圆锥曲线_面积及其取值范围

合集下载

圆锥曲线中的最值和取值范围

圆锥曲线中的最值和取值范围

2解得X"或…泞,则AM k28k2 -63 4k2=1 k2123 4k2因为AM _AN,所以圆锥曲线中的最值和范围圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。

回顾几年高考中的圆锥曲线试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。

本文就第二问题进行归纳和分析。

最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。

对目标函数的的整理和恰当变形是难点。

所涉及的量有斜率、面积、离心率、线段长度等。

一.近几年高考试题回顾。

X y21.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的t 3直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN的面积;(II)当2 AM二AN时,求k的取值范围•2 2X y【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,4 3则直线AM的方程为y =k X • 2 .'2 2£ I 二1联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0y -k X 2厂匚2 12厂〒2 12因为 AM 二 AN , k 0,所以 1 kFTk^= 1 k3I 7^,k整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k.⑵直线AM 的方程为y 二k x • ..t ,r 22x y1联立 t 3并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )解得 3 2 ::: k ::: 2 .2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,点Q 到抛物线C 的准线的距离为 3 .[来源学科网](I)求抛物线 C 的方程;(n)是否存在点 M , 4使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =o抛物线方程x 2 =2y4 2 41 2所以△ AMN 的面积为| AM | =144 79解得 ^-F 或x =曲昇,3 +tk 2所以 AM23 tk26 tAN = 1 亠 k 2—―—"k E 所以3k 」k因为2 AM | | AN 所以 2T k6・口隹,整理得,k3 tk2t 6k -3k t3k -2因为椭圆E 的焦点在x 轴,所以t 3,即1 k —2 k3_2 ::(n)设存在点2X。

解析几何《圆锥曲线的综合应用》

解析几何《圆锥曲线的综合应用》

解析几何【8】圆锥曲线的综合应用1、定值、最值、取值范围问题(1)在圆锥曲线中,还有一类曲线方程,对其变量取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是定值问题.(2)当变量取不同值时,相关几何量达到最大或最小,这就是最值问题.通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题,曲线遵循某种条件时,变量有相应的允许取值范围,即取值范围问题.求解时有两种方法:①代数法:引入新的变量,通过圆锥曲线的性质、韦达定理、方程思想等,用新的变量表示(计算)最值、范围问题,再用函数思想、不等式方法得到最值、范围.②几何法:若问题的条件和结论能明显地体现曲线几何特征,则利用图形性质来解决最值与取值范围问题.2、对称、存在性问题、圆锥曲线有关的证明问题涉及线段相等,角相等,直线平行、垂直的证明方法,及定点、定值问题的判断方法等.3、实际应用解决的关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题,作出定量或定性分析与判断,解题的一般思想是【温馨点睛】1、圆锥曲线经常和函数、三角函数、平面向量、不等式等结合,还有解析思想的应用,这些问题有较高的能力要求,这是每年高考必考的一道解答题,平时加强训练,认真审题,挖掘题目的隐含条件作为解题的突破口.2、利用函数思想,讨论有关最值时,特别要注意圆锥曲线自身范围的限定条件.3、涉及弦长的问题时,在熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.4、圆锥曲线综合问题要四重视;①定义;②平面几何知识;③根与系数的关系;④曲线的几何特征与方程的代数特征.【例1】设1F 、2F 是椭圆22:12x C y 的左、右焦点,P 为椭圆C 上任意一点.(1)求12PF PF 的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.设点1F C 上任意一点,且12PF PF (1)(2)满足AD BD ,【例2】如图,已知抛物线2:4C x y ,过点 0,2M 任作一直线与C 相交于A 、B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221MN MN 为定值,并求此定值.(1)(2)C 、D 两点(A 、【例3】已知抛物线2y x 上的动点 00,M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t 于A 、B 两点.(1)若点M ,求M 与焦点的距离;(2)若1t , 1,1P , 1,1Q ,求证:A B y y 为常数;(3)是否存在t ,使得1A B y y 且P Q y y 为常数?若存在,求t 的所有可能值;若不存在,请说明理由.x .(1)(2)(3)使得PM PN 为【例4】为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A 、B 两点各建一个考察基地.视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(如图).在直线2x 的右侧,考察范围为到点B 的距离不超过5km 的区域;在直线2x 的左侧,考察范围为到A 、B两点的距离之和不超过km 的区域.(1)求考察区域边界曲线的方程;(2)如图,设线段12PP 、23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【同类变式】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?【真题自测】1.设A 、B 是椭圆22:13x y C m长轴的两个端点,若C 上存在点M 满足120AMB ,则m 的取值范围是().A 0,19, ;.B 9, ;.C 0,14, ;.D 4, .2.① ②P .A 13.②若 111,P x y 、 222,P x y 为曲线C 上任意两点,则有12120x x .下列判断正确的是().A ①和②均为真命题;.B ①和②均为假命题;.C ①为真命题,②为假命题;.D ①为假命题,②为真命题.4.设圆C 位于抛物线22y x 与直线3x 所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为.5.114c ,则c6.Q 使得AP AQ 07.如图,已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC 的面积为S .(1)设 11,A x y , 22,C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y ;(2)设1:l y kx ,若,33C ,13S ,求k 的值.(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.。

