第1讲 一次函数的概念与图像(学生版)

合集下载

4.3一次函数的图象(第1课时)

4.3一次函数的图象(第1课时)
的图象上吗?
都在
(2)正比例函数y=-3x的图象上的点
(x,y)都满足关系式y=-3x吗?
满足
(3)正比例函数y = kx 图象有何特点?
你是怎样理解的?
正比例函数 y = kx (k≠0) 的图象是一
原点(0,0)
直线
条经过 _______________
的_______。
y
5
4
3
2
1
-3 -2 -1 0 1 2 3
(1,5),(-1,5),(0.5,-2.5),(-5,1).
解:将各点的坐标依次代入验证,可知点(-1,5),
(0.5,-2.5)在正比例函数y=-5x的图象上.
2.画出下列正比例函数的图象:
2
2
(1)y 4 x;(2)y x; (3)y x .
3
3
解:三个函数分别列表如下:
(1)
例题讲解
例1 画出正比例函数 y =2x 的图象
解:
y
1. 列表
x … -2 -1 0 1
2 …
y … -4 -2 0
4
2
2. 描点
3. 连线
它是一条直线。

5
4
3
2
1
y=2x
-3 -2 -1 0 1 2 3
-1
-2
-3
-4
x
做一做
议一议
(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x
(1)、当k>0时,图象经过第 一、三
右 上升 ,y的值随着x值得增大而
象限,从左向
增大
;
(2)、当k<0时,图象经过第 二、四 象限,从左向

(完整版)一次函数图象与性质知识点

(完整版)一次函数图象与性质知识点

一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。

(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。

2022高考数学二轮复习讲义:专题1 第1讲 函数的图象与性质(学生版)

2022高考数学二轮复习讲义:专题1 第1讲 函数的图象与性质(学生版)

