放射性废物处理与处置
放射性废物处理处置对环境的影响

放射性废物处理处置对环境的影响放射性废物是指含有高浓度放射性元素或同位素的废物。
它们产生于核能发电厂、核武器制造、医疗设备使用和科学研究等过程中。
由于放射性废物具有高毒性和长寿命,因此其处理和处置对环境具有极大的影响。
本文将探讨放射性废物处理处置对环境的影响,并提出相应的解决方案。
首先,放射性废物的处理和处置可导致土壤和水源的污染。
放射性废物中的放射性元素可以通过地下水的流动和土壤的渗透进入环境。
这会对地下水和水源的质量造成威胁,对人类和其他生物的健康构成风险。
此外,土壤中的放射性废物也可能对作物的生长和土壤质量产生负面影响。
其次,放射性废物的处理和处置也会对大气环境造成污染。
在处理和运输放射性废物的过程中,放射性物质可能会被释放到大气中。
如果没有采取适当的防护措施,这些放射性物质将被风吹散,进而扩散到广泛的区域。
这不仅对人类的健康构成危险,还可能影响大气的化学组成和气候变化。
此外,放射性废物的处理和处置还会对生物多样性产生负面影响。
许多放射性物质对生物体具有毒性,可能导致生物群落的损失和生物多样性的减少。
放射性废物的排放还可能对野生动植物的生殖和生长产生不利影响,从而破坏生态系统的平衡。
为了减少放射性废物处理处置对环境的影响,有以下解决方案可供采取:首先,应加强放射性废物的处理技术。
研发高效、安全、环保的处理技术是减少放射性废物对环境影响的关键。
这些技术应能有效地减少放射性废物的毒性,防止其渗透到土壤和水源中。
此外,技术创新还应致力于减少放射性废物产生的数量和潜在危害。
其次,在处理和运输放射性废物时应采取安全措施。
工作人员应接受严格的培训,了解放射性废物的危害和正确的操作方法。
运输途中应确保废物的密封和稳固,以防止意外泄露。
此外,需要建立监测系统,定期检查放射性废物处置设施的运行情况,确保其符合环境保护标准。
此外,应加强对放射性废物处置设施的监管。
政府应制定相应的法规和标准,确保放射性废物处置设施的建设和运营符合严格的安全要求。
(完整word版)放射性废物处置的国家规范性标准

完整word版)放射性废物处置的国家规范性标准放射性废物处置的国家规范性标准1.引言放射性废物是在核工业、医疗、科研等领域产生的一种特殊废物,具有辐射性和危害性,要求以安全的方式进行处置。
本文档旨在规定国家对放射性废物处置的规范性标准,以确保社会公众和环境的安全。
2.定义2.1 放射性废物:指含有放射性物质,因废物的来源、性质和用途而产生的,不具有任何进一步经济价值的固体、液体或气体废物。
2.2 放射性废物处置:指将放射性废物以安全、稳定、可控和持久的方式进行处理、存储和处置,以保护人类和环境免受辐射危害。
3.放射性废物处置的基本原则3.1 安全原则:放射性废物处置的第一原则是确保人员和环境的安全,通过适当的措施降低辐射危害。
3.2 效率原则:放射性废物处置应在科学、技术和经济条件的基础上,高效、合理地进行,以最小化资源的浪费。
3.3 合法合规原则:放射性废物处置必须符合国家法律法规和相关标准,严格遵守环境约束和监管要求。
3.4 透明原则:放射性废物处置过程应透明,公开相关信息,接受社会监督,保证公众知情权和参与权。
4.放射性废物处置的技术要求4.1 废物分类处理:根据废物的放射性和化学性质,进行分类处理,采用不同的处置途径和技术。
4.2 封存与隔离:将放射性废物置于特殊的封存设施中,采用适当的隔离措施,防止废物对环境和人员造成污染和危害。
4.3 处置设施设计:放射性废物处置设施应按照安全性、稳定性和可控性的要求进行设计,确保长期运行的可持续性。
4.4 监测与评估:建立放射性废物处置的监测体系,及时掌握处置设施的运行状况,进行随时的评估和反馈调整。
5.放射性废物处置的管理要求5.1 许可与审批:放射性废物处置操作应获得相应的许可和审批,确保处置活动符合法律法规和标准要求。
5.2 人员培训与安全意识:对从事放射性废物处置的人员进行专业培训,提高安全意识,确保操作的正确性和安全性。
5.3 废物追踪与记录:建立废物追踪系统,记录每一批次的废物来源、性质、处置途径和存储位置,确保可追溯和控制。
实验室放射性废物的处置

实验室放射性废物的处置实验室内从事的试验种类多,范围广,因此实验室产生的污染物品种多,成分复杂,需要分类处理。
