三极管
三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。
三极管的概念

三极管的概念
三极管的概念:
三极管,也称为双极型晶体管或晶体三极管,是一种控制电流的半导体器件。
其主要功能是将微弱信号放大成幅度值较大的电信号,同时也用于实现无触点的开关操作。
三极管通常由一个N型半导体和一个P型半导体组成的两个PN结构成,这两个PN结将半导体基片分割成三个区域:基区、发射区和集电区。
基区位于中间,两侧分别为发射区和集电区。
三极管的结构包括三个端子,分别是基极(用字母b表示)、集电极(用字母c表示)和发射极(用字母e表示)。
这些端子允许电流从一个区域流向另一个区域,从而实现了信号的放大和切换功能。
三极管的工作状态可以是放大状态,此时它起到放大作用;也可以是饱和状态,这时它可以作为开关使用。
三极管是电子电路的核心元件,广泛应用于各种电子设备中,包括放大器、振荡器、开关电路以及稳压器等。
此外,根据三极管的类型不同,可以分为NPN型和PNP型。
在使用三极管时,可以通过对其电流放大系数的测量来确定其好坏,这个系数通常用符号β表示。
总结来说,三极管是一种能够控制电流的半导体设备,主要用于信号放大和开关应用,它是电子学中最基本的组件之一。
三极管特性

三极管特性
三极管是一种可以在电力技术中被广泛应用的一种半导体器件,它具有很强的控制和放大能力,因此在电路中有着重要的应用。
本文主要介绍三极管的特性及其电路运用。
一、三极管特性
1.三极管主要由三个极份构成,即正极(P)、负极(N)和控制极(C)。
正极和负极之间构成PN结,它的特性是具有一个可控的双极性,具
有一个控制尖峰,被称为控制极。
2.PN结在通电时,将会发生电流传导,当控制极连接地线时,
由于电场的作用,将产生放大的效果,从而影响PN结的电流传导。
3.三极管有npn和pnp两种类型,当控制极与正极相连时,为npn类型,当控制极与负极相连时,为pnp类型。
4.三极管具有较强的放大能力,可以放大信号,并能控制和调节信号的大小。
二、三极管的电路运用
1.电源放大器:三极管可以用来当作电源放大器,可以放大电源的电压,从而改变电源的电压等级,实现电源放大。
2.稳压器:三极管还可以作为一种稳压器,可以用来调整电路内的电压大小,以便电路在较低稳定电压下工作,使其能够稳定地运行。
3.电流放大器:三极管还可以用作电流放大器,可以把小电流放大为大电流,从而满足电路工作要求。
4.衰减器:三极管还可以用作衰减器,可以使电路的输出信号大
小衰减,从而满足工作要求。
三、总结
三极管是一种常用的半导体器件,它具有强大的控制和放大能力,因此在电路中可以实现电源放大、稳压、电流放大和衰减器等功能。
因此,三极管在电技术中有着广泛的应用。
什么是三极管

什么是三极管三极管,又被称为晶体管,是一种常见的电子元件。
它是一种半导体器件,能够用来放大电流、开关电路或作为电流稳定源。
三极管的结构和工作原理决定了它在电子电路中的重要性和广泛应用。
本文将详细介绍三极管的定义、结构、工作原理以及应用领域。
一、定义三极管是一种包含三个电极的半导体器件,通常由两种不同类型的半导体材料组成。
它的三个电极分别为基极、发射极和集电极。
三极管可用于控制电流流动,并在电子电路中实现信号放大功能。
二、结构三极管的结构由两种类型的半导体材料构成:P型半导体和N型半导体。
这两种材料的结合形成了两个 P-N 结,分别被称为基结和发射结。
其中,发射结夹在基结中间,集电极连接到基结,而发射极连接到发射结。
三、工作原理三极管的工作原理是通过调节基极电流控制集电极电流的大小。
当基极电流很小或者没有流过时,三极管处于截止状态,完全不导电。