2022高考数学二轮复习讲义 专题一 第1讲 函数的图象与性质【要点提炼】考点一 函数的概念与表示 1.复合函数的定义域(1)若f(x)的定义域为[m ,n],则在f(g(x))中,m ≤g(x)≤n ,从中解得x 的范围即为f(g(x))的定义域.(2)若f(g(x))的定义域为[m ,n],则由m ≤x ≤n 确定的g(x)的范围即为f(x)的定义域. 2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.【热点突破】【典例1】 (1)若函数f(x)=log 2(x -1)+2-x ,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .(1,2]B .(2,4]C .[1,2)D .[2,4)(2)设函数f(x)=⎩⎪⎨⎪⎧2x +1,x ≤0,4x,x>0,则满足f(x)+f(x -1)≥2的x 的取值范围是________.【拓展练习】(1)已知实数a<0,函数f(x)=⎩⎪⎨⎪⎧x 2+2a ,x<1,-x ,x ≥1,若f(1-a)≥f(1+a),则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,-1] C .[-1,0)D .(-∞,0)(2)(多选)设函数f(x)的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f(x)=-f(y)成立,则称函数f(x)为“H 函数”.下列为“H 函数”的是( )A .y =sin xcos xB .y =ln x +e xC .y =2xD .y =x 2-2x【要点提炼】考点二 函数的性质 1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有: f(x)是偶函数⇔f(-x)=f(x)=f(|x|); f(x)是奇函数⇔f(-x)=-f(x).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心或对称轴(1)若函数f(x)满足关系式f(a +x)=2b -f(a -x),则函数y =f(x)的图象关于点(a ,b)对称.(2)若函数f(x)满足关系式f(a +x)=f(b -x),则函数y =f(x)的图象关于直线x =a +b2对称.【热点突破】考向1 单调性与奇偶性【典例2】 (1)(2020·新高考全国Ⅰ)若定义在R 上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3](2)设函数f(x)=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2 021的值为________.考向2 奇偶性与周期性【典例3】(1)定义在R 上的奇函数f(x)满足f ⎝ ⎛⎭⎪⎫x +32=f(x),当x ∈⎝ ⎛⎦⎥⎤0,12时,f(x)=()12log 1x -,则f(x)在区间⎝ ⎛⎭⎪⎫1,32内是( ) A .减函数且f(x)>0 B .减函数且f(x)<0 C .增函数且f(x)>0D .增函数且f(x)<0(2)已知定义在R 上的函数f(x)满足:函数y =f(x -1)的图象关于点(1,0)对称,且x ≥0时恒有f(x +2)=f(x),当x ∈[0,1]时,f(x)=e x-1,则f(2 020)+f(-2 021)=________. 【拓展练习】 (1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于( ) A .-50 B .0 C .2 D .50(2)(多选)关于函数f(x)=x +sin x ,下列说法正确的是( ) A .f(x)是奇函数 B .f(x)是周期函数C .f(x)有零点D .f(x)在⎝⎛⎭⎪⎫0,π2上单调递增【要点提炼】考点三 函数的图象1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.【热点突破】考向1 函数图象的识别【典例4】 (1)(2020·衡水模拟)函数f(x)=x ·ln |x|的图象可能是( )(2)已知某函数图象如图所示,则此函数的解析式可能是( )A .f(x)=1-ex1+e x ·sin xB .f(x)=e x-1e x +1·sin xC .f(x)=1-ex 1+e x ·cos xD .f(x)=e x-1e x +1·cos x考向2 函数图象的变换及应用【典例5】 (1)若函数y =f(x)的图象如图所示,则函数y =-f(x +1)的图象大致为( )(2)已知函数f(x)=⎩⎪⎨⎪⎧2x-1,x ≤0,-x 2-3x ,x>0,若不等式|f(x)|≥mx -2恒成立,则实数m 的取值范围为( )A .[3-22,3+22]B .[0,3-22]C .(3-22,3+22)D .[0,3+22]【拓展练习3】 (1)(2020·天津市大港第一中学模拟)函数y =2|x|sin 2x 的图象可能是( )(2)已知函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln x +1,x>0,若存在x 0∈R 使得f(x 0)≤ax 0-1,则实数a 的取值范围是( ) A .(0,+∞)B .[-3,0]C .(-∞,-3]∪[3,+∞)D .(-∞,-3]∪(0,+∞)专题突破一、单项选择题1.函数y =-x 2+2x +3lg x +1的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]2.设函数f(x)=⎩⎪⎨⎪⎧log 21-x ,x<0,22x -1,x ≥0,则f(-3)+f(log 23)等于( )A.112B.132C.152D .103.设函数f(x)=4x23|x|,则函数f(x)的图象大致为( )4.设函数f(x)=⎩⎪⎨⎪⎧2|x -a|,x ≤1,x +1,x>1,若f(1)是f(x)的最小值,则实数a 的取值范围是( )A .[-1,2)B .[-1,0]C .[1,2]D .[1,+∞)5.(2020·抚顺模拟)定义在R 上的偶函数f(x)满足f(x +2)=f(x),当x ∈[-1,0]时,f(x)=-x -2,则( )A .f ⎝ ⎛⎭⎪⎫sin π6>f ⎝⎛⎭⎪⎫cos π6 B .f(sin 3)<f(cos 3)C .f ⎝ ⎛⎭⎪⎫sin 4π3<f ⎝ ⎛⎭⎪⎫cos 4π3D .f(2 020)>f(2 019) 6.定义新运算:当a ≥b 时,a b =a ;当a<b 时,ab =b 2.则函数f(x)=(1x)x -(2x),x ∈[-2,2]的最大值为( )A .-1B .1C .6D .127.(2020·全国Ⅱ)设函数f(x)=ln|2x +1|-ln|2x -1|,则f(x)( )A .是偶函数,且在⎝ ⎛⎭⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递增D .是奇函数,且在⎝⎛⎭⎪⎫-∞,-12单调递减 8.已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则i 等于( ) A .0 B .m C .2m D .4m 二、多项选择题9.若函数f(x),g(x)分别是定义在R 上的偶函数、奇函数,且满足f(x)+2g(x)=e x,则( ) A .f(x)=e x+e-x2B .g(x)=e x -e-x2C .f(-2)<g(-1)D .g(-1)<f(-3)10.(2020·福州质检)已知函数f(x)=⎩⎪⎨⎪⎧x 2+32x ,x ≥0,x 2-32x ,x<0,则( )A .f(x)是偶函数B .f(x)在[0,+∞)上单调递增C .f(x)在(-∞,0)上单调递增D .若f ⎝ ⎛⎭⎪⎫1a ≥f(1),则-1≤a ≤111.符号[x]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数f(x)=x -[x],则下列命题正确的是( ) A .f(-0.8)=0.2B .当1≤x<2时,f(x)=x -1C .函数f(x)的定义域为R ,值域为[0,1)D .函数f(x)是增函数、奇函数12.已知函数f(x)的定义域为R ,且f(x +1)是偶函数,f(x -1)是奇函数,则下列说法正确的是( ) A .f(7)=0B .f(x)的一个周期为8C .f(x)图象的一个对称中心为(3,0)D .f(x)图象的一条对称轴为直线x =2 019 三、填空题13.(2020·江苏)已知y =f(x)是奇函数,当x ≥0时,f(x)=23x ,则f(-8)的值是________. 14.已知定义在R 上的函数f(x)满足f(x +2)=-1f x,当x ∈(0,2]时,f(x)=2x +1,则f(2 020)+f(2 021)的值为________.15.对于函数y =f(x),若存在x 0使f(x 0)+f(-x 0)=0,则称点(x 0,f(x 0))是曲线f(x)的“优美点”.已知f(x)=⎩⎪⎨⎪⎧x 2+2x ,x<0,kx +2,x ≥0,若曲线f(x)存在“优美点”,则实数k 的取值范围是________________.16.(2020·全国Ⅲ)关于函数f(x)=sin x +1sin x 有如下四个命题:①f(x)的图象关于y 轴对称; ②f(x)的图象关于原点对称;③f(x)的图象关于直线x =π2对称; ④f(x)的最小值为2.其中所有真命题的序号是________.。

