中考数学复习解应用题提高练习

合集下载

最新九年级数学中考复习:实际问题与二次函数应用题训练含答案

最新九年级数学中考复习:实际问题与二次函数应用题训练含答案

2023年九年级数学中考复习:实际问题与二次函数应用题训练1.某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,每箱水果每降价5元,水果店平均每天可多售出20箱.设每箱水果降价x元.x时,每箱利润___________元,平均每天可售出___________箱水果;(1)当=10(2)设每天销售该水果的总利润为w元.①求w与x之间的函数解析式;①试判断w能否达到8200元,如果能达到,求出此时x的值;如果不能达到,求出w的最大值.2.一名身高为1.8m的篮球运动员甲在距篮筐(点B)水平距离4m处跳起投篮,篮球准确落入篮筐,已知篮球的运动路线是抛物线,篮球在运动员甲头顶上方0.25m处(点A)出手,篮球在距离篮筐水平距离为1.5m处达到最大高度3.5m,以水平地面为x轴,篮球达到最大高度时的铅直方向为y轴,建立如图所示的平面直角坐标系.(1)求篮球运动路线(抛物线)的函数解析式;(2)求篮球出手时,运动员甲跳离地面的高度是多少米?(3)已知运动员乙跳离地面时,最高能摸到3.3运动员乙在运动员甲与篮筐之间的什么范围内能在空中截住球?3.水果店以一定的价格购进某种苹果若干千克,通过销售统计发现:这批苹果从开始销售至销售的第x天的总销量y(千克)与x的关系为二次函数,销售情况记录如表:(1)求y与x的函数关系式;(2)这批苹果多少天才能销售完;(3)水果店为了充实库存,在销售第6天后决定每天又购进20千克该品种苹果,试问再过多少天该品种苹果库存量为244千克?4.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加30元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?5.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场调查发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个,设每个背包的售价为x元.(1)月均销量为_______个;(直接写出答案)(2)当x为何值时,月销售利润为3120元?(3)求月销售利润的最大值.6.某商店决定对某类商品进行降价促销活动.已知进价为每件6元,平时以单价12元的价格售出一天可卖80件.根据调查单价每降低1元,每天可多售出40件;设商品售价x元(售价不低于进价,x为正整数),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的售价x为多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到280元时,求x的值;(3)若商店每卖一件就捐m元(m>0)给希望小学,该店发现售价为11元时可获得最大日利润,求m的取值范围.7.某服装厂生产A品种服装,每件成本为73元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当0<x≤200时,y与x的函数关系式为.(2)零售商到此服装厂一次性批发A品牌服装x(0<x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?(3)政府为服装厂制定优惠政策:当一次性批发服装件数满足0<x≤200时,决定每件服装给与a元的补贴(0<a<13),若此条件下可获得的最大利润为2560元,请求出a的值,写出详细过程.8.汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.(1)设每辆汽车降价x万元,平均每周的销售利润为W万元,试写出W与x的函数关系式,在保证商家不亏本的前提下,写出x的取值范围.(2)当每辆车降价多少万元时,平均每周的销售利润为18万元.(3)当每辆车降价多少万元时,平均每周的销售利润最大?9.某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当25x =时,550y =;当30x =时500y =.物价部门规定,该商品的销售单价不能超过52元/件.(1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)当销售单价定为多少元时,商家销售该商品每天获得的利润最大,并求出最大利润.10.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化如下表同时,销售过程中的其他开支(不含进价)总计30万元.(1)观察并分析表中的y 与x 之间的对应关系,求出y (万个)与x (元/个)的函数解析式;(2)当销售价格为多少元时净得利润最大,最大值是多少?11.某商店销售进价为20元件的某种商品,在第()19x x ≤≤天的售价与销量的相关信息如下表:设销售商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问该商品第几天时,当天销售利润最大,最大利润是多少?(3)现该商店决定每销售1件该商品就捐赠a元(a>0)给贫困地区,在销售的前45天内该商店当日最大利润为3872元,直接写出a的值______.12.中秋节来临前夕,某蛋糕店购进一种品牌月饼,每盒进价是60元,蛋糕店规定每盒售价不得少于70元,根据以往销售经验发现:当售价定为每盒70元时,每天可卖出500盒,每盒售价每提高1元时,每天要少卖出20盒,请解答下列问题:(1)若每盒月饼售价提高20元,求每天可卖出多少盒,销售利润为多少元;(2)设每天的销售利润为y元,每盒售价提高x元(x为整数),求出y与x之间的函数解析式,当每盒售价定为多少元时,每天销售的总利润最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高出78元,如果蛋糕店想要每天获得6000元的利润,那么蛋糕店每天销售月饼多少盒?13.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有50间客房.当每房间每天定价180元时,房间会全部住满;当每房间每天定价每增加10元,就会有一个房间空闲.已知游客所居住的每个房间,合作社每天需支出20元的各种费用,设合作社提供的房间单价为x元,每天游客居住房间数为y间.(1)求y与x之间的函数关系式;(2)房价定为多少时,合作社每天获利最大?最大利润是多少?(3)若该合作社每天想要获得不低于10640元的利润,每天至少要多少个房间有游客居住?14.一商店销售某种商品平均每天可售出20件,每件盈利50元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低一元,平均每天可多售出两件.(1)若每件商品降价2元,则平均每天可售出件;(2)每件商品降价多少元时,该商店每天的销售利润为1600元;(3)当每件商品降价多少元时,该商店每天的销售利润最大,最大值是多少?15.商场某种商品平均每天可销售40件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价促销措施.经调查发现,每件商品每降价1元,商场平均每天可以多售出2件.设每件商品降价x元.请回答:(1)商场日销量将增加件,每件盈利元(用含x的代数式表示).(2)上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达2400元?(3)当每件商品降价多少元时,商场日盈利最大?日盈利最大是多少元?16.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,设每顶头盔的售价为x元,每月的销售量为y.(1)直接写出y与x的函数关系式;(2)若该商店每月获取2500元的利润,则每顶头盔的售价应定为多少?(3)每顶头盔的售价为多少时,该商店每月可获取最大利润?最大利润为多少?17.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系式:y=()5005 30120(515)x xx x⎧≤≤⎨+<≤⎩.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?18.某水果批发店推出一款拼盘水果(盒装),经市场调查表明,若售价为45元/盒,日销售量为110盒,若售价每提高1元/盒,日销售量将减少2盒.设每盒售价为x元(45x≥,且为整数).(1)若某日销售量为90盒,求该日每盒的售价.(2)设每日销售额为W元,求W关于x的函数表达式,并求W的最大值.(3)该水果店每天支付店租m元后(m为正整数),发现最大日收入(日收入=销售额-店租)不超过4880元,并有且只有5种不同的单价使日收入不少于4870元,请写出所有符合条件的m的值.19.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.20.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低 x 元(售价不低于进价),这批商品的日利润为y 元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x 的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a 元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.参考答案:1.(1)50,160(2)①241207200w x x =-++,①不能,8100元2.(1)20.2 3.5y x =-+(2)0.2米(3)乙在运动员距离甲1.5米之内以及篮板0.5米之内能在空中截住球.3.(1)240y x x =-+(2)这批苹果20天才能销售完(3)再过12天该品种苹果库存量为244千克4.(1)8930元(2)300元或400元(3)房价定为350元时,利润最大5.(1)(680-10x )(2)当x 为56或42时,月销售利润为3120元(3)月销售利润最大为3610元6.(1)售价x 为10元时,销售这批商品的日利润最大,最大值为640元(2)7(3)13m <<7.(1)y =﹣110x +100 (2)x 为400时,w 最大,最大值是2800元(3)58.(1)W与x的函数关系式为282432W x x=-++(0≤x≤4);(2)当每辆车降价3.5万元时,平均每周的销售利润为18万元;(3)当每辆车降价1.5万元时,平均每周的销售利润最大.9.(1)y=-10x+800(0<x≤52)(2)40元(3)销售单价定为50元时,商家销售该商品每天获得的利润最大,最大利润为9000元10.(1)y=﹣0.1x+8(2)销售价格定为50元时利润最大,最大值是90万元11.(1)()()22140160014510080004590x x xyx x⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)该商品第35天时,当天销售利润最大,最大利润是4050元(3)212.(1)每天可卖出100盒,销售利润为3000元(2)每盒售价定为77或78元时,每天销售的利润最大,最大利润是6120元(3)蛋糕店每天销售月饼400盒13.(1)y=﹣110x+68(2)房价定为350元时,合作社每天获利最大,最大利润是10890元(3)该合作社每天想要获得不低于10640元的利润,每天至少要28个房间有游客居住14.(1)24(2)当每件商品降价10元时,该商品每天的销售利润为1600元(3)当每件商品降价20元时,该商店每天的销售利润最大,最大值是1800元15.(1)2x,(50﹣x)答案第3页,共3页 (2)每件商品降价20元,商场日盈利可达2400元(3)每件商品降价15元时,商场日盈利最大,最大利润是2450元16.(1)y =﹣20x +1400(2)45元(3)每顶头盔的售价为55元时,该商店每月可获取最大利润,最大利润为4500元17.(1)李明第10天生产的粽子数量为420只;(2)①0≤x ≤5时,w =95x ;①5<x ≤9时,w =57x +228;①9<x ≤15时,w =2372336x x -++;第12天利润最大,最大值为768元;(3)第13天每只粽子至少应提价0.1元.18.(1)55元(2)22200W x x =-+,最大值是5000(3)120或121或12219.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤20.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为112。

