2013全国中学生高中数学竞赛二试模拟训练题(41)
2013全国中学生高中数学竞赛二试模拟训练题(2)

加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值.2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 11213、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值. 解:令112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 1121 证明: 设a a ab b b n n ,,,,,,2121 是的从小到大的有序排列,即 b b b n ≤≤21,因为b i是互不相同的正整数.则n b b b n ≥≥≥,,2,121又因为n 222111132>>>>所以由排序不等式得:n a a a n 22212+++ (乱序) n bb b n22212+++≥ (倒序) n 1211+++≥即 ∑∑==≥n k n k k k k a 1121 成立. 3、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.【证】 将人看作平面上的点,得到一个有3n +1个点的图(假定任意三点都不在一直线上),当两个人玩网球或象棋或乒乓球时,我们就在相应的两点之间连一条红线或黄线或蓝线,需要证明的是,一定存在一个三条边的颜色互不相同的三角形.自一点引出的3n 条线段中,如果某两条线段的颜色不同,就称它们构成一个“异色角”.考虑异色角的个数.由于自每一点引出n 条红线,角形中有3个异色角.这个三角形的三条边颜色互不相同,即相应的三个人之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
2013全国中学生高中数学竞赛二试模拟训练题(10)(附答案)

加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
2、已知),0(,,∞+∈z y x ,且1=++z y x ,证明:274222≤++x z z y y x 成立的条件.3.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?4.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.加试模拟训练题(10)1、已知凸四边形ABCD , ,AB DC 交于点P , ,AD BC 交于点Q ,O为四边形 ABCD 内一点,且有 BOP DOQ ∠=∠,证明180AOB COD ∠+∠=︒。
证明 设 BOP DOQ α∠=∠=,则()sin sin,sin sin AOD QD AQOQD OD OQD OAαα+∠==∠∠,从而有()sin sin AOD AQ OD OA QDαα+∠=。
类似地,有()sin sin AOB AP OBOA BP αα+∠=,因此有()()sin sin AOD AQ OD BP AOB AP OB QD αα+∠=+∠。
同理,由()sin sin ,sin sin COD BOQ BQ QC OQB OB OQB OCα∠-∠==∠∠,可得()()sin sin ,sin sin COD BOC QC OB PC ODBOQ OC BQ DOP OC PDαα∠-∠-==∠∠,因此有()()sin sin COD QC OB PDBOC PC OD QBαα∠-=∠-。
设 AC 与 PQ 交于点L ,由梅涅劳斯定理,1,1AQ DP CL CQ BP ALQD PC LA QB PA LC==,于是有()()()()sin sin 1sin sin AOD COD AOB BOC αααα+∠∠-=+∠∠-。
2013全国数学联赛试题及答案2

AC sin ADC sin APE , CD sin CAD sin EPF BD BD sin BFD sin PFA AP , 由于 = EF BF sin BDF sin PAF PF
1= SPAE AP PE sin APE BD AC SPFE PF PE sin EPF EF CD
n 1
于任意正整数 n ,都有 S2n 1 bn 2
2
n(u v) 。
2 r 2 (u v )
取 n 2r (u v), r Z 时, S2n 1 2 平方数。 综上所述,结论成立。
r 2 (u v)2 2r
2
(u v )
r (u v) 都是完全
k
因此,我们取的 2k 个整数满足要求。 原题证明:对于任意正整数 2 n 2k ,都存在正整数 2 r k ,使得 2r 1 n 2r ,由引 理存在 2r 个整数它们都不是 n 的倍数,使得任意将它们分为两组都会有一组中有若干个数 之和是 n 的倍数。 再任意添加 2k 2r 个大于 n 的正整数,则得到满足题意的 2k 个整数。
蕴
秀
斋
2013 年全国高中数学联赛二试参考解答
1、 AB 是圆 的一条弦, P 是 AB 上一点, E , F 在线段 AB 上,满足 AE EF FB , 射线 PE, PF 分别与 交于 C , D 。求证: EF CD AC BD 。
P w A E F B
证明:由正弦定理
证明:令 bn S2n 1 ,则 b1 S1 a1 u v ,由已知
bn 1
2013年全国高中数学联赛一试二试试题整理详解汇编(一试二试为B卷)(含解答)

AB < BC
∠AP B = ∠BP C
7
AB BC
1
B
A
P
∠BP C = ∠CP D
P
BM BC
C2 =
M; = DM CD
C
D
A, B, C, D
3.