圆锥曲线范围问题含详解

圆锥曲线范围问题含详解

圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。

【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。

圆锥曲线中的面积问题-专题教学设计

圆锥曲线中的面积问题-专题教学设计

圆锥曲线中的面积问题一、教学目标:圆锥曲线中的面积问题常见的是三角形的面积问题,有时也会考查平行四边形的面积或对角线互相垂直的四边形面积问题,求解此类问题通常是借助弦长公式或点到直线距离公式用某些量,如动直线的斜率或截距表示面积,再利用函数或不等式知识求解.培养学生数学运算、逻辑推理、直观想象等核心素养。

二、教学重点:解决圆锥曲线中常见的面积问题。

三、方法归纳(一) 利用弦长与点到直线距离计算三角形面积方法指导:若动直线与圆锥曲线交于点A ,B ,点P 为定点或满足一定条件的动点,要表示△P AB 的面积,一般是先利用弦长公式求出AB ,再利用点到直线距离公式求出点P 到直线AB 的距离,则12ABC S AB d ∆=. 【例1】(2022届河南省县级示范性高中高三上学期尖子生对抗赛)顺次连接椭圆2222:1(0)x y C a b a b+=>>的四个顶点,得到的四边形的面积为82连接椭圆C 的某两个顶点,2. (1)求椭圆C 的标准方程;(2)已知过点(4,0)A -的直线l 与椭圆C 交于E ,F 两点,点B 在线段EF 上,若||||||||AE BE AF BF =,求OAB (O 为坐标原点)面积的取值范围.【分析】(1)根据题设构造关于a ,b 的方程组,利用待定系数法求解椭圆的方程; (2)设出直线方程,联立直线l 与椭圆C 的方程,利用韦达定理得到||EF 的表达式,设||||||||AE BE AF BF λ==,找出||AB 与||EF 的关系;再算出点O 到直线l 的距离,得到OAB 面积的表达式,利用根与系数的关系进行求解.【解析】(1)依题意得22282,b a ab ⎧=⎪⎨⎪=⎩ 解得2,22,b a =⎧⎪⎨=⎪⎩所以椭圆C 的标准方程是22184x y +=. (2)设直线l 的方程为4(0)x ty t =-≠,代入椭圆C 的方程得()222880t y ty +-+=,由0∆>得22,||2t t >>设()()1122,,,E x y F x y ,所以1221228,28,2t y y t y y t ⎧+=⎪⎪+⎨⎪=⎪+⎩,222121212||()()1EF x x y y t y =-+-=+-, 设||||||||AE BE AF BF λ==,则,AE AF EB BF λλ== 22111AB AE EB EF EF EF λλλλλλ=+=+=-+-. 原点O 到直线l 的距离21d t =+故OAB 的面积2121222212412111S t y y y y t λλλλ=+-=⋅---+. 因为1122y y y y λλ=⇒=,故112212212122444(0,22)||1y y y y S y y y y t y y =⋅-==∈+-, 故OAB 面积的取值范围为(0,2).(二) 三角形中一个顶点到对边上某一点的距离为定值,可把三角形分为两个小三角形分别计算面积方法指导:若过定点Q 的直线圆锥曲线交于点A ,B ,点P 为定点或满足一定条件的动点,要表示△P AB 的面积,可先求出点A ,B 到直线PQ 的距离之和d ,则12PAB S PQ d ∆=,特别的,若PQ 与y 轴垂足,12PAB A B S PQ y y ∆=-,利用这种方法求面积,可以避免使用弦长公式,减少运算量. 【例2】(2022届江苏省扬州市高邮市高三上学期12月学情调研)已知椭圆()2222:10x y C a b a b+=>>上的点到左、右焦点1F 、2F 的距离之和为4,且右顶点A 到右焦点2F 的距离为1.(1)求椭圆C 的方程;(2)直线y kx =与椭圆C 交于不同的两点M ,N ,记MNA △的面积为S ,当3S =时求k 的值. 