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。

2022年中考数学复习冲刺:实际问题与二次函数综合应用题

2022年中考数学复习冲刺:实际问题与二次函数综合应用题

2022年中考数学复习冲刺:实际问题与二次函数综合应用题(每题10分,共120分)1.某食品公司通过网络平台直播,对其代理的某品牌瓜子进行促销,该公司每天拿出2000元现金,作为红包发给购买者.已知该瓜子的成本价格为6元/kg,每日销售y(kg)与销售单价x(元/kg)满足关系式:经销售发现,销售单价不低于成本价格且不高于30元/kg.设该食品公司销售这种瓜子的日获利为w(元).(1)y与x的函数关系式是,x的范围是;w与x的函数关系式是;(2)当销售单价定为多少时,销售这种瓜子日获利最大?最大利润为多少元?(3)网络平台将向食品公司可收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,直接写出a的值.2.某公司分别在A、B两城生产同种产品共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间满足函数关系y=2x2+100x.B城生产产品每件的成本s(万元)与产品数量t(件)满足函数关系s=t+20(1)设A城生产产品的数量有x件,直接用含x的代数式表示下列各量:①B城生产产品的数量为____件;②B城生产产品的总成本为___万元;(2)当A、B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)现把A,B城所生产产品运往C,D两地.从A城运往C、D两地的费用分别是m万元/件和3万元/件;从B城运往C、D两地的费用分别是1万元/件和2万元/件,C地需要90件,D地需要10件,在(2)的条件下,A、B两城的总运费的最小值为120万元,直接写出m的值为______.3.为鼓励大学生毕业后自主创业,我市出台了相关政策:由政府协调,本市企业按成本价提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关政策投资销售本市生产的一种新型“儿童玩具枪”.已知这种“儿童玩具枪”的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=−10x+500.(1)赵某在开始创业的第一个月将销售单价定为22元,那么政府这个月为他承担的总差价为多少元?(2)设赵某获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于26元.如果赵某想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?4.云南丽江华坪县万亩芒果基地创下了“最大规模芒果种植园”的吉尼斯世界纪录,县果批商场计划购进一批芒果,已知该芒果的进价为10600元/t ,在运输和销售的过中有10%的质量损耗,销售中支出的其他费用设销售价为y (元/t ),芒果的质量x (t ).根据上述信息,解答下列问题:(1)求y 与x 之间的函数解析式(解析式也称关系式);(2)当芒果的质量为多少吨时,所获销售利润最大,最大销售利润是多少元?(销售利润=销售收入 -总支出)5.浙江省温州市是全国旅游胜地,2020年受新冠疫情的影响,来温的外来游客在逐年下降. 某景区外来游客人数从2019年的2.25万下降到2021年的1.44万.(1)求2019年到2021年该景区外来游客人数平均每年降低的百分率;(2)该景区要建一个游乐场(如图所示),其中AD 、CD 分别靠现有墙DM 、DN (墙DM 长为27米,墙DN 足够长),其余用篱笆围成.篱笆DE 将游乐场隔成等腰直角CED 和长方形ADEB 两部分,并在三处各留2米宽的大门.已知篱笆总长为54米.①当AB 多长时,游乐场的面积为320平方米?②当AB =______米时,游乐场的面积达到最大,最大为______平方米.6.大桥上正在行驶的甲车,发现正前方27m 处沿同一方向行驶的乙车(此时甲乙>v v )后,开始减速,减速后甲车行驶的路程s (单位:m )与速度v (单位:m/s )的关系式21128(016)2s v v =-+≤≤;甲车行驶的速度v (单位:m/s )与时间t (单位:s )的关系可以用一次函数表示,其图像如图所示.(1)求当甲车减速5s时,它行驶的路程是多少?(2)若乙车一直匀速行驶,经过多长时间两车相距的最近距离是2.5m?7.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.8.某服装店销售一款卫衣,该款卫衣每件进价为60元,规定每件售价不低于进价.经市场调查发现,该款卫衣每月的销售量y(件)与每件售价x(元)满足一次函数关系y=-20x+2800.(1)若服装店每月既想从销售该款卫衣中获利24000元,又想尽量给顾客实惠,售价应定为多少元?(2)为维护市场秩序,物价部门规定该款卫衣的每件利润不允许超过每件进价的50%.设该款卫衣每月的总利润为w(元),那么售价定为多少元时服装店可获得最大利润?最大利润是多少元?9.如图,排球运动场的场地长18m,球网在场地中央且高度为2.24m,球网距离球场左、右边界均为9m.排球发出后其运动路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为hm,当排球运动到水平距离球网3m时达到最大高度2.5m,建立如图平面直角坐标系.(1)当2h 时:①求抛物线的表达式;②排球过网后,如果对方没有拦住球,判断排球能否落在界内,并说明理由;(2)若排球既能过网(不触网),又不出界(不接触边界),求h的取值范围.10.一身高1.8m的篮球运动员在距篮板4m处跳起投篮并命中。

2023年中考数学第一轮复习应用题专项训练

2023年中考数学第一轮复习应用题专项训练

2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。

2021年中考数学复习《中考压轴题:二次函数应用题》经典题型靶向提升练习(四)

2021年中考数学复习《中考压轴题:二次函数应用题》经典题型靶向提升练习(四)

