二叉树的各种遍历算法及其深度算法

合集下载

二叉树的遍历和应用

二叉树的遍历和应用

内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。

目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。

二叉树遍历算法的应用

二叉树遍历算法的应用

二叉树遍历算法的应用二叉树是一种常用的数据结构,它由节点和节点之间的链接组成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树遍历算法是指按照一定的顺序访问二叉树中的所有节点,经典的二叉树遍历算法有前序遍历、中序遍历和后序遍历。

这些遍历算法在计算机科学中有广泛的应用。

一、前序遍历前序遍历算法的访问顺序是先访问根节点,然后依次访问左子树和右子树。

在实际应用中,前序遍历算法十分常见,具有以下几个应用:1.树的复制:如果需要复制一棵二叉树,可以使用前序遍历算法遍历原树,然后按照递归或迭代的方式创建新节点,并复制原节点的值。

2.表达式求值:对于一个二叉树表示的数学表达式,前序遍历算法可以用来计算表达式的值。

遍历到运算符节点时,先计算左子表达式的值,然后计算右子表达式的值,最后根据运算符进行计算。

3.文件系统遍历:文件系统可以被视为一个树状结构,前序遍历算法可以按照前序的顺序遍历文件系统中的所有文件和文件夹。

二、中序遍历中序遍历算法的访问顺序是先访问左子树,然后访问根节点,最后访问右子树。

中序遍历算法也有多个应用:1.二叉树的中序遍历得到的节点值是按照从小到大的顺序排列的。

因此,可以使用中序遍历算法验证一个二叉树是否为二叉树。

2.二叉树中序遍历的结果可以用来实现按照升序排列的有序集合的功能。

例如,在数据库中存储的数据可以通过中序遍历的结果进行排序。

3.中序遍历算法可以将一个二叉树转换为一个有序的双向链表。

在遍历过程中,维护一个前驱节点和一个后继节点,并进行链接操作。

三、后序遍历后序遍历算法的访问顺序是先访问左子树,然后访问右子树,最后访问根节点。

后序遍历算法也有多个应用:1.后序遍历算法可以用来计算二叉树的深度。

在遍历过程中,可以维护一个全局变量来记录最大深度。

2.后序遍历算法可以用来判断一个二叉树是否为平衡二叉树。

在遍历过程中,可以比较左右子树的高度差,判断是否满足平衡二叉树的定义。

3.后序遍历算法可以用来释放二叉树的内存。

树与二叉树h

树与二叉树h
TElemType data ; int Lchild,Rchild; } SBNode; typedef struct{
SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:

A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:

A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。

实现二叉树的各种遍历算法实验报告

实现二叉树的各种遍历算法实验报告
a[i] = 0; int k = 0; search(b,a,k); for(i = 0;i < maxx; ++i)
if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b

二叉树求每个结点高度算法

二叉树求每个结点高度算法

二叉树求每个结点高度算法二叉树是一种非常常见的数据结构,它由一个根结点和最多两个子结点组成。

在解决二叉树相关问题时,经常需要求每个结点的高度,也就是树的深度。

本文将介绍常见的二叉树求每个结点高度的算法。

在介绍求每个结点高度的算法之前,首先需要了解二叉树的定义和性质。

二叉树是一种树的特殊形式,它的每个结点最多只有两个子结点。

二叉树的高度定义为从根结点到叶子结点的最长路径上的结点数,即树中结点的最大深度。

在求解每个结点高度时,需要遍历整个二叉树,计算每个结点距离根结点的深度。

一种常见的求每个结点高度的算法是通过递归实现的。

其基本思想是,对于每个结点,其高度等于其左子树和右子树的高度中较大的那个值加一,再加上该结点本身的高度(1)。

具体实现递归算法的伪代码如下:```function getHeight(node):if node is null:return 0leftHeight = getHeight(node.left)rightHeight = getHeight(node.right)return max(leftHeight, rightHeight) + 1```通过递归算法,可以方便地求出每个结点的高度。

递归算法的停止条件是当结点为空时,返回0作为高度。

在使用递归算法时,需要注意避免重复计算。

可以通过在每个结点处保存其高度,避免重复计算。

在算法的实现中,可以使用一个哈希表或者结构体来保存每个结点的高度。

除了递归算法外,还可以使用层次遍历的方法求每个结点的高度。

层次遍历是一种广度优先搜索的算法,可以按层次遍历二叉树。

在层次遍历的过程中,可以对每个结点进行标记,记录其所在的层数。

具体实现层次遍历的伪代码如下:```function getHeight(root):if root is null:return 0queue = new Queue()queue.enqueue(root)root.level = 1while queue is not empty:node = queue.dequeue()if node.left is not null:queue.enqueue(node.left)node.left.level = node.level + 1if node.right is not null:queue.enqueue(node.right)node.right.level = node.level + 1return max(node.level for node in tree)```通过层次遍历的方法,可以按层次遍历二叉树,同时记录每个结点的层数。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