【分析】(1)根据题意得到24a =,1a c -=,再根据222a b c =+求解即可. (2)首先设()11,M x y ,()22,N x y ,再根据122121111222AMNSOA y OA y OA y y y y =⋅+⋅=⋅-=-求解即可. 【解析】(1)由题意24a =,2a =,因为右顶点A 到右焦点2F 的距离为1,即1a c -=,所以1c =, 则223b a c =-所以椭圆C 的标准方程为22143x y +=.(2)设()11,M x y ,()22,N x y ,且2OA = 根据椭圆的对称性得122121111222AMNSOA y OA y OA y y y y =⋅+⋅=⋅-=-, 联立方程组22143y kxx y =⎧⎪⎨+=⎪⎩,整理得223(4)12y k +=,解得221243k y k =+ 因为AMN 的面积为3,可得212212||2343k y y k -==+,解得32k =±. (三)对角线互相垂直的四边形面积的计算方法指导:对角线互相垂直的四边形的面积为两对角线长度乘积的12.【例3】(2022届河南省高三上学期联考)已知椭圆()2222:10x y E a b a b+=>>的离心率为12,且椭圆E 经过点31,2⎛⎫⎪⎝⎭,过右焦点F 作两条互相垂直的弦AB 和CD .(1)求椭圆E 的方程;(2)当四边形ACBD 的面积取得最小值时,求弦AB 所在直线的方程.【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,求出这三个量的值,即可得出椭圆E 的标准方程;(2)分两种情况讨论:①当AB 或CD 中有一条直线垂直于x 轴时,求出四边形ACBD 的面积;②当AB 的斜率存在且不为0时,设直线AB 的方程为()()10y k x k =-≠,将该直线方程与椭圆的方程联立,列出韦达定理,求出AB 、CD ,利用四边形的面积12S AB CD =⨯结合基本不等式可求得四边形ACBD 面积的最小值,综合即可得解. 【解析】(1)已知可得22222121914c a a b c ab ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得231a bc =⎧⎪=⎨⎪=⎩所以椭圆E 的方程为22143x y +=.(2)当AB 或CD 中有一条直线垂直于x 轴时,不妨设AB x ⊥轴, 因为焦点F 的坐标为()1,0,所以直线AB 的方程为1x =, 将1x =代入椭圆方程可得32y =±,则3AB =,4CD =,四边形ACBD 的面积14362S =⨯⨯=;当AB 的斜率存在且不为0时,设其斜率为()0k k ≠,由(1)知()1,0F ,所以直线AB 的方程为()1y k x =-,与椭圆E 的方程22143x y +=联立并消去y 得()22223484120k x k x k +-+-=.设()11,A x y 、()22,B x y ,()()()42226443441214410k k k k ∆=-+-=+>,则2122834k x x k +=+,212241234k x x k -=+, ()()42222212121222264164811413434k k AB k x k x x x x k k k -+-=++-+-++()()()22422212116416483434k k k k k k ++=--++. 同理可得可得()222211211214343k k CD k k⎛⎫+ ⎪+⎝⎭==++, 所以四边形ACBD 面积()()()()()()222222222121721112243344334k k S AB CD k k k k ++=⨯=⨯=++++ ()22222272122887274943342k k k +⎛⎫≥=⨯= ⎪⎝⎭⎛⎫+++ ⎪⎝⎭, 当且仅当224334k k +=+时,即当1k =±时,等号成立, 因为288649>,故当四边形ACBD 的面积取得最小值时,直线AB 的方程为1y x =-或1y x =-+. (四)利用函数性质求面积最值或范围方法指导:如果能把三角形或四边形的面积用某一个变量来表示,此时可把面积看作关于该变量的函数,若函数的单调性容易确定,可利用函数单调性求面积最值或范围,在求范围的过程中要注意一些变量本身的取值范围,以及特殊情形。