2021年中考数学复习《中考压轴题:二次函数应用题》经典题型靶向提升练习(四)1.某工厂计划投资生产A、B两种产品,根据市场调查与预测,产品A的利润y1(万元)与投资量x(万元)成正比例关系,如图①所示:产品B的利润y2(万元)与投资量x(万元)成顶点在原点的二次函数关系,如图②所示.(1)请直接写出利润y1与y2关于投资量x的函数关系式y1=,y2=;(2)如果工厂以9万元资金投入生产A、B两种产品,要求A产品的投资金额不超过B 的2倍,且不少于3万元,则如何投资该工厂能获得最大利润?最大利润是多少?(3)在(2)问的情况下,工厂要获得不低于18万的利润,工厂要如何投资?2.如图,一座拱桥的轮廓呈抛物线形,拱高6m,跨度为20m,相邻两立柱间的距离均为5m.(1)建立适当的直角坐标系,求这条抛物线的表达式.(2)求立柱EF的长.(3)拱桥下面拟铺设行车道,要保证高3m的汽车能够通过(车顶与桥拱的距离不小于0.3m),行车道最宽可铺设多少米?3.某电器公司推出一款智能空调扇,经市场调研发现,该产品的月销售量y(台)与销售单价x(元)之间满足如图所示的一次函数关系,已知该产品的成本是每台1500元.(1)求出y关于x的函数解析式.(2)设月销售利润为ω(元),求ω关于x的函数解析式,并求出当销售单价定为多少时,月销售利润最大,最大月销售利润是多少,(3)公司开展了技术创新,以降低成本,预计在今后的销售中,月销售量与销售单价仍存在(1)中的函数关系,若想实现当销售单价为1900元时,月销售利润不低于114000元的销售目标,则该产品的成本单价应不超过多少元?4.在长、宽均为45米的十字路口,现遇到红灯,有10辆车依次呈一直线停在路口的交通白线后,每两辆车间隔为2.5米,每辆车长5米,每辆车的速度v(米/秒)关于时间t (秒)的函数(如图1)所示,当绿灯亮起,第一辆车的车头与交通白线的距离s(米)关于时间t(秒)的函数解析式为s=a(t﹣1)2(1≤t≤4),如图2所示当前车启动后,后面一辆车在1秒后也启动.(1)求a的值;(2)当t>4时,求第一辆车的车头与交通白线的距离s(米)关于时间(秒)的函数解析式;(3)当t>4时,求第一辆车和第二辆车在这个十字路口中的最大间距;(第一辆车的车尾和第二辆车的车头哦)(4)绿灯持续时间至少要设置多长才能保证在绿灯期间这十辆车都能通过交通白线.5.【问题实验】如图①,在地面BD上有两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点到地面的距离;(2)如图②,因实际需要,需用一根立柱MN撑起绳子.①若在离AB为4米的位置处用立柱MN撑起,使立柱左侧的抛物线的最低点距MN为1米,离地面1.8米,求MN的长;②将立柱MN来回移动,移动过程中,在一定范围内,总保持立柱MN左侧抛物线的形状不变,其函数表达式为y=x2﹣mx+3,当抛物线最低点到地面距离为0.5米时,求m的值.【问题抽象】如图③,在平面直角坐标系中,函数y =﹣mx +3(x <0)的图象记为M 1,函数y =﹣mx +3(x ≥0)的图象记为M 2,其中m 是常数,图象M 1、M 2合起来得到的图象记为M .设M 在﹣3≤x ≤2上的最低点纵坐标为y 0,当﹣6≤y 0≤2时,直接写出m 的取值范围.6.一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米.(1)按如图所示建立的平面直角坐标系,求抛物线的解析式;(2)小明的这次投篮未能命中篮圈中心,请说明理由;(3)假设出手的角度和力度都不变,请直接回答:小明应该向前走或向后退多少米才能命中篮圈中心?7.某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB =xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)矩形空地的面积能否为164m2,若能,求x的值;不能,请说明理由.8.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,直接写出此时销售单价的取值范围.9.如图1,用长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长为28m,设垂直于墙的一边长为xm,平行于墙的一边长为ym.(1)直接写出y与x满足的函数关系式及x的取值范围;(2)求菜园面积S的最大值;(3)如图2,在菜园内修建两横一竖且宽均为am的小路,其余部分种菜,若种菜部分的面积随x的增大而减小,则a的取值范围为.10.