当基极电流逐渐增大时,三极管进入放大区。
此时,三极管的集电极电流将正比于基极电流,且比基极电流大很多倍。
当基极电流进一步增大时,三极管会饱和,此时集电极电流不再随基极电流的增大而增大,达到饱和电流后保持不变。
四、应用领域由于三极管具有信号放大和电流控制的特点,因此在电子领域有广泛的应用。
以下是几个常见的三极管应用领域:1. 放大器: 三极管可以作为放大电路的关键元件,用于放大音频、视频等信号。
通过调节输入信号的电流,可以实现不同增益的放大效果。
2. 开关电路: 三极管可以用作开关电路的控制器。
在开关状态下,三极管可以让电流通过或者阻断,从而实现开关的功能。
3. 正反馈电路: 三极管可以用于正反馈电路的构建,从而实现自激振荡。
在振荡器、发射机等电子设备中都有广泛应用。
4. 电流稳定源: 三极管可以作为电流稳定源,提供一个稳定且可控的电流。
这在一些需要精确电流控制的电路中特别有用。
结论通过了解三极管的定义、结构、工作原理和应用领域,我们可以看到三极管在电子电路中的重要性和多功能性。
三极管的相关参数

三极管的相关参数三极管是一种重要的电子器件,广泛应用于电子电路中的放大、开关、斩波等功能。
它具有许多关键参数,下面将详细介绍三极管的相关参数。
1. 最大集电极电流(ICmax):三极管可以承受的最大集电极电流。
超过这个电流极限,三极管可能会损坏。
2. 最大集电极-基极电压(VCEOmax):三极管可以承受的最大集电极到基极的电压。
超过这个电压极限,三极管可能发生击穿。
3. 最大功耗(PDmax):三极管可以承受的最大功耗。
超过这个功耗极限,三极管可能会过热,导致故障。
4. 最大集电极-发射极电压(VCESmax):三极管可以承受的最大集电极到发射极的电压。
超过这个电压极限,三极管可能发生击穿。
5.最大集电极电流放大倍数(hFE):三极管的集电极电流与基极电流之间的比例关系。
它表示三极管的放大能力,通常在工作区域内具有较高的值。
6. 饱和区(Saturation Region):当三极管的基极电流足够大时,集电极-发射极间的电压达到最低值,此时三极管工作在饱和区。
7. 切断区(Cut-off Region):当三极管的基极电压较低时,集电极-发射极间的电压达到最高值,此时三极管工作在切断区。
8. 属性(Transconductance):三极管的输入特性之一,它是指集电极电流变化与基极-发射极电压变化之比,常用单位是毫安每伏特(mA/V)。
9. 剪切频率(Cut-off Frequency):三极管的输出特性之一,它是指在特定放大倍数下,三极管的功耗输出能力降低到原来的一半所对应的频率。
10. 输入电阻(Input Resistance):三极管的输入电阻,也称为基极电阻,是指输入端电压与输入端电流之比。
11. 输出电阻(Output Resistance):三极管的输出电阻,是指输出端电压与输出端电流之比。
12. 射极电阻(Emitter Resistance):三极管的发射极电阻,是指发射极电压与发射极电流之比。
三极管

Vceo
在选择晶体管时, 大约为所用电源电压2倍 在选择晶体管时,Vceo大约为所用电源电压 倍 S8050的Vceo为25V 的
S8050 NPN型三极管参数 型三极管参数
c
Ic
b
Ib Ie
Vce
+
e
最大集电极电流, 最大集电极电流,即流过三极管集电极的最大电流
Icm
在选择晶体管时, 在选择晶体管时,Icm大约为三极管正常工作时流过 集电极最大电流的2倍 集电极最大电流的 倍 S8050的Icm为0.5A 的
Ec = Ic x Rc + Vce
三极管仿真电路分析
Ib、Ic、Vce 波形 波形?