《一次函数》PPT(第一课时)

《一次函数》PPT(第一课时)
(1)有人发现 , 在20~25 ℃时蟋蟀每分钟鸣叫次数
c与温度t(℃)有关 ,即c的值约是t的7倍与35的差 .
(1)c=7t-35 2 0 ≤ t ≤ 2 5
自变量t的取值范围是多 少?
思考:
下列问题中 , 变量之间的对应关系是函数关系吗 ? 如果是 , 请写出函数解析式 , 这些函数解析式有哪 些共同特征 ?
画函数图象有哪些步 骤来着?
x
y=-6x y=-6x+5
… -2 -1 0 1
2…
… 12 6 0 -6 -12 …
… 17 11 5 -1 -7 …
. y=-6x
y
.8 6
4
-3
-2
.. 2
-1
1
2
x
3
-2
.. -4
y=-6x+5
-6
-8
相同点: 1.这两个函数的图象形状都是
直线
, 并且倾斜程度 相同 .
y随x的增大 而增大
y随x的增大 而减小
y
二,三,
0 x 四象限
函数图象从 左往右下降 趋势
y随x的增大 而减小
人教版数学八年级下册
感谢您的观看
1
2
x
3
-8
y=-6x-4
你知道正比例函数图象与一次函数 图象的关联了么?
它可以看作由直线y=kx平移∣ b∣个长度单 位而得到。 当b>0时,向上平移;
当b<0时,向下平移
一次函数图象 图像经 图象变化 y与x的关
过象限 趋势

当 k<0
b<0
y=y -6x-8与y=-6x-4
这的0 k两与个xb函二四有数,象什解三限么,析共式从右下同里左图降往象趋

一次函数的概念,图像与性质

一次函数的概念,图像与性质

北辰教育学科老师辅导讲义学员姓名:金宇洋年级:初二辅导科目:数学学科教师:陆军授课日期 3.22 授课时段12:50-14:50授课主题一次函数的概念,图像与性质教学内容知识梳理:第一节知识点1:一次函数的概念:一般地,函数解析式为)0(≠+=k b k b kx y 都为常数,且、叫做一次函数。

当0=b 时,一次函数b kx y +=就成为)0(≠=k k kx y 为常数,叫做正比例函数,常数k 叫做比例系数。

常值函数:函数y=c(c 为常数)定义域:即为x 的取值范围,通常情况下定义域为R 。

(注意在应用题中,通常因为实际情况定义域有范围)第二节知识点2:一次函数的图像:定义域为R ,为一条直线。

定义域不为R ,可能是射线或者线段。

截距:一条直线与y 轴的交点的纵坐标叫做这条直线在轴上的截距。

为解析式中的b 。

(截距可以为负,距离只能为正)两条一次函数图像的位置关系:设分别为y 1=k 1+b 1,y 2=k 2+b 2当1.k1=k2,b1=b2,两直线重合2.k1=k2,b1≠b2,两直线平行3.k1≠k2,b1=b2两直线交与y 轴同一点4.k1≠k2,b1≠b2两直线相交5.k1+k2=0,b1+b2=0,两直线关于x 轴对称6.k1+k2=0,b1+b2=2b 1=2b 2=2b 2两直线关于y 对称一次函数的平移:原一次函数为y=kx+b,平移后的函数解析式为,:左加右减(针对x),上加下减(针对b)如何理解,可以通过一个点的平移。