为做好扶贫帮扶工作,某地市政府规定,企业按成本价提供产品给被帮扶对象,成本价与出厂价之间的差价由政府承担,李师傅按照政策投资销售本市生产的一品牌牛奶.已知这种品牌牛奶的成本价为每箱12元,出厂价为每箱16元,每天销售y(箱)与销售单价x(元)之间满足如图所示函数的关系.(1)求y与x之间的一次函数关系式(2)如果李师傅想要每天获得的利润是216元,那么政府每天为他承担的总差价最少为多少元?(3)设李师傅每天获得的利润为w(元),当销售单价为多少元时,每天可获得最大利润?最大利润是多少?参考答案=kx,1.解:(1)由题意设y1∵点P(2,4)在该函数的图象上,∴4=2k,∴k=2,=2x;∴y1=ax2,设y2∵点Q(2,3),∴3=4a,∴a=,∴y 2=x 2.故答案为:2x ;x 2;(2)设投资A 产品x 万元,则投资B 产品(9﹣x )万元,由题意得:,∴3≤x ≤6,∴该工厂能获得的利润为:y 1+y 2=2x +(9﹣x )2=x 2﹣x +=+,∴当x =3时,y 1+y 2取得最大值,最大值是+=33(万元).∴投资A 产品3万元,投资B 产品6万元时,该工厂能获得最大利润,最大利润是33万元;(3)由(2)知,3≤x ≤6,y 1+y 2=+≥18,∴≥18﹣=,∴≥,∴x ﹣≥或x ﹣≤﹣,∴x ≥9或x ≤,∵3≤x≤6,∴当投资A产品不少于3万元且不超过6万元时,工厂获得的利润不低于18万元.2.解:(1)建立直角坐标系,如图所示:设所求抛物线解析式为y=ax2+bx+c,由图可知抛物线过点(﹣10,0)、(10,0)和(0,6),∴解得:.∴所求抛物线的解析式为y=﹣x2+6.(2)根据题意,可知点F在抛物线上,且F的横坐标为5,将x=5代入抛物线解析式,得y=﹣×52+6=4.5.∴EF=8﹣4.5=3.5.∴立柱EF的长为3.5m.(3)设行车道宽为2xm,则车顶与桥拱的距离为(﹣x2+6﹣3)m.根据题意可得﹣x2+6﹣3≥0.3解得﹣3≤x≤3,结合实际,可知0<x≤3,3×2=6,∴行车道最宽可铺设6米.3.解:(1)设y关于x的函数解析式为y=kx+b,将(1800,200)、(2000,180)分别代入,可得:,解得:,∴y关于x的函数解析式为y=﹣0.1x+380(1500<x≤3800);(2)由题意得:ω=(x﹣1500)y=(x﹣1500)(﹣0.1x+380)=﹣0.1x2+530x﹣570000=﹣0.1(x﹣2650)2+132250,∵﹣0.1<0,∴当x=2650时,ω有最大值132250,∴ω关于x的函数解析式为ω=﹣0.1x2+530x﹣570000(1500<x≤3800),当销售单价定为2650元时,月销售利润最大,最大月销售利润是132250元;(3)当x=1900时,y =﹣0.1x +380=﹣0.1×1900+380=190,设该产品的成本单价为m 元,由题意得:(1900﹣m )×190≥114000,解得:m ≤1300.∴该产品的成本单价应不超过1300元.4.解:(1)∵s =a (t ﹣1)2(1≤t ≤4)过(4,22.5),∴9a =22.5,解得:a =;(2)由图1可知,当t =4时,v =15,t >4时,s =22.5+(t ﹣4)×15=15t ﹣37.5, ∴当t >4时,第一辆车的车头与交通白线的距离s (米)关于时间(秒)的函数解析式为s =15t ﹣37.5;(3)当t >4时,v 1=v 2=15,45﹣22.5=22.5,∴t =4++=4++=(秒),∴s 2=15×(﹣1)﹣37.5﹣(2.5+5)=27.5(米),∴最大间距是45﹣27.5=17.5(米).∴当t >4时,第一辆车和第二辆车在这个十字路口中的最大间距是17.5米;(4)间隔为10×5+9×2.5+s ,由题意得:s +9×2.5+15(t ﹣13)≥10×5+9×2.5+s ,解得:t ≥.∴绿灯持续时间至少要设置秒才能保证在绿灯期间这十辆车都能通过交通白线.5.解:【问题实验】(1)∵y =x 2﹣x +3=(x ﹣5)2+,∴抛物线的顶点坐标为(5,),∴绳子最低点到地面的距离为米;(2)①由题意可知,立柱左侧的抛物线的顶点坐标为(3,1.8),∴设y =a (x ﹣3)2+1.8∵抛物线y =x 2﹣x +3与y 轴的交点A 的坐标为(0,3),∴把(0,3)代入,得3=a (0﹣3)2+1.8,∴,∴,∴当x =4时,.∴.②∵抛物线y =x 2﹣mx +3对称轴为x =m ,∴把(m ,0.5)代入中,得:,∴,(舍).