集电极电压V 集电极电压 c
NPN 型 集电极电源Ec 集电极电源
基极电源E 基极电源 b
三极管仿真电路分析
Vo 集电极电压(V) 集电极电压( Ic 集电极电流(mA) 集电极电流(
集电极电压V 集电极电压 c
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
+Vcc
3.R1、R2电阻取值
D IN4007
例如: 例如: 若Vcc=+5V,Ics=50mA,β=100, 且R2=4.7kΩ,计算R1取值。 Vcc-Vbe . . I . b= R 1 5V-0.7V R1 . . . Vbe R2 Ic > β
+Vcc
释放
D IN4007
继电器
c
输入Vi 输入 +Vcc OFF 0V R2 4.7K R1
续流二极管
S8050
b e
用NPN三极管驱动继电器电路图 三极管驱动继电器电路图
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
三极管
I / mA
600 0 20
60
40 20
0 0.4 0.8 U / V
iC
温度对输入特性的影响 600 200
负温度系数。
3、温度每升高 1C, 增 加 0.5%~1.0%。
结论:温度升高,三极 管输入特性曲线左移, 输出特性曲线上移且间 距增大。
iB
O
温度对输出特性的影
uCE
六、三极管的命名方法
三极管的命名由5部分组成,如图1.21所示。其中第二、三 部分各字母含义如表1.10所示。
表1.10 第 二 部 分
第二、三部分各字母含义 第 三 部 分
字
A B C D
母
在以后的计算中,一般作近似处理: = 。
2.集-基极反向截止电流 ICBO
ICBO –
A
+
EC
ICBO是由少数载流子的 漂移运动所形成的电流, 受温度的影响大。 温度ICBO
3.集-射极反向截止电流(穿透电流)ICEO – A + IB=0 ICEO ICEO受温度的影响大。 温度ICEO,所以IC 也相应增加。三极管的 温度特性较差。
截止
反偏 反偏
放大
正偏 反偏
饱和
正偏 正偏
解:
对NPN管而言,放大时VC > VB > VE 对PNP管而言,放大时VC < VB <VE (1)放大区 (2)截止区 (3)饱和区
五、 主要参数
表示晶体管特性的数据称为晶体管的参数,晶体管的参 数也是设计电路、选用晶体管的依据。
1. 电流放大系数,
三极管ppt课件
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
三极管简介
半导体双极型三极管又称晶体三极管,通常简称晶体管或三极管,它是一种电流控制电流的半导体器件,可用来对微弱信号进行放大和作无触点开关。
它具有结构牢固、寿命长、体积校、耗电省等一系列独特优点,故在各个领域得到广泛应用。
基本介绍双极性晶体管(英语:bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件。
双极性晶体管是电子学历史上具有革命意义的一项发明,其发明者威廉·肖克利、约翰·巴丁和沃尔特·布喇顿被授予了1956年的诺贝尔物理学奖。
这种晶体管的工作,同时涉及电子和空穴两种载流子的流动,因此它被称为双极性的,所以也称双极性载流子晶体管。
这种工作方式与诸如场效应管的单极性晶体管不同,后者的工作方式仅涉及单一种类载流子的漂移作用。
两种不同掺杂物聚集区域之间的边界由PN结形成。
双极性晶体管由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。
以NPN晶体管为例,按照设计,高掺杂的发射极区域的电子,通过扩散作用运动到基极。
在基极区域,空穴为多数载流子,而电子为少数载流子。
由于基极区域很薄,这些电子又通过漂移运动到达集电极,从而形成集电极电流,因此双极性晶体管被归到少数载流子设备。
双极性晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。
工作原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
常用三极管参数大全
常用三极管参数大全1.最大耐压(VCEO):指三极管的集电极与发射极之间的最大耐压,也是三极管工作的最高电压。
2.最大漏极电流(ICMAX):指三极管的最大工作电流,超过该电流可能会导致器件损坏。
3. 最大功率(Pmax):指三极管能够承受的最大功率,超过该功率可能会导致器件损坏。
4. 最大集电极-基极电压(VCEMax):指三极管的集电极与基极之间的最大电压,通常用于确定三极管在开关工作状态下的最大电压。
5. 最大基极电流(IBmax):指三极管的最大基极电流,超过该电流可能会导致器件损坏。
