函数的图像与性质
五个重要的初等函数的图像和性质

五个重要的初等函数的图像和性质:一、羊角线:y=|x-a|(1)图像性质:单调性,对称性,(2)应用:①方程|x-2|=2a-1有两个不等实根,求a 的取值范围;②|x-2|=(1/2)x+a 有两个不等实根,求a 的取值范围;③若y=|x-2a+1|是偶函数,求a 的取值范围;二、槽形线:y=|x-a|+|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1有2个不等实根,求a 的取值范围;②|x-2|+|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|+|x-3a+1|是偶函数,求a 的值;④若|x-2|+|x-3|> 3,求a 的取值范围.三、Z 形线:y=|x-a|-|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1仅有一个实根,求a 的取值范围;②若|x-2|-|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|-|x-3a+1|是奇函数,求a 的值;④若|x+2|-|x-3|> 3,求a 的取值范围.引申:无解问题,有解问题 四、最简分式函数:bc)ad 0,(c dcx b ax y ≠≠++= (1)图像:定义域、值域、单调性、对称性、对称中心原式化为:dcx c a d cx b d cx y c ad bc c ad ca ++=++-+=-)(,移项整理则有:)(c d cad bc c ad bc x d cx c a y --=+=---故有: ⅰ⎪⎪⎪⎩⎪⎪⎪⎨⎧≠⎪⎩⎪⎨⎧=-=-≠≠++=;)2(),,()1(),0(的一切实数值域为渐近线为双曲线中心为c a y c a y c d x c a c d bc ad c d cx b ax y ; ⅱ当02>-cad bc 即ad bc >时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,再经过横向的伸缩变换(102<-<c ad bc 时横向伸长,21cad bc -<时横向缩短)而得; ⅲ当20cad bc -<即ad bc <时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,然后做关于X 轴的对称变换,再经过横向的伸缩变换而得(1||02<-<c ad bc 时横向伸长,||12cad bc -<时横向缩短)而得。
常用函数性质及图像

一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时, 直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
高中各种函数图像画法与函数性质

高中常见函数归纳一次函数二次函数单调区间,2ba⎛⎫-∞-⎪⎝⎭递减,2ba⎛⎫-+∞⎪⎝⎭递增,2ba⎛⎫-∞-⎪⎝⎭递增,2ba⎛⎫-+∞⎪⎝⎭递减反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线指数函数概念:一般地,函数x ay=(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
注意:指数函数对外形要求严格,前系数要为1,否则不能为指数函数。
指数函数的图像与性质规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。
在y轴右边“底大图高”;在y轴左边“底大图低”。
3.四字口诀:“大增小减”。
即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。
4. 指数函数既不是奇函数也不是偶函数比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较对数函数1.对数函数的概念我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a >0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log2x,y=log10x,y=log10x,y=log21x,y=log101x的草图图象a>1 a<1(1)x>0比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(;对号函数函数xbax y +=(a>0,b>0)叫做对号函数,因其在(0,+∞)的图象似符号“√”而得名,当a b x =时,函数xbax y +=(a>0,b>0,x ∈R +)有最小值a b 2,函数xbax y +=(a>0,b>0)在区间(0,a b )上是减函数,在区间(a b ,+∞)上是增函数。
初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。
补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。
常见函数的图像和性质

常见函数的图像和性质函数是高中数学学习中不可避免的部分,常见函数有一些图像和性质。
本文将介绍常见函数的图像和性质,包括线性函数、二次函数、指数函数、对数函数和三角函数。
线性函数是最基本的函数之一,也是最容易理解的函数之一。
线性函数的一般式是y = kx + b,其中k和b是常数,x和y表示函数的自变量和因变量。
线性函数的图像是一条直线,斜率k和截距b决定了直线的位置和倾斜程度。
当k>0时,函数是单调递增的,当k<0时,函数是单调递减的。
斜率越大,直线越陡峭,斜率越小,直线越平缓。
截距决定直线和y轴的交点。
当b>0时,直线在y轴上方,当b<0时,直线在y轴下方,当b=0时,直线经过原点。
线性函数的性质是简单的,任何两个不同的点都能确定一条直线,而且任何一条直线都可以写成y = kx + b的形式。
二次函数是另一个基本函数,一般式是y = ax^2 + bx + c,其中a、b、c是常数。
二次函数的图像是一个开口向上或向下的抛物线,抛物线的开口方向由系数a的正负决定。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
二次函数图像的性质和线性函数有所不同,首先,二次函数不是单调函数,也就是说,它有一个最值点,最值点的坐标为(-b/2a,c-b^2/4a)。
第二,二次函数图像的对称轴是一个垂直于x轴的线,它的坐标是x = -b/2a。
第三,二次函数图像上任何一条水平线和抛物线只有一个交点,因此,二次函数也称为单峰函数。
指数函数是一种以底数为e的指数型函数,一般式是y = a^x,其中a是正常数。
指数函数的图像呈现出一种快速增长或快速衰减的趋势,指数函数的性质是独特的。
当a>1时,指数函数单调递增,当0<a<1时,指数函数单调递减,当a=1时,指数函数恒等于1。
指数函数图像的特点是固定的x值下y值呈指数型增长或衰减,在坐标系中的图像表现出“指数型曲线”。
函数的性质及图像