【问题抽象】由题意知:抛物线M 1、M 2均过定点(0,3),当m ≥0时,M 1的最低点为(0,3),此时,抛物线M 的最低点在M 2上.当x ≥0时,M 2:y =﹣mx +3的对称轴是x =2m ,①当2m≥2时,即m≥1时,∵当0≤x≤2时,y随x的增大而减小,=×22﹣2m+3=4﹣2m,∴当x=2时,y最小,此时y≤2,∵﹣6≤y∴﹣6≤4﹣2m≤2,解得1≤m≤5;②当0≤2m<2时,即0≤m<1时,∵x的范围是0≤x≤2,=×(2m)2﹣m×2m+3=﹣m2+3,∴当x=2m时y最小,此时y≤2,∵﹣6≤y∴﹣6≤﹣m2+3≤2,解得:1≤m≤3,∵0≤m<1∴此种情况的m的值不存在;当m<0时,M2的最低点为(0,3),此时,抛物线M的最低点在M上,当x<0时,对1:y=﹣mx+3,其对称轴是直线x=m.于M1③当m≤﹣3时,∵当﹣3≤x<0时,y随x的增大而增大,=×(﹣3)2+3m+3=3m+,∴当x=﹣3时,y最小,此时y≤2,∵﹣6≤y∴﹣6≤3m+≤2时,解得:﹣≤m≤﹣,∵m≤﹣3,∴m的范围是:﹣≤m≤﹣3;④当﹣3<m<0时,∵x的范围是﹣3≤x<0,=m2﹣m2+3=﹣m2+3,∴当x=m时,y最小,此时,y≤2,∵﹣6≤y∴﹣6≤﹣m2+3,≤2时,解得:﹣3≤m≤﹣,∵﹣3<m<0,∴﹣3<m≤﹣,综上所述,m的取值范围是:﹣≤m≤﹣或1≤m≤5.6.解:(1)由题意可知,抛物线的顶点坐标为(4,4),球出手时的坐标为(0,),设抛物线的解析式为y=a(x﹣4)2+4,将(0,)代入得:16a+4=,解得:a=﹣,∴y=﹣(x﹣4)2+4;(2)∵y=﹣(x﹣4)2+4,∴当x=8时,y=﹣(8﹣4)2+4=≠3,∴小明的这次投篮未能命中篮圈中心;(3)∵出手的角度和力度都不变,∴设抛物线的解析式为y=﹣(x﹣4+m)2+4,将(8,3)代入得:3=﹣(8﹣4+m)2+4,∴(4+m)2=9,解得:m1=﹣1,m2=﹣7,∵向前走7米,位于篮圈正下方,故舍去.∴小明应该向前走1米才能命中篮圈中心.7.解:(1)AB=xm,则BC=(36﹣2x)m,由题意:y=x(36﹣2x)=﹣2x2+36,∵0<BC≤18,即0<36﹣2x≤18,解得9≤x<18,即y=﹣2x2+36(9≤x<18);(2)由题意:﹣2x2+36x=160,解得x=10或8.∵9≤x<18,故x=10;(3)不能,理由:由题意:﹣2x2+36x=164,即x2﹣18x+82=0,即(x﹣9)2=﹣1<0,故此方程无解,故矩形空地的面积不能为164m2.8.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故函数有最大值,∴当x=55时,w有最大值,此时,w=1250,故销售单价定为55元时,该超市每天的利润最大,最大利润1250元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:40≤x≤70,故销售单价x的取值范围为40≤x≤70.9.解:(1)由题意得:y=60﹣2x,∵墙长为28m,篱笆长为60m,∴0<y≤28,∴0<60﹣2x≤28,∴﹣60<﹣2x≤﹣32,∴16≤x<30,∴y=60﹣2x(16≤x<30);(2)∵y=60﹣2x,∴S=xy=x(60﹣2x)=﹣2x2+60x=﹣2(x﹣15)2+450,∵a=﹣2<0∴开口向下,∵对称轴为x=15,∴当16≤x<30时,S随x增大而减小.∴当x=16时,S有最大值,最大值为448m2;(3)由题意得:S路=2ay+ax﹣2a2,∴S种=S﹣S路=﹣2x2+60x﹣[2a(60﹣2x)+ax﹣2a2]=﹣2x2+60x﹣120a+4ax﹣ax+2a2=﹣2x2+(3a+60)x+2a2﹣120a,∵种菜部分的面积随x的增大而减小,且16≤x<30,∴﹣≤16,∴3a+60≤64,∴3a≤4,∴a≤,又∵a>0,∴0<a≤.10.解:(1)设y=kx+b,根据题意,得:,解得,∴y=﹣3x+90;(2)根据题意,得:(x﹣12)(﹣3x+90)=216,解得:x1=24,x2=18,当x=24时,y=﹣3×24+90=18,此时政府承担的总差价为18×(16﹣12)=72(元);当x=18时,y=﹣3×18+90=36,此时政府承担的总差价为36×(16﹣12)=144(元);答:政府每天为他承担的总差价最少为72元;(3)w=(x﹣12)(﹣3x+90)=﹣3x2+126x﹣1080=﹣3(x﹣21)2+243,∴当x=21时,w取得最大值243,答:当销售单价为21元时,每天可获得最大利润,最大利润是243元.。