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[典例] (2018·武昌调研)已知椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与直线AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED ―→=6DF ―→,求k 的值; (2)求四边形AEBF 的面积的最大值. [思路演示]解:(1)由题设条件可得,椭圆的方程为x 24+y 2=1,直线AB 的方程为x +2y -2=0.设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1得(1+4k 2)x 2=4, 解得x 2=-x 1=21+4k 2.① 由ED ―→=6DF ―→,得x 0-x 1=6(x 2-x 0), ∴x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由点D 在直线AB 上,得x 0+2kx 0-2=0,∴x 0=21+2k. ∴21+2k =1071+4k2,化简,得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式可知,点E ,F 到AB 的距离分别为d 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),d 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2),又|AB |=22+12=5, ∴四边形AEBF 的面积为S =12|AB |(d 1+d 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k 2=21+4k1+4k 2=21+44k +1k≤21+424k ·1k =22,当且仅当4k =1k (k >0),即k =12时,等号成立.故四边形AEBF 的面积的最大值为2 2. [解题师说]由于四边形AEBF 中的四个顶点中,A ,B 为已知定点,E ,F 为直线y =kx 与椭圆的交点,其坐标一定与k 有关,故四边形AEBF 的面积可用直线y =kx 的斜率k 表示,最后通过变形,利用基本不等式求最值.[应用体验]1.已知椭圆C 的左、右焦点分别为F 1(-1,0),F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1,F 2,Q 是椭圆C 上的动点且在圆P 外,过点Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值. 解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).依题意可知,2b =|1-9|2=4,所以b =2.又c =1,故a 2=b 2+c 2=5, 故椭圆C 的方程为x 25+y 24=1.(2)由题意,圆P 的方程为x 2+(y -t )2=t 2+1.设Q (x 0,y 0),因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 20+(y 0-t )2-t 2-1=-14(y 0+4t )2+4+4t 2. 若-4t ≤-2, 即t ≥12,当y 0=-2时,|QM |取得最大值, |QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2,即0<t <12, 当y 0=-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t =24.综上可知,当t =24时,|QM |的最大值为322.(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[典例] (2018·合肥质检)已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.[思路演示]解:(1)由题意,得a =2c ,b =3c , 则椭圆E 的方程为x 24c 2+y 23c2=1.由⎩⎨⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0,解得c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝⎛⎭⎫1,32, ∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54.当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45.当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0消去y ,得(3+4k 2)x 2+16kx +4=0, 则x 1x 2=43+4k2,且Δ=48(4k 2-1)>0, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝⎛⎭⎫1+13+4k 2,∵k 2>14,∴45<λ<1.综上可知,实数λ的取值范围是⎣⎡⎭⎫45,1. [解题师说]在关系式λ|PM |2=|PA |·|PB |中,P ,M 为已知定点,而A ,B 两点是动直线l 与椭圆的交点,故λ与直线l 的斜率有关,应考虑建立λ关于k 的函数关系式求解.[应用体验]2.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1―→·PF 2―→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.解:(1)依题意,设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2. ∴|PF 2|=b 2a.∵9PF 1―→·PF 2―→=1,∴9|PF 2―→|2=9b 4a2=1.由⎩⎨⎧b 2=a 29,9b4a 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1.(2)∵直线x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0, 即m 2-k 2-9<0. 则x 1+x 2=-2kmk 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0.由⎩⎪⎨⎪⎧m 2-k 2-9<0,-2km k 2+9+1=0得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0.∵k 2+9>0,∴k 2+94k 2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.1.(2018·广东五校协作体诊断)若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2CB ―→,当△AOB 的面积最大时,求直线l 的方程.解:(1)由题意知,c +b2=3⎝⎛⎭⎫c -b 2, 所以b =c ,a 2=2b 2, 所以e =ca =1-⎝⎛⎭⎫b a 2=22.(2)设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =ky -1(k ≠0),因为AC ―→=2CB ―→,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0.①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1,x 2+2y 2=2b 2消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k 2+2.②由①②知,y 2=-2k k 2+2,y 1=4kk 2+2.因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤3·122|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号,此时直线l 的方程为x =2y -1或x =-2y -1, 即x -2y +1=0或x +2y +1=0. 2.(2018·惠州调研)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B ⎝⎛⎭⎫-c ,-b2a , 由⎩⎪⎨⎪⎧a =2,b2a (a +c )a 2=b 2+c 2,=12,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN =2|PM ||PN |=λ,所以|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN :y =kx -1⎝⎛⎭⎫k >12, M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx -1,x 24+y 23=1消去y ,化简得(4k 2+3)x 2-8kx -8=0.则⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),则x 1=-λ2x 2.将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),则1<(2-λ)2λ<4,且λ>2,解得4<λ<4+23, 所以实数λ的取值范围为(4,4+23).3.(2018·广西三市第一次联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝⎛⎭⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝⎛⎭⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝⎛⎭⎫1,32,∴1a 2+94b2=1,① ∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝⎛⎭⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎨⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m3m 2+4,∴y 0=y 1+y 22=-3m2(3m 2+4), ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m 4m 2+4.①当m =0时,k =0; ②当m ≠0时,k =14m +4m,∵4m +4m =4|m |+4|m |≥8,∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综合①②可知,直线MA 的斜率k 的取值范围是-18,18.4.已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B 两点.记λ=OA ―→·OB ―→,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解:(1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k 2=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA ―→·OB ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23, 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23。