不同机构依据任务设有生物学实验室、理化实验室和放射性实验室等专业实验室,进行相应的实验活动。
然而,在一些生物学研究活动中,有时会用到少量的放射性物质或能量很低的射线照射装置,产生放射性废物,常用的非密封放射性物质及其废物的特点可参考《医学与生物学实验室使用非密封放射性物质的放射卫生防护基本要求》(WS 457—2014)的附录A。
针对生物学实验室的实验活动特点,在实验活动中如何处置放射性废物应遵循《电离辐射防护与辐射源安全基本标准》(GB 18871—2002)、《放射性废物管理规定》(GB14500)、《医用放射性废物的卫生防护管理》(GBZ 133—2009)、《操作非密封源的辐射防护规定》(GB 11930—2010)的相关规定,同时也应结合生物学研究的特点,考虑放射性危害因素和生物危害因素共同存在的情况,把握全局,突出重点,做好风险评估工作。
《医学与生物学实验室使用非密封放射性物质的放射卫生防护基本要求》(WS 457—2014)附录B提供了医学、生物学放射性废物管理主要阶段流程图。
一、放射性废物定义和分类放射性废物是指含有放射性核素或者被放射性核素污染,其活度浓度大于国家确定的解控水平,预期不再使用的废弃物。
为了收集和处置的方便,可将放射性废物分类管理。
按放射性废物的放射性活度水平,可分为低水平放射性废物、中水平放射性废物和高水平放射性废物三类。
按放射性废物的物理性状,可分为放射性气载废物、放射性液体废物和放射性固体废物三类。
按放射性废物中所含核素的半衰期,可分为长半衰期放射性废物(T1/2>5 年)、中等半衰期放射性废物(60d<T1/2≤5 年)和短半衰期废物(T1/2≤60d)三类。
放射性废物的分类或分级比较复杂,要根据废物放射性水平和所含核素的半衰期进行区分,2018 年环境保护部、工业和信息化部、国家国防科技工业局联合发布新制定的《放射性废物分类》,将放射性废物分为极短寿命放射性废物、极低水平放射性废物、低水平放射性废物、中水平放射性废物和高水平放射性废物五类,其中极短寿命放射性废物和极低水平放射性废物属于低水平放射性废物范畴。
放射性废物的处理方法

放射性废物的处理方法一、概述1.放射性废物的产生放射性废物是指在生产和使用放射性物质过程中废弃并含有放射性的物质(如发射α、β、和γ射线的不稳定元素)或被放射性物质污染而又不能用简单的方法加以分离的废弃物。
放射性废物来源于以下三个方面:(1)核武器试验的沉降物在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸气和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其他的尘粒上,最后沉降到地面。
(2)核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,对周围环境带来一定程度的污染。
(3)医疗照射引起的放射性污染目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。
图1表示核废物的产生过程,核废物的主要来源是核燃料循环中和核设施退役中的各主要环节,核试验、核科学研究及应用也要产生一些核废物。
核燃料循环包括铀矿开采、加工、燃料制造、使用、乏燃料的后处理等环节。
核设施退役是指关闭不再使用的核设施(如燃料制造和加工厂、反应堆等)时所采取的措施,铀矿开采和燃料加工废物的产生从开采铀矿开始,矿石中铀的含量平均仅为0.2%,相应将遗留约25000t的废矿渣,即尾矿。
尾矿中含有的铀为原矿的5%~20%,含有的镭为原矿的93%~98%,此外还含有氡。
图1产生核废物的过程2.放射性废物的特征(1)按物理形态分类①固体放射性物品如钴,独居石等。
②晶粒状放射性物品如硝酸钍。
③粉末状放射性物品如夜光粉、铈钠复盐等。
④液体放射性物品如发光剂,医用同位素制剂磷酸二氢钠——32P等。
⑤气体放射性物品如氪85、氩41。
(2)按放出的射线类型分类①放出α、β、γ射线的放射性物品如镭226等。
②放出α、β射线的放射性物品如天然铀。
③放出β、γ射线的放射性物品如钴60。
放射源废弃处置方案

放射源废弃处置方案
一、什么是放射源废弃?