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习例1. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.例2. 某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩, 解得:4256x y =⎧⎨=⎩; 答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 型计算器:(70)a -台,则3040(70)2500a a +-,解得:30a ,答:最少需要购进A 型号的计算器30台.例3.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例4.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:3020680 50401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例5. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(9)x -元/条, 根据题意得:312042009x x=-, 解得:35x =,经检验,35x =是原方程的解,926x ∴-=.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200)a -条B 型芯片,根据题意得:2635(200)6280a a +-=,解得:80a =.答:购买了80条A 型芯片.例6. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1(1)81x x x +++=, 整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍去), 2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.例7. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【解答】解:(1)设租用甲车x 辆,则乙车(10)x -辆.根据题意,得4030(10)3401620(10)170x x x x +-⎧⎨+-⎩, 解,得47.5x .又x 是整数,4x ∴=或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为420006180018800⨯+⨯=元;②甲5辆,乙5辆;总费用520005180019000⨯+⨯=元;③甲6辆,乙4辆;总费用为620004180019200⨯+⨯=元;④甲7辆,乙3辆.总费用为720003180019400⨯+⨯=元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.例8. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+,化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意,答:该品牌饮料一箱有10瓶.例9. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得:25000(1)7200x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200(120%)8640x +=⨯+=(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次.例10.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,210000(1)12100x⨯+=,解得10.1x=,22.1x=-(不合题意,舍去);答:捐款增长率为10%.(2)12100(110%)13310⨯+=元.答:第四天该单位能收到13310元捐款.。