圆锥曲线求取值范围面积解答题(题目)

圆锥曲线求取值范围面积解答题(题目)

《取值范围:面积》1、已知椭圆C:22221(0)x ya ba b+=>>(1,)M e在椭圆C上,其中e为椭圆C的离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)如图所示,A,B是椭圆C上的两点,且| AB |△AOB面积的取值范围.2、F 1、F 2分别是双曲线x 2-y 2=1的两个焦点,O 为坐标原点,圆O 是以F 1F 2为直径的圆,直线l :y =kx +b (b >0)与圆O 相切,并与双曲线相交于A 、B 两点.(Ⅰ)根据条件求出b 和k 满足的关系式;(Ⅱ)向量||AB AB 在向量12F F 方向的投影是p ,当(OA →⋅OB →)p 2=1时,求直线l 的方程;(Ⅲ)当(OA →⋅OB →)p 2=m 且满足2≤m ≤4时,求∆AOB 面积的取值范围.3、如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=⋅=的轨迹为曲线E .(1)求曲线E 的方程;(2)若直线12++=k kx y 与(1)中所求点N 的轨迹E 交于不同两点O H F ,、是坐标原点,且4332≤⋅≤,求△FOH 的面积的取值范围.4、设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2)在椭圆上,。

(1)求椭圆E的方程;,求△OAB的面积的取值范围。

(2)设动直线L交椭圆E于A、B两点,且OA OB5、已知21,F F 是椭圆)0(12222>>=+b a by a x 的两个焦点,O 为坐标原点,点)22,1(-P 在椭圆上,线段2PF 与y 轴的交点M 满足,2=+F O ⊙是以21F F 为直径的圆,一直线m kx y L +=:与O ⊙ 相切,并与椭圆交于不同的两点A,B(1)求椭圆的标准方程(2)当λ=⋅OB OA ,且满足4332≤≤λ时,求△AOB 的面积S 的取值范围6、已知椭圆2222:1(0)x yC a ba b+=>>的长轴长是短轴长的两倍,焦距为32.(1)求椭圆C的标准方程;(2)设不过原点O的直线l与椭圆C交于两点M、N,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.7、已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12-. (1)求点M 轨迹C 的方程; (2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),试求ODE ∆与ODF ∆面积之比的取值范围(O 为坐标原点).8、已知椭圆)0(1:22221>>=+b a bx a y C 的短轴长为4,离心率为22,其一个焦点在抛物线)0(2:22>=p py x C 的准线上,过2C 的焦点F 的直线交2C 于B A 、两点,分别过B A 、作2C 的切线,两切线交于点Q .(Ⅰ)求1C 、2C 的方程;(Ⅱ)当点Q 在1C 内部运动时,求QCD ∆面积的取值范围.9、已知椭圆C:22221(0)x ya ba b+=>>(1,)M e在椭圆C上,其中e为椭圆C的离心率. (Ⅰ)求椭圆C的方程;(Ⅱ)如图所示,A,B是椭圆C上的两点,且| AB |△AOB面积的取值范围.10、已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且15PA PB ⋅≤,求2212S S -的取值范围.11 11、已知圆O :122=+y x ,点O 为坐标原点,一条直线l :)0(>+=b b kx y 与圆O 相切并与椭圆1222=+y x 交于不同的两点A 、B (1)设)(k f b =,求)(k f 的表达式; (2)若32=⋅OB OA ,求直线l 的方程; (3)若)4332(≤≤=⋅m m OB OA ,求三角形OAB 面积的取值范围.。