二叉树先序遍历算法

二叉树先序遍历算法

二叉树先序遍历算法
二叉树先序遍历是一种树的遍历算法,先序遍历过程如下:
1. 先访问根节点;
2. 再访问左子节点;
3. 再访问右子节点;
二叉树先序遍历是一种树状数据结构的深度优先搜索(DFS)算法。

先序遍历对
树状数据结构中的每个节点仅进行一次访问,且访问的次序是从上到下,从左到右的方式。

先序遍历属于深度优先搜索,它以一定的次序访问树或图的每个节点,然后递归访问其子节点,深度优先搜索可以按一定方式去遍历有向图、二叉树等数据结构,对节点都进行一定次序的编号或标签,访问顺序是按从小到大的顺序,从而把BST全部访问一次。

二叉树先序遍历的时间复杂度为O(n),空间复杂度为O(logn),应用范围很广,常用于二叉查找树的构造或查找、求树的高度和深度、树的前中后序遍历等,其中在建立二叉查找树时,往往我们都会使用先序遍历;同时,也可用先序遍历来求二叉树的节点数,计算树的深度等。

因此,二叉树先序遍历是一种基本而又重要的数据结构遍历算法,在许多应用
场景中都可以被朂泛使用,深受各个计算机领域的热捧。

实验六二叉树实验报告

实验六二叉树实验报告

实验四二叉树的操作班级:计算机1002班姓名:唐自鸿学号:201003010207 完成日期:2010.6.14 题目:对于给定的一二叉树,实现各种约定的遍历。

一、实验目的:(1)掌握二叉树的定义和存储表示,学会建立一棵特定二叉树的方法;(2)掌握二叉树的遍历算法(先序、中序、后序遍历算法)的思想,并学会遍历算法的递归实现和非递归实现。

二、实验内容:构造二叉树,再实现二叉树的先序、中序、后序遍历,最后统计二叉树的深度。

三、实验步骤:(一) 需求分析1. 二叉树的建立首先要建立一个二叉链表的结构体,包含根节点和左右子树。

因为树的每一个左右子树又是一颗二叉树,所以用递归的方法来建立其左右子树。

二叉树的遍历是一种把二叉树的每一个节点访问并输出的过程,遍历时根结点与左右孩子的输出顺序构成了不同的遍历方法,这个过程需要按照不同的遍历的方法,先输出根结点还是先输出左右孩子,可以用选择语句来实现。

2.程序的执行命令为:1)构造结点类型,然后创建二叉树。

2)根据提示,从键盘输入各个结点。

3)通过选择一种方式(先序、中序或者后序)遍历。

4)输出结果,结束。

(二)概要设计1.二叉树的二叉链表结点存储类型定义typedef struct Node{DataType data;struct Node *LChild;struct Node *RChild;}BitNode,*BitTree;2.建立如下图所示二叉树:void CreatBiTree(BitTree *bt)用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点。