一元二次方程、分式方程的解法及应用(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

一元二次方程、分式方程的解法及应用(能力提升)-中考数学基础知识复习和专题巩固提升训练含答案

考向07一元二次方程、分式方程的解法及应用—能力提升【知识梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 方法指导: △≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量. (2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法 去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【能力提升训练】一、选择题1. 已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 2.方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( ) A .0B .1C .2D .33.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ). A .3B .-3C .13 D .13- 4.如果关于x 的方程2313x mx m -=--有增根,则的值等于()A. -3B. -2C. -1D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .9二、填空题 7.方程﹣1=的解为8.关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程052=-+mx x 的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 . 12.当 k 的值是 时,方程 1-x x =xx xk --22 只有一个实数根.三、解答题13.解下列分式方程: (1);(2).14. 若关于x 的方程 12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解.15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A 市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、. (1)求实数k 的取值范围; (2)设kt βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值;(2)若点P 为BC 边上的任意一点,求证1==BQABBP BC .我选做的是_______题.答案与解析一、选择题 1.【答案】D ;【解析】将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a-b=-1(恒为常数).2.【答案】C ;【解析】∵方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根, ∴(a+1)x+a+1=0, 解得x=﹣1, 当x=﹣1时, a=2,故选C . 3.【答案】B ; 【解析】121212113=31x x x x x x ++==--. 4.【答案】B ;【解析】把方程两边都乘以x x m x m -=--∴=+3235,得.若方程有增根,则x=3,即5+m=3,m=-2. 5.【答案】A ;【解析】如图将路平移,设路宽为x 米,可列方程为:(30-x )(20-x )=551, 解得:x=1或者x=49(舍去).6.【答案】C ;【解析】由题意得方程有实数根,则分两种情况, 当a -6=0时,a=6,此时x=34, 当a -6≠0时,△=b 2-4ac≥0,解得a≤263, 综合两种情况得整数a 的最大值是8.二、填空题 7.【答案】x=;【解析】方程的两边同乘2(3x ﹣1),得4﹣2(3x ﹣1)=3,解得x=. 检验:把x=代入2(3x ﹣1)=1≠0. ∴原方程的解为:x=. 8.【答案】2m ≠且1m ≠; 【解析】 △>0且m-1≠0. 9.【答案】m=-4;x 2=5;【解析】由题意得:05)1()1(2=-⨯-+-m 解得m=-4 当m=-4时,方程为0542=--x x 解得:x 1=-1 x 2=5 所以方程的另一根x 2=5. 10.【答案】272(1)56x -=;【解析】平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)11.【答案】-1;【解析】原方程可化为:(a-1)x=-2. ∵分式方程有增根, ∴ x=1 把x=1代入整式方程有a=-1. 12.【答案】 -1,0,3;【解析】原方程可化为:x2+2x-k=0当⊿=22+4k=0,即k=-1时,x1=x2=-1当⊿=22+4k>0,即k>-1时,方程有两个不等实数根.由题意可知: ① 当增根x=0时,代入二次方程有k =0,方程唯一解为x=-2;② 当增根x=1时,代入二次方程有k =3,方程唯一解为x=-3. 所以k=-1,0,3. 三、解答题 13.【答案与解析】解:(1)方程的两边同乘(x+1)(x ﹣1),得2﹣(x+1)=(x+1)(x ﹣1), 解得x=﹣2或1.检验:把x=1代入(x+1)(x ﹣1)=0. x=1是原方程的增根,把x=﹣2代入(x+1)(x ﹣1)=3≠0. ∴原方程的解为:x=﹣2. (2)方程的两边同乘x 2,得 2(x+1)2+x (x+1)﹣6x 2=0, 解得x=﹣或2.检验:把x=﹣代入x 2=≠0. 把x=2代入x 2=4≠0.∴原方程的解为:x 1=﹣,x 2=2. 14.【答案与解析】原方程可化为:kx2-(3k-2)x-1=0 当k=0时,原方程有唯一解 x=21当k≠0时,⊿=(3k -2)2+4k=5k 2+4(k -1)2>0,知方程必有两个不等实数根. 此时由题意可知:一元二次方程两根,一根是分式方程的根,另一根是分式方程的增根0或1. 当x=0时,不符合舍去;当x=1时,代入得k=21,分式方程的解是x=-2. 所以当k=0时,原方程有唯一解x=21;当k=21时,原方程有唯一解x=-2.15.【答案与解析】(1)设A 市投资“改水工程”年平均增长率是x ,则 2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去). 所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.16.【答案与解析】题甲:(1)∵一元二次方程012)2(222=++--k x k x 有实数根βα、, ∴0≥∆,即0)12(4)2(422≥---k k ,解得2-≤k .(2)由根与系数的关系得:k k 24)]2(2[-=---=+βα, ∴2424-=-=+=kk k k t βα, ∵2-≤k ,∴0242<-≤-k, ∴2244-<-≤-k , 即t 的最小值为-4.题乙:(1)四边形ABCD 为矩形,∵AB =CD ,AB ∥DC ,∴△DPC ∽△QPB , ∴31==CP PB DC BQ , ∴BQ DC 3=, ∴4333=+=BQ BQ BQ BQ AB . (2)证明:由△DPC ∽△QPB , 得BPPC BQ DC =, ∴BP PC BQ AB =,11=-+=-+=-BQ AB BP PC BQ AB BP PC BP BQ AB BP BC .。

