场分布图
1)画出主模(TE11模)的径向电磁场分布;
径向电场分布
径向磁场分布2)画出主模(TE11模)的纵向电磁场分布;
纵向电场分布
纵向磁场分布3)画出色散特性曲线(相位常数-频率曲线)。
5.2 圆波导的横截面尺寸变化对场分布和传播特性的影响(TE11)
4.2mm半径的传播特性
4.8mm半径的传播特性
可看出,随着波导半径的增大,极限频率会减小。
即圆波导半径越大,传输的范围越大。
4.2mm径向电场分布
4.2mm径向磁场分布
4.8mm径向磁场分布
4.8mm径向磁场分布
可看出,随着波导半径的增大,场分布并无太大变化.
5.3 圆波导的填充介质变化对场分布和传播特性的影响(TE11)
"Air"介质电场分布
"Air"介质磁场分布
"Arlon 25FR (tm)"介质电场分布
"Arlon 25FR (tm)"介质磁场分布
"Air"介质下和"Arlon 25FR (tm)"介质下的场分布有很大的不同,在后者中,波导可“容纳”的相同的电磁场数量更多,由图可以看出,且当介质的介电常数增大时,极限频率会降低。
5.4 圆波导TE11模和TM01模差别
TE11电场分布
TM01电场分布
TE11磁场分布
TM01磁场分布
TE11模式下和TM01模式下的场分布有很大的不同,由图可以看出.
TE11模式下的极限频率为20.8GHZ,TM01模式下的极限频率为27.2GHZ,两种模式相比下,TE11模式为圆波导的主模。
6.实验总结
本次仿真实验,让我将书本中学到的理论知识,通过软件仿真建立模型,进而使我对电磁波有了更加深刻的认识,并收获了不少东西:首先就是对波导的认识更加深刻了,更加地理解传输模式,清楚地了解了HFSS的应用原理,还有圆波导的传输模式下的两种传输模式——TM01和TE11模式的传播特性。
这不但使我掌握了软件的使用方法,还让我对课堂上所学老师所讲的内容有了更加深刻的理解,为今后的学习做了良好的铺垫,实现了理论与实践相结合,提高了动手能力。