x, y, z
x2 + y2 + z2 = 10
u = 6 − x2 + 6 − y2 + 6 − z2
6 − x2 +
6 − y2 +
2
6 − z2
x = 0, y = 0 (P
x– )
a+c = 0
ac x−
2
+ y2 =
ac 2
a+c
a+c
x–
(0, 0), (2ac/(a + c), 0)
b) x–
A, B, C, D (−1, 0), (0, 0), (1, 0), (2, 0)
∠AP B = ∠BP C
P
y–
∠BP C = ∠CP D
1 16
(y1y2
+
8)2
=
0
y1y2 = −8 (−8)2
x1x2 = 16 = 4.
F (1, 0)
−→ −−→ √ x1 − x2 = (x1 + 1) − (x2 + 1) = |F A| − |F B| = 4 3.
4
y2 = 4x
x1, x2
√2 x1 + x2 = (x1 − x2)2 + 4x1x2 = 4 3 + 4 × 4 = 8.
Tn
n=3
2013年全国高中数学联合竞赛加试

2013年全国高中数学联合竞赛加试试题参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分40分)如图,AB 是圆ω的一条弦,P 为弧AB 内一点,E 、F 为线段AB 上两点,满足AE EF FB ==.连接PE PF 、并延长,与圆ω分别相交于点C D 、.求证:EF CD AC BD ⋅=⋅证明连接AD ,BC ,CF ,DE .由于AE=EF=FB ,从而sin =2sin BC BCE B CP BEAC ACE A CP AE⋅∠==⋅∠点到直线的距离点到直线的距离.○1……………10分同样sin =2sin AD ADF A PD AFBD BDF B PD BF⋅∠==⋅∠点到直线的距离点到直线的距离.○2 另一方面,由于BCE BCP BDP BDF ∠=∠=∠=∠, ACE ACP ADP ADF ∠=∠=∠=∠,故将○1,○,2两式相乘可得4BC ADAC BD⋅=⋅,即4BC AD AC BD ⋅=⋅ ○3 ABCDEFPωωPFEDCBA……………30分由托勒密定理AD BC AC BD AB CD ⋅=⋅+⋅○4故由○3,○4得 3AB CD AC BD ⋅=⋅, 即EF CD AC BD ⋅=⋅.……………40分二、(本题满分40分)给定正整数,u v .数列{}n a 定义如下:1a u v =+,对整数1m ≥,221,.m m m m a a u a a v +=+⎧⎨=+⎩记()121,2,m m S a a a m =+++=L L .证明:数列{}n S 中有无穷多项是完全平方数. 证明 对正整数n ,有()()()11112345212221n n n S a a a a a a a +++---=+++++++L ()()()11222121n n u v a u a v a u a v a u a v --=++++++++++++++L()2122n n u v S -=++,……………10分所以 ()()()()12112212121222222n n n n n n S u v S u v u v S --------=++=++++ ()21221222n n u v S ---=⋅++()()()11122n n n u v u v --==-⋅+++L()12n u v n -=+⋅.……………20分设2k u v q +=⋅,其中k 是非负整数,q 是奇数.取2n q l =⋅,其中l 为满足()1mod 2l k ≡-的任意正整数,此时2221212n k q l S q l -+⋅-=⋅,注意到q 是奇数,故()()()222111110mod 2k q l k l k k k k -+⋅≡-+≡-+-=-≡,所以,21n S -是完全平方数.由于l 有无穷多个,故数列{}n S 中有无穷多项是完全平方数.……………40分三、(本题满分50分)一次考试共有m 道试题,n 个学生参加,其中,2m n ≥为给定的整数.每道题的得分规则是:若该题恰有x 个学生没有答对,则每个答对该题的学生得x 分,未答对的学生得零分.每个学生得总分为其m 道题的得分总和.将所有学生总分从高到低排列为12n p p p ≥≥≥L ,求1n p p +得最大可能值.解 对任意的1,2,,k m =L ,设第k 题没有答对者有k x 人,则第k 题答对者有k n x -人,由得分规则知,这k n x -个人在第k 题均得到k x 分.设n 个学生得得分之和为S ,则有()21111nm m mik k k k i k k k ps x n x n x x ======-=-∑∑∑∑.因为每一个人在第k 道题上至多得k x 分,故11mk k p x =≤∑.……………10分由于21p p ≥≥L ,故有23111n n p p p S p p n n +++-≤=--L .所以 1111211121112111n m m mk k kk k k S p n Sp p p p n n n n x n x x n n ===--+≤=+----⎛⎫≤⋅+⋅- ⎪--⎝⎭∑∑∑ 211121mmk k k k x x n ===-⋅-∑∑. ……………20分由柯西不等式得22111mm k k k k x x m ==⎛⎫≥ ⎪⎝⎭∑∑, 于是()()()()2111211211111mm n k k k k mk k p p x x m n x m n m n m n ===⎛⎫+≤-⋅ ⎪-⎝⎭⎛⎫=-⋅--+- ⎪-⎝⎭∑∑∑()1m n ≤-.……………40分另一方面,若有一个学生全部答对,其他1n -个学生全部答错,则()()11111mn k p p p n m n =+==-=-∑.综上所述,1n p p +的最大值为()1m n -. ……………50分四、(本题满分50分)设,n k 为大于1的整数,2k n <.