3.本程序包含四个模块1) 主程序模块:2)先序遍历模块3)中序遍历模块4)后序遍历模块4.模块调用关系:主程序模块(三)详细设计1.建立二叉树存储类型//==========构造二叉树=======void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点//{char ch;ch=getchar();if(ch=='.')*bt=NULL;else{*bt=(BitTree)malloc(sizeof(BitNode));//申请一段关于该节点类型的存储空间(*bt)->data=ch; //生成根结点CreatBiTree(&((*bt)->LChild)); //构造左子树CreatBiTree(&((*bt)->RChild)); //构造右子树}}2. 编程实现以上二叉树的前序、中序和后序遍历操作,输出遍历序列1)先序遍历二叉树的递归算法如下:void PreOrder(BitTree root){if (root!=NULL){Visit(root ->data);PreOrder(root ->LChild); //递归调用核心PreOrder(root ->RChild);}}2)中序遍历二叉树的递归算法如下:void InOrder(BitTree root){if (root!=NULL){InOrder(root ->LChild);Visit(root ->data);InOrder(root ->RChild);}}3)后序遍历二叉树的递归算法如下:void PostOrder(BitTree root){if(root!=NULL){PostOrder(root ->LChild);PostOrder(root ->RChild);Visit(root ->data);}}4)计算二叉树的深度算法如下:int PostTreeDepth(BitTree bt) //求二叉树的深度{int hl,hr,max;if(bt!=NULL){hl=PostTreeDepth(bt->LChild); //求左子树的深度hr=PostTreeDepth(bt->RChild); //求右子树的深度max=hl>hr?hl:hr; //得到左、右子树深度较大者return(max+1); //返回树的深度}else return(0); //如果是空树,则返回0}四、调试分析及测试结果1. 进入演示程序后的显示主界面:请输入二叉树中的元素;先序、中序和后序遍历分别输出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的算法:
用扩展先序遍历序列创建二叉树;
递归遍历算法
中序非递归遍历层次遍历
二叉树深度的算法
实现代码如下:
#include<stdio.h>
#include <stdlib.h>
#include <malloc.h>
typedef struct Node
{
char data;
struct Node *LChild;
struct Node *RChild;
}BitNode,*BitTree;
typedef struct CSNode
{
char data;
struct CSNode *fch, *nextSib;
}CSNode, *CSTree;
void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是#当前树根置为空,否则申请一个新节点//
{
char ch;
ch=getchar();
if(ch=='#')*bt=NULL;
else
{
*bt=(BitTree)malloc(sizeof(BitNode));
(*bt)->data=ch;
CreatBiTree(&((*bt)->LChild));
CreatBiTree(&((*bt)->RChild));
}
}
void Visit(char ch)//访问根节点
{
printf("%c ",ch);
}
//以下为递归遍历算法
void PreOrder(BitTree root) /*先序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/
{
if (root!=NULL)
{
Visit(root ->data); /*访问根结点*/
PreOrder(root ->LChild); /*先序遍历左子树*/
PreOrder(root ->RChild); /*先序遍历右子树*/
}
}
void InOrder(BitTree root)
/*中序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/
{
if (root!=NULL)
{
InOrder(root ->LChild); /*中序遍历左子树*/
Visit(root ->data); /*访问根结点*/
InOrder(root ->RChild); /*中序遍历右子树*/
}
}
void PostOrder(BitTree root)
/* 后序遍历二叉树,root为指向二叉树(或某一子树)根结点的指针*/
{
if(root!=NULL)
{
PostOrder(root ->LChild); /*后序遍历左子树*/
PostOrder(root ->RChild); /*后序遍历右子树*/
Visit(root ->data); /*访问根结点*/
}
}
//中序非递归遍历
void InOrder1(struct Node *head)
{
struct Node *p;
struct Node *stack[20];
int top=0;
p=head;
while(p||top!=0)
{
while (p)
{
stack[top++]=p;
p=p->LChild ;
}
p=stack[--top];
printf("%c ",p->data );
p=p->RChild ;
}
}
//层次遍历
void translevel(BitTree b) //按层次遍历
{ struct node
{ BitTree *vec[100];
int f,r;
} q;
q.f=0;
q.r=0;
if (b!=NULL) printf("%c ",b->data);
q.vec[q.r]=&b; //结点指针进入队列
q.r=q.r+1;
while (q.f<q.r) //队列不为空
{ b=*q.vec[q.f]; q.f=q.f+1; //队头出队列
if (b->LChild!=NULL) //输出左孩子,并入队列
{ printf("%c ",b->LChild->data);
q.vec[q.r]=&(b->LChild);
q.r=q.r+1;
}
if (b->RChild!=NULL) //输出右孩子,并入队列
{ printf("%c ",b->RChild->data);
q.vec[q.r]=&(b->RChild);
q.r=q.r+1;
}
}
}
int PostTreeDepth(BitTree bt) //后序遍历求二叉树的高度递归算法// {
int hl,hr,max;
if(bt!=NULL)
{
hl=PostTreeDepth(bt->LChild); //求左子树的深度
hr=PostTreeDepth(bt->RChild); //求右子树的深度
max=hl>hr?hl:hr; //得到左、右子树深度较大者
return(max+1); //返回树的深度
}
else return(0); //如果是空树,则返回0
}
int main()
{
BitTree T;
CSTree tree1;
printf("请输入二叉树中的元素(以扩展先序遍历序列输入,其中#代表空子树):\n");
CreatBiTree(&T);
printf("先序递归遍历序列为: ");
PreOrder(T);
printf("\n中序递归遍历序列为: ");
InOrder(T);
printf("\n后序递归遍历序列为: ");
PostOrder(T);
printf("\n中序非递归遍历序列为:");
InOrder1(T);
printf("\n层次归遍历序列为: ");
translevel(T);
printf("\nThe depth of this tree is:%d\n",PostTreeDepth(T));
return 0;
}
运行结果如图。

相关文档
最新文档