或者新函数与旧函数x 的关系来理解。

一次函数图像与一元一次不等式的关系:一次函数y=kx+b 的值大于或小于0时,就能得到一元一次不等式。

不等式的解集对应的便是函数图像位于x 轴上方或者下方时x 的范围(有时解不等式可以通过函数图像数形结合)*拓展知识点:关于一次函数解析式的几种设法斜率概念:用来评价直线倾斜程度的一个量,大小为一次函数中的k ,求值公式,已知(x1,y1),(x2,y2)在直线上,则直线斜率k=1212x x y y --,图像上为直线与x 轴所成角的tan 值 已知斜率k 和截距b :斜截式,设直线为y=kx+b已知斜率k 和一点坐标(y o ,x 0):点斜式,设直线为y-y 0=k(x-x 0)已知两点坐标(y1,x1)(y2,x2):两点式,设直线为121211x x y y x x y y --=--已知x 轴上截距为a,y 轴截距为b.:截距式,设直线为1=+by a x 必要时根据题目条件灵活设解析式,一般设斜截式。

八年级数学寒假班讲义二1讲:一次函数概念及其图像学生版

八年级数学寒假班讲义二1讲:一次函数概念及其图像学生版

,n= 时为正比例函数;
当m
,n=
时为一次函数.
12.直线 y=2x-1 与 x 轴的交点坐标是____________;与 y 轴的交点坐标是_____________.
13.已知点 A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线 y=-x+6 上的点有____________.在直线
A.y1 >y2
B.y1 =y2
C.y1 <y2
D.不能比较
【练习】 1.如果直线 y=kx+b 经过一、二、四象限,
那么有(

A.k>0,b>0; B.k>0,b<0;
C.k < 0,b<0; D.k <0,b>0
2.已知一次函数 y 2 k x 3 的图像经过第一、二、四象限,则实数 k 的取值范围是
.
11.已知函数 y = (m-3)x-2. (1) 当 m___________时,y 随 x 的增大而增大. (2) 当 m___________时,y 随 x 的增大而减小.
12.如果一次函数 y (2 3k)x (k 1) 的函数值 y 随 x 的值的增大而减小,且这个函数的图像不经过第二象限,
那么 k 的取值范围是
13.直线 y 3 1 x 与 x 轴的交点坐标为 ________,与 y 轴的交点为 ______ 2
14.对于一次函数 y=2x+1,y 随着 x 的增大而
.
15.如果直线 y=2x+m 不经过第二象限,那么实数 m 的取值范围是
____
16.若一次函数 y (2 m)x m 的图象经过第一、二、四象限,则 m 的取值范围是________________

5.4一次函数的图象(1)课件

5.4一次函数的图象(1)课件
一次函数的图象
——第一课时
浙教版 八年级上
情感态度和价值观目标
学习 目标 能力目标
知识目标
1.经历作图过程,归纳总结作函数 图象的一般步骤,发展学生的总结 概括能力.
2.已知函数的代数表达式作函数 的图象,培养学生数形结合的意 识和能力.
1.经历函数图象的作图过程,初 步了解作函数图象的一般步骤.
-1
3.连线
-2
-3
新教课学讲目解


4、观察y=2x与y=-3x的图象,它们有什么异同?你能得出一次
函数的图象特点吗?
相同点: 两图象都经过原点
不同点: 函数y=2x的图象经过第一、三象限,从左向右呈上 升状态,函数y=-3x的图象经过第二、四象限,从左 向右呈下降状态。
一次函数的图象特点:
y=2x (-2,-4) (-1,-2)...
y=2x+1 (-2,-3) (0,1)...
新教课学讲目解 3、画一个直角坐标系,并在直角坐标系中画