圆锥曲线的最值与参数范围

圆锥曲线的最值与参数范围

圆锥曲线的最值与参数范围
圆锥曲线是微积分教学中的重要概念,其最值及参数范围也是学习者需要掌握的重要内容。

本文旨在探讨圆锥曲线的最值与参数范围。

首先,我们从定义谈起。

圆锥曲线是由两个圆弧及一条直线组成的曲线,该曲线对称且连接着两个有限定点,形状由两个参数决定,分别为圆心角α和高h。

其次,我们来讨论圆锥曲线的最值。

圆锥曲线的极值是在其上的直线段的端点处,也就是左右的圆弧的交点。

我们可以利用数学知识来求出该点的坐标,即最大值点。

另外,如果曲线以y=kx+b的直线
对称,其最小值点就是y轴上的端点。

最后,让我们来讨论圆锥曲线的参数范围。

圆心角α的取值范围是0到2π,而高h的范围依赖于圆心角的取值。

当圆心角α取值为0时,圆锥曲线为一个圆,此时高h的取值范围是0到无穷大。

而当α取值在0到2π之间时,高h的取值范围就会发生变化,其最小取值为0,最大值不定。

以上就是圆锥曲线的最值与参数范围简述。

从定义出发到最值的求解以及参数范围,从多角度深入地讨论圆锥曲线。

圆锥曲线是众多曲线中的一种,其最值与参数范围的掌握不仅是数学知识的重要内容,同时也对更为深入的曲线学习有着重要的意义。

- 1 -。

圆锥曲线和面积

圆锥曲线和面积

圆锥曲线和面积
圆锥曲线是几何学中的重要概念,包括圆、椭圆、抛物线和双曲线等。

这些曲线可以用不同的参数和公式来描述,其中最基本的是极坐标和直角坐标系中的参数方程。

对于圆的面积,其公式为A = πr²,其中r是圆的半径。

对于椭圆,其面积公式为A = πab,其中a和b分别是椭圆的长轴和短轴。

对于抛物线,由于它是一条直线沿垂直方向无限延伸形成的图形,所以其面积取决于它的顶点和直线的方程。

双曲线的面积可以根据直角坐标系中的参数方程来计算,公式为A = πb²/a,其中a和b是双曲线的实轴和虚轴长度。

在实际应用中,圆锥曲线的面积计算非常重要,可以用于解决各种问题,如几何图形面积的测量、物体表面温度分布的计算、材料质量的估算等。

同时,圆锥曲线在物理学、工程学、经济学等领域也有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好 为 点F1.
(1)求 椭 圆C的 标 准 方 程;
(2)过 点P 的 直 线 与 椭 圆 交 于M, N 两 点(M, N 不 与A, B重 合),若S△P AM = 6S△P BN ,求 直 线M N 的 方 程。
3
圆 锥 曲 线-面 积 及 其 取 值 范 围 答 案 解 析
欢欢老师的数学课堂
形OM P N 为 平 行 四 边 形(其 中O是 坐 标 原 点),求 平 行 四 边 形OM P N 的 面 积。
2
圆 锥 曲 线-面 积 及 其 取 值 范 围
欢欢老师的数学课堂
5.已 知 椭 圆C
:
x2 18
+
y2 9
=
1的 短 轴 端 点 为B1, B2,点M 是 椭 圆 上 的 动 点,且 不 与B1, B2重
线l的 方 程。
2.设 椭 圆 x2 + y2 a2 b2
=
1(a
>
b
>
0)的