放射源废弃是指放射性物质或设备在使用后,因达到其设计使用年限或功能不再需要而被废弃的物质或设备。
这类物质和设备都含有较高的放射性浓度,对环境和人类健康都有潜在的危害。
二、放射源废弃处置的重要性
放射源废弃的处置对于环保和人类健康都有着非常重要的作用。
放射源废弃若未得到妥善处置,会对环境产生长期危害,其辐射对人体也会产生严重的影响。
三、放射源废弃处置的方法
1. 隔离储存
经过仔细测算、界定和计算后,把放射源废弃物从人类和环境中隔离禁闭,屏蔽辐射,减少因人的干预而影响环境和人的暴露。
2. 长期封存
在隔离储存基础上,将放射源废弃物长期封存,使其渐减至安全水平后进行处理。
3. 固化处置
将放射源废弃物与吸收成分的混合物结合固化,形成坚固、稳定的物质,减少污染风险。
4. 软包覆
将放射源废弃物包裹在多层材料中,形成多道防护屏障,减少对环境和人的辐射污染。
5. 高温熔解
在一定高温下将放射源废弃物进行熔解,达到玻璃状态之后进行处理,减少其辐射污染。
四、放射源废弃处置的选择
在具体的放射源废弃处置中,应根据不同放射源废弃的类型、性质以及处置的安全性和经济性进行选择。
五、结论
通过采用科学、合理的放射源废弃处置方案,可以使放射源废弃物得到有效的处理,减少污染风险,降低环境和人类健康受到的辐射伤害。
因此,应高度重视放射源废弃的处理工作,寻找最优解决方案,保护生态环境和人类健康。
放射性废物的储存和处置法规与标准

各地政府采取一系列措施,如加强监管力度、完善监管机制、提高监管能力等,确保放 射性废物的安全管理和处置。
XX
PART 03
储存设施与要求
REPORTING
储存设施类型
01
02
03
中低放废物储存库
用于存放中低放射性废物 ,通常设计为地下或半地 下结构,以确保安全。
高放废物储存库
加强国际合作
加强与其他国家在放射性废物管理领域的合作,共同研究制定国际 通用的管理标准和技术规范。
面临的挑战及应对策略
01
技术挑战
放射性废物管理涉及复杂的技术问题,需要不断研发新技术、新方法。
应对策略包括加大科技研发投入,加强技术人才培养和引进等。
02 03
法规政策挑战
随着法规政策的不断调整和完善,企业需要不断适应新的管理要求。应 对策略包括加强法规政策学习,积极参与相关法规政策的制定和执行等 。
应用人工智能、大数据等先进技术,实现放射性 废物的智能化管理,提高管理效率和准确性。
法规政策调整趋势分析
强化法规标准
随着环保意识的提高,未来法规政策将更加注重放射性废物管理 的严格性和规范性,加强相关法规标准的制定和执行。
推动技术创新
政府将加大对放射性废物管理技术创新的支持力度,鼓励企业研发 新技术、新方法,提高废物管理水平。
社会认知挑战
公众对放射性废物的认知程度有限,需要加强相关宣传和教育。应对策 略包括开展公众宣传和教育活动,提高公众对放射性废物的认知和理解 。
XX
THANKS
感谢观看
REPORTING
XX
放射性废物的储存和 处置法规与标准
汇报人:XX
放射性废物的处理与处置高放处置

放射性废物处理与处置
第十一章 高放废物处置
评价模式和参数 高放废物处置库安全隔离的期限远远超出了现
有试验和验证的时间与空间尺度,只能依靠数 学模式计算来推断。废物处置系统的安全评价 需要开发和使用能够定量描述处置系统重要情 景及其后果的模式。 建立模式通常要作许多简化和假定,需要用许 多参数。选用复杂模式可能有些数据不容易获 得,而且存在较大的不确定度。 参数获取的难度和工作量都很大。