出这组点。
y
y y=2X+1
5
y=2x
7 6
4
5
3
2
4
1
3
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 -3 -4 -5
x
2
1
-4 -3 -2 -1 0 1 2 3 4 5 x
s=25,这样把自变量t作为点的 50
横坐标,把函数s作为点的纵坐 25
标就得到点(3,25)
0
3 6 6.2
5
甲乙 12 12.5 t(s)
当t=6时,s=50,就得到点(6,50)……,所有这些点就组成 了这个函数的图象。

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.(2019·上海黄浦区·)下列函数中,是一次函数的是( )A .21y x =+B .12y x =-C .23y x =+D .y kx b =+(k 、b 是常数)【答案】C【分析】根据一次函数的定义逐项分析即可.【详解】A . 21y x =+中自变量的次数是2,故不是一次函数; B . 12y x=-中自变量在分母上,故不是一次函数; C . 23y x =+是一次函数;D . 当k=0时,y kx b =+(k 、b 是常数)不是一次函数.故选C .【点睛】本题考查了一次函数的定义,一般地,形如y =kx +b ,(k 为常数,k ≠0)的函数叫做一次函数.2.(2019·上海市敬业初级中学)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A 、正比例函数是一次函数,此选项正确;B 、反比例函数不是一次函数,故此选项正确;C 、如果1y -和x 成正比例,则y-1=kx ,即y=kx+1,那么y 是x 的一次函数,故此选项正确;D 、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D .【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.3.(2020·上海市奉贤区弘文学校八年级期末)正比例函数的图像在第二、四象限内,则点(--1m m ,)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据一次函数图象与系数的关系由正比例函数y =mx 的图象在第二、四象限内得到m <0,则﹣m>0,m −1<0,于是得到点(−m ,m −1)在第四象限.【详解】解:∵正比例函数y =mx 的图象在第二、四象限内,∴m <0,∴-m>0,m −1<0,∴点(-m ,m −1)在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k ≠0),当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;当b >0,图象与y 轴的交点在x 轴上方;b =0,图象过原点;当b <0,图象与y 轴的交点在x 轴下方.4.(2018·上海全国·八年级期中)一次函数y kx k =+的图象可能是( )A .B .C .D . 【答案】A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A 正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b (k ≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.5.(2020·上海徐汇区·八年级期末)若一次函数的图像不经过第三象限,则k b 、的取值范围是( ).A .k ﹤0,0b ≥;B .k ﹥0,b ﹥0;C .k ﹤0,b ﹥0;D .k ﹥0,b ﹤0;【答案】A【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】∵一次函数y kx b =+的图象不经过第三象限,∴直线y kx b =+经过第一、二、四象限或第二、四象限,∴0k <,0b ≥.故选:A .【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数一次函数y kx b=+(0k ≠)的图象与系数k ,b 的关系是解答此题的关键.6.(2018·上海松江区·八年级期中)如图,一次函数y kx b =+的图像经过,两点,那么当3y >时,x 的取值范围是( )A .0x <B .2x <C .1x >D .1x <【答案】D【分析】根据一次函数的图象可直接进行解答.【详解】由函数图象可知,此函数是减函数,当y=3时x=1,故当y>3时,x<1,故选:D.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特点.7.(2019·上海市闵行区明星学校)在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .【答案】B 【分析】根据y 随x 的增大而减小可得a <0,−a >0,然后判断函数图象即可.【详解】解:∵一次函数y =ax-a 中,y 随x 的增大而减小,∴a <0,−a >0, ∴其图象过一、二、四象限,故选:B .【点睛】本题考查了一次函数的图象和性质,根据增减性判断出a <0,−a >0是解题的关键.8.(2020·上海市南汇第四中学八年级月考)一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<【答案】A【分析】根据图像,结合一次函数的性质逐项分析即可.【详解】A . 由图像可知,当0x >时,2y >-,故正确;B . 由图像可知, 当1x ≥时,0y ≥,故不正确;C . 由图像可知, 当1x <时,0y <,故不正确;D . 由图像可知,当0x <时,2y <-,故不正确;故选A .【点睛】本题主要考查函数和不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.(2019·青浦东方中学八年级期中)在函数y =kx (k >0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中正确的是( )A .y 1<0<y 3B .y 3<0<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】A【分析】根据正比例函数的图象性质.【详解】k >0,正比例函数,y 随x 增大而增大.【点睛】正比例函数y=kx (k 图象性质: 0,k >,正比例函数图象过一、三象限和原点,y 随x 增大而增大;0,k <,正比例函数图象过二、四象限和原点,y 随x 增大而减小.二、填空题10.(2020·上海嘉定区·八年级期末)已知一次函数,那么()1f -=______.【答案】1-【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.11.(2019·上海市闵行区明星学校)如果y关于x 的函数y=(k-1)x+1是一次函数,那么k 的取值范围是______.【答案】k ≠1【分析】根据一次函数的定义条件求解即可.【详解】解:∵y =(k -1)x+1是一次函数,∴k -1≠0,即k ≠1,故答案为:k ≠1.【点睛】本题主要考查了一次函数的定义,属于基础题,注意掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0.12.(2020·上海市静安区实验中学八年级期中)已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.【答案】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.(2019·上海).已知函数y=(k+2)x+k 2﹣4,当k _________ 时,它是一次函数.【答案】﹣2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(k+2)x+k 2﹣4是一次函数,∴k+2≠0,即k ≠﹣2.故答案为:≠﹣2.【点睛】本题考点:一次函数的定义,正确把握定义是解题的关键.14.(2019·上海)根据图中的程序,当输入x=-3时,输出结果y =________.【答案】1【分析】根据题意可知当x=-3≤1时,应代入函数y=x+4,然后求解即可.【详解】解:∵x=-3≤1,∴当x=-3时,y= x+4=﹣3+4=﹣1.故答案为:﹣1.【点睛】本题主要考查一次函数,解此题的关键在于理解题意,根据自变量的取值范围选择正确的函数进行求解.15.(2019·上海)若298y m x x =-+表示一次函数,则m 满足的条件是__________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 一次函数的概念与图像
知识精要
一、一次函数的概念
1、概念:一般地,解析式形如y kx b =+(k 、b 是常数,且0k ≠)的函数叫做一次函数。