证明:存在2k 个不被n 整除的整数,若将它们任意分成两组,则总有一组若干个数的和被n 整除. 证明先考虑n 为2的幂的情形.设2,1r n r =≥,则r k <.取3个12r -及23k -个1,显然这些数均不被n 整除.将这2k 个数任意分成两组,则总有一组中含2个12r -,它们的和为2r ,被n 整除.……………10分现在设n 不是2的幂,取2k 个数为22211,1,2,2,,2,1,2,2,,2k k -------L L ,因为n 不是2的幂,故上述2k 个数均不被n 整除. ……………20分若可将这些数分成两组,使得每一组中任意若干个数的和均不能被n 整除.不妨设1在第一组,由于(-1)+1=0,被n 整除,故两个-1必须在第二组;因(-1)+(-1)+2=0,被n 整除,故2在第一组,进而推出-2在第二组.现归纳假设1,2,,2l L 均在第一组,而1,1,2,,2l ----L 均在第二组,这里12l k ≤<-,由于()()()()1112220l l +-+-+-++-+=L ,被n 整除,故12l +在第一组,从而12l +-在第二组.故由数学归纳法可知,221,2,2,,2k -L 在第一组,221,1,2,2,,2k ------L 在第二组.最后,由于()()()()21112220k k ---+-+-++-+=L,被n 整除,故12k -在第一组.因此211,2,2,,2k -L 均在第一组,由正整数的二进制表示可知,每一个不超过21k -的正整数均可表示为211,2,2,,2k -L 中若干个数的和,特别地,因为21k n ≤-,故第一组中有若干个数的和为n ,当然被n 整除,矛盾!因此,将前述2k 个整数任意分成两组,则总有一组中有若干个数之和被n 整除.……………50分。
2013全国中学生高中数学竞赛二试模拟训练题(86)

加试模拟训练题(86)(附详细答案)2. 设a 1=1,a 2=3,对一切自然数n 有a n+2=(n+3)a n+1-(n+2)a n求所有被11整除的a n 的值.。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,若直角CE BF CK DE F AC D AK E ACK CE CK ABC //.1∠∆3. 已知五条线段中任何三条都可以组成一个三角形.证明:这些三角形中至少有一个是锐角三角形.4.设多项式()n n n n a x a x a x a x f ++++=--1110 的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.加试模拟训练题(86)2. 设a 1=1,a 2=3,对一切自然数n 有a n+2=(n+3)a n+1-(n+2)a n求所有被11整除的a n 的值.【题说】1990年巴尔干地区数学奥林匹克题1. 【解】设b n+1=a n+1-a n (n ≥1),则由条件有b n+1=(n+1)(a n -a n-1)=(n+1)b n (n ≥2)b n =nb n-1=n (n-1)b n-2 =…=n (n-1)…3b 2 =n !(n ≥2)所以 a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+1。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,若直角CE BF CK DE F AC D AK E ACK CE CK ABC //.1∠∆CE //BF CKE FKB KE BK KC KF BE BKFC KF BEBK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACEHBC ACKEBC BH B EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:由此可算出:整除.故本题答案为n=4,n=8以及n ≥10.3. 已知五条线段中任何三条都可以组成一个三角形.证明:这些三角形中至少有一个是锐角三角形.【题说】 第四届(1970年)全苏数学奥林匹克九年级题1. 【证】设五条线段的长度为 a ≤b ≤c ≤d ≤e假设由这些线段组成的任何三角形都不是锐角三角形,那么,在由a 、b 、c ;b 、c 、d ;c 、d 、e 组成的三个三角形中,有 c 2≥a 2+b 2,d 2≥b 2+c 2,e 2≥c 2+d 2 将它们相加,得到 e 2≥a 2+2b 2+c 2≥a 2+2ab +b 2=(a +b)2从而e ≥a +b .这样,用e 、a 、b 三条线段便不能组成三角形,矛盾.因此,命题得证. 4.设多项式()n n n n a x a x a x a x f ++++=--1110 的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.证明 由已知有 ()()()0121mod 21mod 2n fa a a a α≡⇔++++≡, ①()()()1mod 21mod 2n f a β≡⇔≡, ②若方程()0=x f 存在整数根0x ,即()00f x =. 当0x 为奇数时,有()()()00120mod 20mod 2n f x a a a a ≡⇔++++≡,与①矛盾.有0x 为偶数时,有()()()00mod 20mod 2n f x a ≡⇔≡,与②矛盾.所以方程()0=x f 没有整数根.。
2013全国中学生高中数学竞赛二试模拟训练题(22)

加试模拟训练题(22)(附详细答案)1、已知M 为ABC ∆内一点,由M 分别向,,BC CA AB 作垂线,垂足分别为,,A B C '''。
由 ,,A B C 分别向,,B C C A A B ''''''作垂线,证明这三条垂线交于一点M '。
若A B C '''∆的外心为O ,则,,M O M '三点共线,且O 是线段MM '的中点。