6. 饱和区电压下降(VCEsat):指三极管在饱和区时,集电极与发射极之间的电压降。
7. 基极-发射极饱和电压(VBEsat):指三极管在饱和区时,基极与发射极之间的电压降。
8. 输入电阻(hie):指三极管的输入电阻,它与基极电流成正比。
9. 输出电阻(hoe):指三极管的输出电阻,它与输出电流成正比。
10. 增大时间(tf):指三极管从关断状态到导通状态所需的时间。
11. 减小时间(tr):指三极管从导通状态到关断状态所需的时间。
12. 反向转换时间(tfr):指三极管由关断状态转换为导通状态时,极化电容反向充电所需的时间。
13. 正向转换时间(tff):指三极管由导通状态转换为关断状态时,极化电容正向放电所需的时间。
14.最大效率:指在特定工作条件下,三极管从输入功率到输出功率的转换效率。
15.电流放大倍数(β):指三极管中电流放大的倍数,即集电极电流与基极电流之比。
16.最大工作频率(fT):指三极管能够正常工作的最高频率。
上述参数都是三极管常用的重要参数,不同型号的三极管具体数值会有所不同。
在选择三极管时,根据具体需求选择合适的参数是非常重要的。
此外,这些参数在设计电子电路时也起到了至关重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
VC<VB。
VCES——饱和压降
此时IB对IC失去了控制作用, IC≠bIB ,管子处于
饱和导通状态。饱和时的VCE电压记为VCES 。 小功率硅管的 VCES = 0.1~0.3V , 大功率硅管的VCES = 0.5~1V。 相对于电源电压饱和时VCES 很小,C与E之间相当于短路。
2008-9-17 26
2008-9-17 16
UESTC 302
是BJT最重要的器件参数,表征BJT的电流放大能 力,它也只与管子的结构尺寸和掺杂浓度有关,与外 加电压无关。
一般为几十 ~ 几百
1
1
若 = 0.99,则 = 99 小功率硅BJT的IC< 500mA , ICEO≤1A BJT的放大作用,按电流分配实现,故BJT称为电流控 制元件;
§2.1 BJT 原理
一. BJT结构 ( 以NPN晶体管为例 )
金属层
B
E
C
N(集电区) B
P(基区) N(发射区) E
集电结
P N
N+ N型硅片 (衬底)
发射结
C 特点:三区两结三极
2008-9-17
BJT示意图
6
UESTC 302
BJT结构特点
• 发射区的掺杂浓度最高 ( N+ );
• 集电区掺杂浓度低于发射区,且面积大;
2008-9-17
IB/A ③
IB + VBE -
IC + VCE -
①
②
0 0.4 0.6
VBE/V
21
UESTC 302
二、VCE对输入特性曲线的影响 (基区调宽效应) 实际上BJT的输入特性要受到VCE变化的影响
I B f (VBE , VCE )
N
P N + JC JE VCE VBE 0 IB VCE 0V 1V 10V
三、输出特性曲线 输出特性曲线是指当基极电流IB为常数时,输出电路中
集电极电流 IC与集 — 射极间的电压VCE之间的关系曲线。 I C f ( VCE ) I const
B
IC(mA) IC
4
3 2
100 80
60 40
27 C
IB
RB VBB
+ VBE - IE
+ R C VCE VCC
(b) 硅PNP管, (c) 锗PNP管,
2008-9-17
2.2V 5.3V 6V
4V 1.2V 1.4V
①-e ,②-b ,③-c ;
①-c ,②-b ,③-e ; ①-c ,②-e ,③-b 。
11
UESTC 302
三. 内部载流子的传输过程
1. 发射结正偏,发射区
N Je P Jc N
发射结正偏 集电结反偏
IC
VB − VE ≈VBE= − 0.7V(si -PNP)
IC + RC VCE + RB VBE VCC - I E VBB IB C
Ib
Rb B
P N P
E
JC
JE
VC
Vb
NPN管偏置电路
2008-9-17
PNP管偏置电路
9
UESTC 302
正常工作时BJT的管脚与类型判别: NPN —— VC >VB >VE PNP ——VC < VB < VE ①中间电位对应管脚B ; ②NPN管中间电位靠近低电位VE ; ③ PNP管中间电位靠近高电位VE ; ④ VB − VE ≈0.7V为 Si -NPN管 ; VB − VE ≈-0.3V为 Ge -PNP管; .............. 。
2008-9-17 10
V1
V2
V3
UESTC 302
例: 在晶体管放大电路中,测得三个晶体管的各个电极的电 位如图。试判断各晶体管的类型(是NPN管还是PNP管, 是硅管还锗管),并区分e、b、c 三个电极。