定义域:一切实数。

2、一次函数与正比例函数的关系:
正比例函数一定是一次函数,但一次函数不一定是正比例函数。

3、常值函数
一般的,我们把函数()
y c c =为常数叫做常值函数。

二、一次函数的图像 1、画法:列表、描点、连线
2、直线的截矩:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距。

3、一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到:
当0b >时,向上平移b 个单位;当0b <时,向下平移b 单位。

4、已知两直线111y k x b =+和222y k x b =+
1)12k k ≠⇔两直线相交
2)1212k k b b =≠⇔且两直线平行
3)1212k k b b ==⇔且重合
5、一次函数与一元一次不等式的关系:
由一次函数y kx b =+的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式0kx b +>(或0kx b +<)。

在一次函数y kx b =+的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式0kx b +>(或0kx b +<)的解集。

精解名题
例1、直线2y x =-与y 轴交于点A ,直线y kx b =+与y 轴交于点B ,且与2y x =-交于点C ,已知点C 点纵坐标为1,且S △ABC =9,求k 与b 的值。

例2、一次函数y kx b =+的自变量的取值范围是-3 ≤x ≤6,相应函数值的取值范围是
-5≤y≤-2,求这个一次函数的解析式。

例3、 已知:一条直线经过点A (0,4)、点B (2,0),将这条直线向左平移与x 轴负半轴、y 轴负半轴分别交于点C 、点D ,使DB =DC 。

求:以直线CD 为图象的函数解析式
例4、如图,直线L :22
1
+-
=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点 C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。