2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)

2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)

2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价是1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元,答:小英家5月份水费69吨.2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?【解答】解:(1)设y与x之间的一个函数关系式为y=kx+b,则,解得.故函数关系式为y=﹣2x+112;(2)依题意有w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,故每千克售价为38元时,每天可以获得最大的销售利润;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m千克,则≤30﹣5,解得:m≤1300.故一次进货最多只能是1300千克.5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.少是226万元.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B 两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【解答】解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元;(2)设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元.9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y=50x﹣1100,1随x的增大而增大,∵y1的最大值为50×100﹣1100=3900;∴当x=100时,y1当x>100时,y=(50﹣)x﹣11002=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,的最大值为5025,当x=175时,y25025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a)辆,获利y 元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x 千克,采摘茄子y 千克,根据题意,得黄瓜的种植成本是1元/kg,售价是1.5元/kg ;茄子的种植成本是1.2元/kg,售价是2元/kg .+y=40+1.2y=42.=30=10.答:采摘黄瓜30千克,采摘茄子10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:采摘的黄瓜和茄子可赚23元.14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,购买乙种树苗y棵,由题意,得,解得:,答:购买甲种树苗500棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(100﹣a)棵,由题意,得100a≥200(600﹣a),解得:a≥400.答:至少应购买甲种树苗400棵16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习解应用题提高练习
1、在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
(1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,用哪种方式购票更省钱?
2、某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗
每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.
(1)求购买甲、乙两种树苗各多少棵?
(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?
3、某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售
价如表所示:
类别成本价(元/箱)销售价(元/箱)
甲2535
乙3548
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这500箱矿泉水,可获利多少元?
4、某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
(1)求购买一个A商品和一个B商品各需要多少元;
(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
5、某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进
价、标价如下表所示.
A型B型
类型
价格
进价(元/盏)4065
标价(元/盏)60100
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
6、某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已
知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
7、政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色
农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?
(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
8、为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.
(1)求去年每千克小龙虾的养殖成本与售价;
(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?
9、整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,某市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.
(1)求复耕土地和改造土地面积各为多少亩?
(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小
,求休闲小广场总面积最广场,要求休闲小广场总面积不超过花卉园总面积的1
3
多为多少亩?
10、为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
11、在青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.
12、益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低。

马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B 产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
品种A B
原来的运费4525
现在的运费3020
(1)求每次运输的农产品中A,B产品各有多少件?
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?
13、随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
14、某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化
妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?
如何进货?
15、某校初三(2)班准备召开毕业联欢会,派小晓和小莉两位同学去超市买10
千克水果.已知该超市的苹果每千克6元,桔子每千克3.6元,她俩决定买这两种水果.
(1)她俩一共带了48元钱,如果全部用掉,能买这两种水果各多少千克?(2)小莉事先调查了全班同学对这两种水果的喜好,决定所买苹果的数量不
.请你帮她俩计算一下,就按这个超过桔子的数量,但又不少于桔子数量的1
3
决定,两种水果各买多少千克时,所用钱数最少,这时用了多少钱?
16、为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?
17、某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老
师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
问平安客运公司60座和45座的客车每辆每天的租金分别是多少元?。

相关文档
最新文档