2、若a b c R +∈、、,求证:888333111a b c a b c a b c++++≤3、25个人围一圆桌坐,每小时表决一次,回答为是或否.如果一个人第n次表决时,至少与一个相邻的人回答相同,即么他第n+1次表决与第n次相同.如果第n次表决时,与两个相邻的人回答均不同,那么他第n+1次表决与第n次不同.证明不论开始时大家怎样回答,从某一时间起,每个人的回答都不会改变.4、求证方程24=+无正整数解.3y x x加试模拟训练题(22)1、已知M 为ABC ∆内一点,由M 分别向,,BC CA AB 作垂线,垂足分别为,,A B C '''。
由 ,,A B C 分别向,,B C C A A B ''''''作垂线,证明这三条垂线交于一点M '。
若A B C '''∆的外心为O ,则,,M O M '三点共线,且O 是线段MM '的中点。
证明 法一 连MO ,并延长至M ',使得O 是线段MM '的中点。
设AM 的中点为O ',则O '为由,,,A C M B ''所确定的四边形的外接圆的圆心,因此OO B C '''⊥。
又因为AM '∥OO ',所以有AM B C '''⊥。
【2013西城二模】北京市西城区2013届高三第二次模拟考试 理科数学 Word版含答案

北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()U A B = ð (A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= (A )1 (B )2(C )i -(D )i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )2sin =ρθ (B )2sin =-ρθ(C )2cos =ρθ(D )2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值, 则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤5.设122a =,133b =,3log 2c =,则 (A )b a c << (B )a b c << (C )c b a << (D )c a b <<6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα (C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是(A (B (C (D )8.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是 (A )111[1,)(,]243-- (B )111(1,][,)243--(C )111[,)(,1]342--(D )111(,][,1)342--第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据 的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,AC 3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}n a 中,25a =,1412a a +=,则n a =______;设*21()1n n b n a =∈-N ,则数列{}n b 的前n 项和n S =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望. 17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面AB C D 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (Ⅰ)证明:⊥BC 平面PBD ; (Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(5,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 19.(本小题满分14分)已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[2,3]上的最大值和最小值. 20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x = 是正整数1,2,3,,n 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩对于12(,,)n n a a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈ ,10b =,称i b 为i a 的满意指数.排列12,,,n b b b 为排列12,,,n a a a 的生成列;排列12,,,n a a a 为排列12,,,n b b b 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,n a a a 和12,,,n a a a ''' 为n S 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于n S 中的排列12,,,n a a a ,定义变换τ:将排列12,,,n a a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,n a a a 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>; 10.80; 11.3; 12.125; 13.21n +,4(1)nn +; 14.4(1,]3.