位于新墨西哥州的卡尔斯巴德,属超铀废物隔离 试验设施,投资20多亿美元,1999年3月正式投入 使用,属于深地质处置库,处置容量17.6万m3 。
离地面650m深地下的盐层中,处置库有7个单元, 每个高6m×宽10m×长100m,设有4个竖井运送 人员、材料、废物和通风。
处置军工核设施700m3需远距离操作的超铀废物, 17万m3可直接操作(表面剂量率小于2mSv/h)的 超铀废物,设计运行35年,期间废物可以回取。
32
放射性废物处理与处置
第十一章 高放废物处置
微生物作用 (1)微生物酶的催化作用促进废物固化体贮罐的
腐蚀; (2)侵蚀玻璃固化体; (3)改变地下水的PH和Eh; (4)破坏缓冲/回填材料——膨润土; (5)生物降解腐殖质,产生CO2和CH4等气体; (6)直接摄取核素——吸附、吞食和滞留核素; (7)作为配位体,络合核素和促进核素的迁移; (8)作为核素的载体,形成假胶体;
34
放射性废物处理与处置
第十一章 高放废物处置
11.6 高放废物处置的国际现状 进展迟缓 乏燃料是资源还是废物有争论 处置库选址条件高,场址难找 处置费用大,技术难度高,资源不足 公众对处置安全性的认同和社会/政治阻
力
35
放射性废物处理与处置
放射性废物退役处置方案

放射性废物退役处置方案放射性废物退役处置是指已经被使用的核设备在结束寿命周期后所产生的放射性废物,需要进行处理和处置。
正确的处置方法可以最大程度地减少放射性物质对环境和人类的危害。
在放射性废物退役处置方案中,考虑到以上因素和其他因素,制定出下列几点方案。
1.放射性废物回收再利用废物回收再利用是一个防止可能对环境造成更大危害的好办法。
这大大减少了放射性废物产生的量。
在现代科技的帮助下,废物回收利用可以在制造其他的物品时进行。
例如,氧化铀可以回收制造光照明杆和建筑材料。
2.放射性废物埋地处理我的第二个方案是关于放射性废物埋地的。
这项工作已经被证明对情况有积极影响,并且可以每年节约大量的防护费用。
在我提出的计划中,我们将选定多个不同的废物处理场地,进行放射性废物处理。
呈粉末状的废物将被在地下深处安全的储存。
在埋设区域上建造高墙,保证废物在埋设期间不会扩散到周围的环境中。
3.放射性废物首次加工处置在这种方案中,放射性废物首次加工将重点放在将较大的废物切成更小的碎片。
这可以帮助最大限度的减少放射性废物扩散到环境中的可能性。
切分过的废物将被送往有更高的安全级别的处理设备中,并以更加安全的方式进行处置。
4.放射性废物离岸处理这是一个关于放射性废物离岸处理的方案。
在这项方案中,放射性废物将被运输到海外的处理设施,以便进行更加严格的处置。
这将确保被废物危害的人们不会受到任何环境破坏的影响。
5.放射性废物燃烧处置在这项方案中,我将研究将放射性废物燃烧掉的可能性。
这项技术已经被证明为一种在治理废物方面非常有效的方法。
我们将在设施的燃烧窑中加热废物,以便将其变成非放射性物质。
这将是一项先进的解决方案,并将正在等待进一步的研究。
综上所述,以上是我提出的五种放射性废物退役处置方案。
为了最大化减少对环境和人类的危害,我们必须采取科学的方法来管理放射性废物。
好的处置方案已经为我们提供了一种方法,以最小化对社会和环境造成的不必要的危害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放射性废物处理与处置“三废”设施治理工程进展张存平,杜洪铭我院已落实的“三废”设施治理专项工程共有6个项目,它们分别是含氚废水空气载带排放站、放射性固体废物回取与整备处理示范设施、放射性排风中心治理工程、163号放射性废液暂存库、中放废液输运系统和低放废液管网系统更新改造。