(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。

巩固练习
1、下列函数中,是一次函数的有( )个 △y=x; △x y 3=
;△65+=x y ;△1
1-=x y ;△23x y =. A.1 B.2 C.3 D.4
2、下列哪个点在一次函数43-=x y 上( ) A.(2,3) B.(-1,-1) C.(0,-4) D.(-4,0)
3、一次函数y=-2x+3的图像所经过的象限是( )
A.一、二、三
B.二、三、四
C.一、三、四
D.一、二、四 4、如图所示,表示直线y=-x -2的是( )
2
-2-2
2
-2
-2
22
D
C
B
A
y
x
O
y
x
O y x
O O x
y
5、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( )
A .y 1>y 2
B .y 1>y 2 >0
C .y 1<y 2
D .y 1=y 2
6、一次函数y=kx+b 的图像经过第一、三、三、四象限,则( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b <0 D.k <0,b >0
7、已知正比例函数y=kx 的图像经过第一、三象限,则一次函数y=kx -k 的图像可能是图中的( )
8、一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )和燃烧时间
t (小时)之间的函数关系用图像可以表示为图4中的( )
9、一次函数y=kx+b 的图像经过点(12+m ,1)和(-1,12
+m )(m≠0),则k 、b 应满足的条件是( )
A.k >0,b >0
B.k >0,b <0
C.k <0,b <0
D.k <0,b >0
10、小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留
10分钟,继续骑了5分钟到书店.图5中的哪一个图象能大致描述她去书店过程中离书店...
D
C B A y
x
O
y
x
O
y
x
O
O
x
y
D
B
A
的距离...s (千米)与所用时间t (分)之间的关系( )
11、已知y m +与()
,x n m n +为常数成正比例, (1) 判断y 与x 成什么函数关系;
(2)如果当3x =时,y =5;当x =5时,y =11, 求y 与x 的函数关系式。

12、已知一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应函数值y 的取值范围
是119y -≤≤,求此函数的关系式。

13、已知直线1l 过点A(0,2)及C(1,1)直线2l 过点B (0,-2)及点C
(1) 求直线1l 和直线2l 的函数解析式;
(2)当x 为何值时,
12
y y =?
12
y y >?
12
y y <?
(3)当x 为何值时,不等式组12
0y y >⎧⎨>⎩成
14、已知直线23y x =+与直线21y x =--,(1)求两直线与y 轴交点A ,B 的坐标; (2)求两直线交点C 的坐标;(3)求ABC ∆的面积。

15、在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12
y x
=
的图象经过点A . (1)求点A 的坐标;
(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式.
热身练习
1、函数39y x =-+的截距是 ,它与x 轴的交点坐标为
2、一次函数y kx b =+的图像经过点(1,5),交y 轴于点(0,3),则k= ,b=
3、若点(2m,m+3)在函数1
22
y x =-
+的图像上,则m= 4、直线36y x =+与坐标轴围成的三角形的面积为
5、若直线y =
2
x
+n 与y =mx -1相交于点(1,-2),则( ). A. m =
12,n =-52 B. m =
1
2
,n =-1 C. m =-1,n =-
52 D. m =-3,n =-32
6、已知一次函数的图像经过点(-1,3)和点(2,-3),
y
x
O
(1)求一次函数的解析式;
(2)判断点(-2,5)是否在该函数的图像上。

7、已知函数()()243y m x n =++-,求
(1)当n m ,为何值时,函数图像与y 轴的交点在x 轴下方? (2)n m ,为何值时,函数图像经过原点?
自我测试
1、直线24y x =-+经过点 与点
2、函数53y x =-,当2x =时,y = ;当7y =时,x = 。

3、在同一坐标系中,直线2y x =-与直线23y x =-+的位置关系是 。

4、将直线132
y x =-+向下平移3个单位,得到直线y = 。

5、在同一直角坐标系中,直线3y x =-+和直线23y x =-+都经过点 。

6、将直线45y x =-向上平移7个单位,得到直线 。

7、已知函数3m b y x b -=+是正比例函数,则m = ,b = 。

8、一次函数y kx b =+的图像经过点(1,1)-,且与直线25y x =-+平行,则此一次函数的解析式为 。

9、已知2y +与x 成正比例,且1x =时,6y =-,则y 与x 的函数关系式是
10、已知23y -与31x +成正比例,且2x =时,5y =,(1)求y 与x 之间的函数关系式,并指出它是什么函数。

(2)当1x >-时,求函数y 的取值范围。

11、已知正比例函数1y k x =的图像与一次函数29y k x =-的图像交于点P (3,-6),
(1)求12,k k 的值;(2)如果一次函数29y k x =-的图像与x 轴交于点A ,求∆AOP 的面积。

12、已知A(8,0)及在第一象限的动点P (x,y),且10x y +=,设△OPA 的面积为S.
(1)求S关于x的函数解析式;(2)求x的取值范围;
(3)求S=12时P点坐标。

相关文档
最新文档