注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得 1cos x =α,2cos()3x π=+α.2分因为 ,)62ππ∈(α,1cos 3=α,所以 sin 3==α. …………3分所以 21cos()cos 32x π=+==αα-α. ………………5分(Ⅱ)解:依题意得 1sin y =α,2sin()3y π=+α. 所以 111111cos sin sin 2224S x y ==⋅=ααα, ………………7分 2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα. ……………9分依题意得 2sin 22sin(2)3π=-+αα, 整理得 cos 20=α. ………………11分因为 62ππ<<α, 所以 23π<<πα, 所以 22π=α, 即 4π=α. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A , ………………1分则 2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分 (Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. ………………5分1(0)4P X ==, 2224A 1(5)A 6P X ===, 222344A 11(10)A A 6P X ==+=, 122234C A 1(15)A 6P X ⋅===, 3344A 1(20)A 4P X ===. ………………10分 所以,随机变量X 的分布列为:………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)【方法一】(Ⅰ)证明:由俯视图可得,222BD BC CD +=,所以 BD BC ⊥. ………………1分 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分所以 ⊥BC 平面PBD . ………………4分(Ⅱ)证明:取PC 上一点Q ,使:1:4PQ PC =,连结MQ ,BQ . ………………5分由左视图知 4:1:=PD PM ,所以 MQ ∥CD ,14MQ CD =.…………6分 在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=.又 2=BD , 所以1AB =,AD =.又因为 AB ∥CD ,CD AB 41=,所以 AB ∥MQ ,AB MQ =. 所以四边形ABQM 为平行四边形,所以 AM ∥BQ .………………8分 因为 ⊄AM 平面PBC ,BQ ⊂平面PBC ,所以 直线AM ∥平面PBC . ………………9分 (Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:……10分因为 ⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -. 所以 )3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(M C B A D . 设 )0,,0(t N ,其中40≤≤t . ………………11分 所以)3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有 ||||||AM BN AM BN ⋅=,……………12分所以43)1(332|3|2=-+⋅t ,解得 0=t 或2,均适合40≤≤t .…………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分 【方法二】(Ⅰ)证明:因为⊥PD 平面ABCD ,DC DA ⊥的空间直角坐标系xyz D -.在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=因为 2=BD , 所以1AB =, AD =由俯视图和左视图可得:)4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D .所以 )0,3,3(-=,)0,1,3(=.因为 0001333=⋅+⋅+⋅-=⋅DB BC ,所以BD BC ⊥. ………………2分 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分 所以 ⊥BC 平面PBD . ………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有 0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 因为 )0,3,3(-=,)4,4,0(-=,所以 440,30.y z y -=⎧⎪⎨+=⎪⎩ 取1=y ,得=n )1,1,3(. ………………6分因为 )3,0,3(-=, 所以 ⋅AM =n 03101)3(3=⋅+⋅+-⋅. ………………8分因为 ⊄AM 平面PBC ,所以 直线AM ∥平面PBC . ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分设 )0,,0(t N ,其中40≤≤t . ………………11分 所以 )3,0,3(-=AM ,)0,1,3(--=t BN . 要使AM 与BN 所成角的余弦值为43,则有 43||||=⋅BN AM BN AM ,…………12分 所以43)1(332|3|2=-+⋅t ,解得0=t 或2,均适合40≤≤t . ………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,9(,55P ,所以 点M 的坐标为2(,55.