2006年,工程部按计划完成了主要项目的计划节点。
含氚废水空气载带排放站设备安装和交工验收;放射性固体废物回取与整备处理示范设施监理、建安和设备招投标,8月份,199子项基槽开挖,正式揭开了本项目施工建设,年底相继完成了160子项地下放射性管道拆除、放射性污染土清除处理、199子项土建安装、160子项±0.00以下土建施工及预埋件安装;放射性排风中心治理工程建设的监理、建安招投标工作,烟囱基础、室外地下管沟施工,部分非标净化装置及标准设备招投标工作;完成了163号放射性废液暂存库、中放废液输运系统和低放废液管网系统更新改造3个项目的初步设计,并上报中国核工业集团公司,其中,163号放射性废液暂存库的初步设计已于12月批复。
6个项目总投资为18 895.8万元,2006年总支出费用为2 502.4万元,总资金完成率为33.5%。
各项目资金支出基本与各项目完成工作量相匹配。
2006年,在院、所领导下,工程部全体人员与各相关单位,齐心协力,努力工作,克服困难,保质保量完成了国防科工委考核目标:含氚废水空气载带排放站完成交工验收;放射性固体废物回取与整备处理示范设施于年底完成了4项考核指标(199子项土建、安装顺利完成,160子项±0.00以下土建施工及预埋件安装,完成到位资金60%)。
反向气相色谱法对模拟高放玻璃固化体的表面化学性能研究张振涛,甘学英,苑文仪,施和平,王雷高放玻璃固化体是高放废物深地质处置的核心屏障,它们在地下水浸泡下的蚀变行为是高放废物深地质处置的研究重点之一,因此,表征固体表面物理化学参数十分重要。
目前,表征固体表面特征的技术主要是扫描电镜和透射电镜测量技术,这些电镜技术能够直观地给出固体表面的形貌、测量固体表面的晶体尺寸。
但电镜测量技术局限性大,它们只能测量固体表面的物理参数,不能给出固体表面的物理化学参数比表面积和分子范围内的表面粗糙度。
因此,需要建立新的表面测量技术,以对固体表面的物理化学参数进行系统测量,从而对固体表面性做系统评估。
反向气相色谱法是研究固体表面物理化学性能的技术,这项技术已在国外得到广泛应用。
其原理为:将欲研究的材料填充于气相色谱柱内,然后向色谱柱注入探测分子,探测分子的物理化学性脱附作用强时,探测分子在柱内停留时间长;当吸附-脱附作用弱时,探测分子在柱内停留时间短。
这种由已知探测分子特性来确定未知固体表面特性的技术称之为反向气相色谱技术。
玻璃的比表面积可用戊醇在玻璃表面的单层吸附量来计算,玻璃表面的粗糙度参数S f可用4-甲基庚烷和正辛烷在固体表面的吸附自由能之比表示。
高放玻璃为我国821厂模拟高放玻璃。
根据PCT方法,在90和150 ℃的低氧条件下,用真实处置场址的地下水,将玻璃粉在不同时间段进行浸泡,玻璃粉粒径为100~120 m,玻璃粉与浸泡液的面体比为8 000 m-1。
图1和2分别是玻璃粉在150 ℃下浸泡后的比表面积和表面粗糙度随浸泡时间的变化趋势。
图1 玻璃比表面积随浸泡时间的变化趋势玻璃被浸泡后,其表面的变化经历3个阶段,第一阶段为浸泡开始到浸泡了14 d,在这一阶段内,玻璃的比表面积逐渐增加,玻璃表面的粗糙度迅速增大,该阶段对应图1和2中的平台之前;第二阶段的浸泡时间为14~90 d,对应图1和2的平台,在这一阶段内,玻璃的比表面积和粗糙度维持不变;第三阶段,对应图1中的斜线部分,浸泡时间为90~350 d,在该阶段,玻璃的比表面积迅速增加,表面粗糙度缓慢增加。