9014 9015 9016
(a)
(b)
(c)
2V 2.7V 6V 解: (a) 硅NPN管,
外部条件:发射结正偏,集电结反偏。
IC
以NPN管为例 发射结正偏 VBE≈ 0.7V; 晶体管发射结导通。 集电结反偏 VCB > 0 VCB=VCC − VBE 集电结电场很强。
2008-9-17
C
Ib
Rb B
N P
N
E
JC JE
VC
Vb
8
UESTC 302
对于NPN管: 正常工作时要求VC >VB >VE 而: VB − VE ≈VBE= 0.7V(si -NPN) 对于PNP管: 要求 VC < VB < VE
IB' ——基区复合产生的电流;
ICBO—— JC的反向饱和电流; (O —— Open) IEC——由发射区出发到达集电区形成的电流。
2008-9-17
14
UESTC 302
五. 电流放大系数 一个三极管制定后,发射区发射的电子传输到集电结所 占比例一定,这个比例系数用表示,称为共基极电流放 大系数。 发射极传输到集电极的 电流 定义: 发射极注入电流
BJT有两种类型: NPN晶体管——正极性晶体管
PNP晶体管——负极性晶体管
NPN晶体管
PNP晶体管
互补复合晶体管
两种晶体管在电路中形成互补
2008-9-17 2
UESTC 302
BJT常见外形:
9014
2N2202
小功率晶体管
大功率晶体管
B
C
E
3
2008-9-17
UESTC 302
2008-9-17
IB
IC
+ RC VCE + VBE VCC - IE
电流成正比。因此放大区又
称为线性区、恒流区。
2008-9-17
RB
VBB
27
UESTC 302
§2.3 BJT的主要参数
一.电流放大系数 a). 共射电流放大系数
直流共射电流放大系数
交流共射电流放大系数 由于实际曲线接近于平 行等距
2008-9-17 17
UESTC 302
六. BJT的三种组态
ib 输入
ic
输出
ie
输入
ic 输出
ib
输入
ie
输出
i c = i b
ic = ie
ie= ( +1)ib
共发射极接法,发射极作为公共电极,用CE表示 ;
共基极接法,基极作为公共电极,用CB表示 ;
共集电极接法,集电极作为公共电极,用CC表示。
2008-9-17
IB=0 RB VBE VBB
IC
VCE
IE
RC VCC
25
UESTC 302
2) 饱和区(Saturation region) 饱 输出特性曲线靠近纵 和 区 轴边VCE很小的区域。 条件:发射结正偏, 集电结正偏。 即:VBE >0,VBE > VCE ,
IC(mA)
IB5
IB4 IB3 IB2 iB = IB1 iB=0 VCE(V) VCES
一. 输入特性曲线 输入特性曲线是指当集—射极之间的电压VCE
为某一常数时,输入回路中的基极电流IB与加
在基—射极间的电压VBE之间的关系曲线。
I B f (VBE ) V
CE const
输入特性曲线的三个部分 ① 死区 0<VBE<VTH= 0.4V ② 非线性区 VTH<VBE< 0.6 ③ 线性区VBE > 0.6
2008-9-17 12
UESTC 302
2008-9-17
13
UESTC 302
四. 电流分配关系
根据传输过程可知 IE=IB+ IC IB' - ICBO Rb Vb C
IEC+ ICBO
N JC P J B E N E I + E -
IB= IB' - ICBO
IC= IEC+ ICBO
+ VC −
UESTC 302
§2-1 BJT原理
§2-2 BJT静态特性曲线 §2-3 BJT主要参数 §2-4 BJT小信号模型
2008-9-17
1
UESTC 302
晶体管三极管内有两种载流子(自由电子和空穴)参与 导电,故称为双极型三极管。或BJT (Bipolar Junction Transistor)。
电子不断向基区扩散,
形成发射极电流 IE 。 2. 进入P区的电子少部 分与基区的空穴复合,
IE
e
IC 电子流 c
复合
VEE IB
形成电流 IBE ,多数扩散 到集电结边缘。
b
VCC
3. 基区很薄,从基区扩散来的电子受到集电结强电场作用,漂 移进入集电结而被收集形成 ICE。IC=ICE+ICBO ICE ,ICBO为集 电结反向饱和电流。
1
0 2 4
iB=20(A) iB=0 VCE(V) 6 8
IB= (VBB -VBE)/RB
2008-9-17
输出特性曲线
23
UESTC 302
BJT晶体三极管是一种电流控制器件,其集电极电流 受到基极电流的控制。 BJT的器件模型可等效为电流控 制电流源(CCCS)。
IC=IB
IC IB + VCE + VBE -
IB Rb VBB + VBE -