………………2分由点M 在椭圆C 上,所以41212525m+=, ………………4分 解得 47m =. ………………5分(Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<. ① ………………6分 因为 M 是线段AP 的中点,所以 00(21,2)P x y +. ………………7分 因为 OP OM ⊥,所以 2000(21)20x x y ++=.② ………………8分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ………………10分 所以00111622(2)82m x x =+≤++-+, ………………12分 当且仅当02x =- 所以 m的取值范围是1(0,2. ………………13分19.(本小题满分14分)(Ⅰ)解:()f x 的定义域为R , 且 2()242f x x x a '=-+-. ……………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--, 即6350x y +-=. ………………4分(Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………6分 (ⅱ)当0a >时,令()0f x '=,得11x =21x =+. ()f x 和()f x '的情况如下:故()f x 的单调增区间为(,12-∞-,(1)2++∞;单调减区间为(1+. ………………8分① 当02a <≤时,22x ≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………10分② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是 25()3f x a =-.………………11分 因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a =-;当1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减, 所以()f x 在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =-.………………14分综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -;当1423a <≤时,()f x 在区间[2,3]上的最小值是53a -73a -;当1483a <<时,()f x 在区间[2,3]上的最小值是533a --723a -;当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分(Ⅱ)证明:设12,,,n a a a 的生成列是12,,,n b b b ;12,,,n a a a ''' 的生成列是与12,,,n b b b ''' .从右往左数,设排列12,,,n a a a 与12,,,n a a a ''' 第一个不同的项为k a 与k a ',即:n na a '=,11n n a a --'=, ,11k k a a ++'=,k k a a '≠. 显然 n nb b '=,11n n b b --'=, ,11k k b b ++'=,下面证明:k k b b '≠. ………………5分由满意指数的定义知,i a 的满意指数为排列12,,,n a a a 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.由于排列12,,,n a a a 的前k 项各不相同,设这k 项中有l 项比k a 小,则有1k l --项比k a 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,n a a a ''' 中有l '项比k a '小,则有1k l '--项比k a '大,从而21kb l k ''=-+. 因为 12,,,k a a a 与12,,,k a a a ''' 是k 个不同数的两个不同排列,且k k a a '≠, 所以 l l '≠, 从而 k kb b '≠. 所以排列12,,,n a a a 和12,,,n a a a ''' 的生成列也不同. ………………8分 (Ⅲ)证明:设排列12,,,n a a a 的生成列为12,,,n b b b ,且k a 为12,,,n a a a 中从左至右第一个满意指数为负数的项,所以 1210,0,,0,1k k b b b b -≥≥≥≤- . ………………9分进行一次变换τ后,排列12,,,n a a a 变换为1211,,,,,,k k k n a a a a a a -+ ,设该排列的生成列为12,,,n b b b ''' . 所以 1212()()n n b b b b b b '''+++-+++ 121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++- 1212[()()()]k k k k g a a g a a g a a-=--+-++-22k b =-≥. ………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2. 因为i a 的满意指数1i b i ≤-,其中1,2,3,,i n = ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-= , 即整个排列的各项满意指数之和为有限数,所以经过有限次变换τ后,一定会使各项的满意指数均为非负数. ……13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加试模拟训练题(41)(附详细答案)
1、设H是锐角△ABC的垂心,由A向以BC为直径的圆作切线AP、AQ,P、Q为二切点.求证:P、H、Q三点共线.
2、f为定义于非负实数集上的且取非负数值的函数,求所有满足下列条件的f:
(1)f(xf(y))f(y)=f(x+y);
(2)f(2)=0;
(3)f(x)≠0,当0≤x<2.