图2 玻璃表面的粗糙度系数S f随浸泡时间的变化趋势以上实验结果表明:反向气相色谱技术是一项有效的固体表面物理化学性能参数测量技术,该技术能够测量固体的比表面及在分子尺度范围表征固体表面的粗糙度。
应用反向气相色谱技术,观测到了玻璃在地下水浸泡条件下的3个蚀变阶段。
张振涛,王雷,甘学英,张华,张传智高放废液在20世纪50年代出现后,人们首先想到的是将核素固定在晶体内。
美国的阿贡实验室将高放废液用流化床煅烧成粉末,英国将放射性的铯交换到黏土上,加拿大则是将高放废物在1 350 ℃熔融,制成霞石,法国则是在1 300 ℃下制备云母,目的是将铯、锶固定在云母的晶体内,稀土元素置于晶体片层之间。
之后很快,人们放弃了将核素固定在晶体的想法,转而将核素包容在玻璃内。
从1960年在实验室将100 mL高放废液固化在玻璃体内到现在的工业规模的高放废液玻璃固化,已经存放了几十万罐的高放玻璃等待最终处置。
目前,人们已经认识到玻璃固化高放废液的缺点:首先,玻璃是一种过冷过饱和固溶体,从热力学上讲,析晶必然发生,析出的晶体绝大多数是水溶性的,不利于最终深地质处置;其次,玻璃体对核素的包容量偏低,对锕系核素的包容量更低。
美国尤卡山处置场只允许存放2 000罐左右的高放玻璃固化体,但汉福特产生的高放玻璃罐约几十万罐,玻璃固化体的包容量低、长期稳定性差成为高放废物最终处置的世界性难题。
增加废物的包容量、提高固化体的长期化学稳定性是目前的研究方向。
为此,人们又重新将锕系核素的固定转移到晶体上,但制备纯粹的晶体工艺复杂,而玻璃陶瓷制备简单,因此,玻璃陶瓷成为新的高放废液和锕系核素固化基材。
工业制备玻璃陶瓷有熔融法、烧结法和溶胶-凝胶法3种方法。
熔融法的特点是熔制温度高、热处理制度严格,产品性能优异、致密度高,与高放废液玻璃固化工艺接近。
采用熔融法工艺时,通常在原料中加入成核剂TiO2、ZrO2和P2O5等氧化物或Au、Ag、Pt、Cu等贵金属,将各种原料及添加剂混合均匀制成混合料,于1 400~1 600 ℃高温熔融,均匀化后将玻璃熔体成型,退火后在一定温度下进行核化和晶化,从而获得晶粒细小均匀且整体析晶的玻璃陶瓷制品。
热处理是玻璃陶瓷生产的关键技术。
最佳成核温度一般介于使黏度为1 011~1 012泊的温度范围之内,介于转变点T g和比它高50 ℃的温度之间。
晶化温度上限应低于主晶相在一个适当的时间内重熔的温度,一般为25~50 ℃。
在高放废液和锕系核素的玻璃陶瓷固化研究方面,人们研究了玻璃-钙钛锆石、玻璃-磷灰石、铝硅酸盐玻璃-榍石、玻璃-烧绿石,玻璃-莫他石(murataite)等。
钙钛锆石存在于自然界,锕系核素在它的晶格内已经稳定存在了几百万年。
钙钛锆石作为人造岩石的主要矿相得到了广泛研究,因此,玻璃-钙钛锆石是目前研究最多的玻璃陶瓷。
钙钛锆石CaZrTi2O7中Ca2+位可被三价锕系核素或稀土元素取代,为降低增加的阳离子电荷数,Ti位被Al3+取代,四价的锕系核素或稀土元素更倾向于占据Ti4+位。
玻璃-钙钛锆石陶瓷体的制备条件取决于钙钛锆石陶瓷体在玻璃-钙钛锆石陶瓷体中的组成。
玻璃相占的比例越小,熔融温度越低,当玻璃相成分为零时,熔融温度达到最高。
钙钛锆石陶瓷体制备工艺为:将按照矿相组成的氧化物混合物放到冷坩埚内,在1 600~1 700 ℃下熔融,保持温度2 h,便可得到钙钛锆石陶瓷体,其中,钙钛锆石体积占矿相总体积的50%~70%。