谢谢观看
THANK FOR YOU WATCHING
演讲人姓名 演讲时间
击此处添加副标题
一次函数的图象 和性质(基础)
讲师:戚仓宁
知识回顾
y kx
y kx
1
正比例函数的定义:一般的,形如 (k为常数,且k≠0)的函数,叫做 正比例函数.其中k叫做比例系数.
3
待定系数法求正比例函数的解析式:由于正
比例函数
(k为常数,k≠0 )中
只有一个待定系数k,故只要有一对x,y的
要点二、一次函数的图象与性质
函数y=kx+b(k、b为常数,且k≠0)的图象是一条直线 :
当b>0时,直线y=kx+b是由
A
直线y=kx向上平移b个单位长
度得到的;
当b<0时,直线y=kx+b是由
B
直线y=kx向下平移|b|个单位
长度得到的.
一次函数y=kx+b(k、b为常数,且k≠0)的图象与性质:
要点三、待定系数法求一次函数解析式
一次函数y=kx+b(k,b是常数,k≠0)中有两个待定系数k, b,需要两个独立条件确定两个关于k,b的方程,这两个条件通 常为两个点或两对x,y的值.
要点诠释:先设出函数解析式,再根据条件确定解析式中未知数 的系数,从而具体写出这个式子的方法,叫做待定系数法.
值或一个非原点的点,就可以求得值.
2
正比例函数的图象与性质:
对比学习
要点一、一次函数的定义
一般地,形如y=kx+b(k,b是常数,k≠0)的函 01 数,叫做一次函数.
要点诠释:当b=0时,y=kx+b即y=kx,所以说正 02 比例函数是一种特殊的一次函数.一次函数的定义是
三角函数的图像和性质

当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的图像与性质
函数是数学领域中的重要概念,它描述了两个集合之间的对应关系。
函数的图像是指函数的输入与输出之间的关系在坐标平面中所形成的
图形。
函数的图像不仅反映了函数的性质,还能帮助我们更好地理解
和应用函数。
一、函数的图像
函数的图像可以通过绘制函数的图表或者绘制函数的曲线来展示。
在绘制函数的图像时,我们通常使用直角坐标系,其中横轴表示函数
的输入,纵轴表示函数的输出。
例如,考虑函数f(x) = x^2,我们可以通过选取不同的x值,计算出对应的f(x)值,并将这些点在坐标平面上连接起来,就得到了函数f(x) = x^2的图像。
这个图像是一个抛物线,开口朝上,并且经过点(0,0)。
二、函数的性质
函数的图像可以反映函数的一些重要性质,例如函数的定义域、值域、奇偶性、单调性等。
1. 定义域和值域:函数的定义域是指函数的输入可能取值的范围,
而值域是指函数的输出可能取值的范围。
通过观察函数的图像,我们
可以确定函数的定义域和值域。
2. 奇偶性:一个函数被称为奇函数,当且仅当对于任意的x,有f(-x) = -f(x);一个函数被称为偶函数,当且仅当对于任意的x,有f(-x) = f(x)。
通过观察函数的图像,我们可以确定函数的奇偶性。
3. 单调性:一个函数在其定义域内的某个区间上是增函数,当且仅当对于任意的x1 < x2,有f(x1) < f(x2);一个函数在其定义域内的某个区间上是减函数,当且仅当对于任意的x1 < x2,有f(x1) > f(x2)。
通过观察函数的图像,我们可以确定函数的单调性。
三、函数图像的应用
函数的图像不仅仅是一种美观的几何形状,它还能帮助我们更好地理解和应用函数。
1. 函数的最值:通过观察函数的图像,我们可以确定函数的最大值和最小值。
最大值和最小值对于解决实际问题和优化函数的应用非常重要。
2. 函数的零点:函数的零点是指使得函数等于零的输入值。
在函数的图像上,零点对应的是函数与横轴的交点。
通过观察函数的图像,我们可以确定函数的零点,并且根据实际问题对函数进行求解。
3. 函数的变化趋势:通过观察函数的图像,我们可以了解函数在不同区间上的变化趋势,从而对函数的性质和解决实际问题有更深入的认识。
总结:
函数的图像是函数的重要表现形式,它能够直观地反映函数的性质和变化趋势。
通过观察函数的图像,我们可以确定函数的定义域、值域、奇偶性和单调性等重要性质,并且利用函数的图像对函数的应用和问题求解提供了很大的帮助。
因此,对于理解和应用函数来说,熟练掌握函数的图像是至关重要的。