3、 集合A ={0,1,2,3,4,5,6,7},满足下列条件(1)、(2)的A 到A 上的映射f 有几个?
(1)i ,j ∈A ,i ≠j 则f(i)≠f(j);
(2)i ,j ∈A ,i +j =7,则 f(i)+f(j)=7.
4、 求所有的正整数n 、m ,满足5471m n n +=-.
加试模拟训练题(41)
1、设H是锐角△ABC的垂心,由A向以BC为直径的圆作切线AP、
AQ,P、Q为二切点.求证:P、H、Q三点共线.
【题说】1996年中国数学奥林匹克(第11届数学冬令营)题1.
【证】设BC中点为O,连结AO,PQ,交于G,则AO⊥PQ.
在Rt△AQO中,由射影定理有AQ2=AG·AO (1)
作AD⊥BC于D,则H在AD上.连结BH,延交AC于E,则BE⊥AC,
且E在圆周上.而有H、D、C、E共圆,从而AH·AD=AE·AC=AQ2 (2)
由(1)、(2),得AH·AD=AG·AO
因此H、D、O、G共圆.从而∠HGO=180º-∠HDO=90º,即H在PQ上.
【另证】设BC中点为O,AD、BE为高,则AD、BE都过H,并且E在以BC为直径的圆上,O是这圆的圆心.
因为∠ADC+∠HEC=90º+90º=180º,所以E、C、D、H四点共圆,
AH·AD=AE·AC.又AQ是⊙O切线,所以AE·AC=AQ2.
因为AH·AD=AQ2,所以△AHQ∽△AQD,∠AHQ=∠AQD.同理,∠AHP=∠APD.
因为P、D、Q都在以OA为直径的圆上,所以∠AQD+∠APD=180º.
从而∠AHQ+∠AHP=180º,即P、H、Q三点共线.
2、f为定义于非负实数集上的且取非负数值的函数,求所有满足下列条件的f:
(1)f(xf(y))f(y)=f(x+y);(2)f(2)=0;(3)f(x)≠0,当0≤x<2.
【题说】第二十七届(1986年)国际数学奥林匹克题5.本题由英国提供.
解:如果ω>2,那么在(1)中取y=2,x=ω-2,就得f(ω)=f((ω-2)f(2))·f(2)=0
因为x≥0,在(1)中令0≤y<2,则
这样一来,当0≤y<2,x>0时,有
综合上述,所求的f 是
不难验证这一函数满足题中条件.
3、 集合A ={0,1,2,3,4,5,6,7},满足下列条件(1)、(2)的A 到A 上的映射f 有几个?
(1)i ,j ∈A ,i ≠j 则f(i)≠f(j);
(2)i ,j ∈A ,i +j =7,则 f(i)+f(j)=7.
【题说】 1994年日本数学奥林匹克预选赛题8.
【解】 记A 0={0,7},A 1={1,6},A 2={2,5},A 3={3,4}.由条件(2)可知A i 中元素的像必在同一个A j .由(1),不同的A i ,相应的A j 不同.于是i 与j(1≤i ,j ≤4)的有序对有4!种配法,而各个A j 中的元素作为像可以互换,因而有24种.故所要求的映射共有 4×24=384(种)
4、 求所有的正整数n 、m ,满足5471m n n +=-.
解 原方程等价于32(1)(1)7m n n n n -+++=. 显然,1n ≠.
当2n ≥时,3221(1)()11,11n n n n n n n -+=-++>++>. 设3217,17a b n n n n -+=++=,其中,a b N +∈.于是,
2(1)(71)(1)()71b a n n n n --=-+=-.
因此,(71)|(71)b a --,即(71,71)71a b b --=-.
又因为(,)(71,71)71a b a b --=-,得到(,)b a b =,即()a kb k N +=∈. 则32177(1)a kb k n n n n -+===++. 当1k =时,有3211n n n n -+=++,2n =. 当2k ≥时,有
32322432(1)(1)(1)(1)330k n n n n n n n n n n n n -+-++≤-+-++=----<,
矛盾.综上所述,2,2n m ==是原方程的唯一一组解.。