如果制备玻璃-钙钛锆石陶瓷体,熔融温度可以降低。
法国在1 450 ℃熔制母玻璃,之后,在1 050 ℃保持2 h,再在1 200 ℃保持6 h,得到了玻璃-钙钛锆石。
将制备的玻璃-钙钛锆石与UP2/UP3的R7T7玻璃进行了比较,发现玻璃-钙钛锆石的蚀变速率是R7T7玻璃蚀变速率的1/10。
Leturcq研究了钙钛锆石晶体大小与熔融温度之间的关系,低温(1 050 ℃)下生成的晶体较小(几微米),高温(1 200 ℃)下生成的晶体较理想,晶体较大,尺寸在几十到几百微米之间。
Xavier等进行了钚的玻璃-陶瓷固化研究,在铂铑坩埚内,将钚的硝酸盐溶液与混合的氧化物充分混合,之后,解热、熔融。
在1 200 ℃下保持6 h以便晶体充分生长,整个区域,样品边缘区域,晶体为纤维状;样品的中心区域,晶体为松叶节瘤状,长度约200 m。
这两种不同外观的晶体均属于钙钛锆石,晶体内富集了钚。
法国和澳大利亚对美国INEEL的高放废液的煅烧干粉进行冷坩埚玻璃陶瓷固化工程验证研究,固化体包容量(质量分数)为50%,冷坩埚直径为50 cm,为CEA的EREBU冷坩埚。
冷坩埚熔融温度为1 260~1 300 ℃,在该温度下,保持3 h,之后,高温炉停止加热,并继续保持冷却,以模拟玻璃在玻璃罐内的中心冷却曲线,冷坩埚中心温度在900 ℃以上时的冷却速度为414 ℃/h。
冷坩埚壁的冷却速度很快,中心较慢。
完全固化冷却后,得到固化体50 kg,在不同的位置取样,得到不同冷却速度下的玻璃陶瓷体。
微观分析结果显示:冷坩埚制备的玻璃陶瓷中的主要结晶相为钙钛锆石晶体,结晶相体积占总固化体体积的21%。
文献表明:玻璃-陶瓷复合体比玻璃固化体的核素包容量大、化学稳定性好;玻璃陶瓷制备工艺简单;冷坩埚-玻璃陶瓷是最有可能取代目前陶瓷炉-玻璃固化处理高放废液的工艺,玻璃从冷坩埚浇注到玻璃罐后,依靠自然冷却变可生成玻璃-陶瓷体。
沥青固化刮板蒸发器清洗液处理工程应用研究的工程预实验姚军,张言,汪书卷某厂低放废液沥青固化工程清洗废液已暂存330多桶(200 L钢桶),随着生产的不断进行,还将产生更多的低放废液有待处理。
根据三氯乙烯的高密度、低沸点以及易挥发性和毒性确定减压蒸馏作为这种低放废液的分离方法。
目前,实验室规模研究已基本完成,包括调查了放射性清洗废液的来源及贮存状况,废液的组成、黏度、核素种类及放射性水平等;进行了实验室规模蒸发装置的加工调试以及工艺参数的选择和优化;完成了模拟料液的实验室研究;进行了真实料液的实验室验证。
所确定的实验设备及方案能够达到处理要求,减压蒸馏设备处理量可达到0.25 L/h;三氯乙烯的回收率可达到87.5%,高于85%的标准。
模拟料液蒸残沥青固化物的软化点为61.8 ℃。
模拟料液的分离情况列于表1。
真实料液中尾气TCE含量列于表2。
表1 模拟料液的分离情况组分时间/min 沸腾温度/℃沸程/℃真空度/kPa 回收率/%三氯乙烯25 84.4 0.9 5.5 87.3 水215 94.4 0.7 5.5 95.8表2 真实料液中尾气TCE含量料液种类馏出物中三氯乙烯含量/(mg·L-1) 尾气中三氯乙烯含量/(g·L-1)新刮板清洗液0.73 <5.0旧刮板清洗液70.45 <5.0后处理厂主工艺设备高效去污现场验证试验谢为红,夏明旭,马梅花我国核燃料后处理厂已开始退役去污工作,目前所采用的去污剂基本上是以酸、碱为主的常规去污剂。