为F1,离



1 2
,
F1为 圆M
:
x2 +y2 +2x−15
=
0的
圆 心。
(1)求 椭 圆 的 标 准 方 程;
(2)已 知 过 椭 圆 右 焦 点F2的 直 线l分 别 交 椭 圆 于A, B两 点,过 点F2且 与 直 线l垂 直 的 直 线l1与 圆M 交 于C, D两 点,求 四 边 形ABCD面 积 的 取 值 范 围。
(2)求 以A, B, C, D为 顶 点 的 四 边 形 的 面 积 的 取 值 范 围。
4.已 知 椭 圆C
:
x2 a2
+
y2 b2
=
1(a
>
b
>
0)的 焦 距 为2√3,且 经 过 点A(√3, −1 ). 2
(1)求 椭 圆C的 标 准 方 程;
(2)斜 率 为k的 直 线l与 椭 圆C交 于 不 同 的 两 点M, N ,若 椭 圆 上 存 在 点P ,使 得 四 边
圆 锥 曲 线-面 积 及 其 取 值 范 围
欢欢老师的数学课堂

1.已 知 中 心 在 原 点O,焦 点 在x轴 上 的 椭 圆E过 点(0, 1),离 心 率 为
2 ,
2
(1)求 椭 圆E的 方 程;
(2)若 直 线l过 椭 圆E的 左 焦 点F ,且 与 椭 圆E交 于A, B两 点,若△OAB的 面 积 为 2 , 求 直 3
所 以a = 2, 又b2 = a2 − c2 = 3.所 以 椭 圆 的 方 程 为: x2 + y2 = 1. 43
(2)可 知 椭 圆 右 焦 点F2(1, 0),
(i)当l与x轴 垂 直 时,此 时k不 存 在,直 线l : x = 1,直 线l1 : y = 0,
可 得:|AB| = 3, |CD| = 8,四 边 形ABCD面 积12.
:
y
=
1 − (x
k

1),则 圆 心 到l1的 距 离
y = k(x − 1)

x2 y2 + =1
. 得(4k2 + 3)x2 − 8k2x + 4k2 − 12 = 0,
43
则x1
+
x2
=
3
8k2 + 4k2 , x1x2
=
4k2 − 12 ,
3 + 4k2
所 以|AB|
=
√ 1
+ k2, |x1

x2|
=
12(k2 + 1) 3 + 4k2
过 点F2(1, 0)且 与l垂 直 的 直 线 当l与x轴 不 垂 直 时,l1
1
圆 锥 曲 线-面 积 及 其 取 值 范 围
欢欢老师的数学课堂

3.如 图,已 知 椭 圆 x2 + y2 = 1(a > b > 0)的 右 焦 点F (1, 0),离 心 率 为
2 ,
过 点F 作 两 条 互
a2 b2
2
相 垂 直 的 弦AB, CD.
(1)求 椭 圆 的 标 准 方 程;
合,点N 满 足N B1⊥M B1, N B2⊥M B2.
(1)求 动 点N 的 轨 迹 方 程,
(2)求 四 边 形M B2N B1面 积 的 最 大 值。
6.如 图,椭 圆C
:
x2 a2
+
y2 b2
=
1(a
>
b
>
0)的 右 顶 点 为A(2, 0),左、 右 焦 点 分 别 为F1, F2,

点A且 斜 率 为 1的 直 线 与y轴 交 于 点P ,与 椭 圆 交 于 另 一 点B,且 点B在x轴 上 的 射 影 恰 2
(ii)当l与x轴 平 行 时,此 时k = 0,直 线l : y = 0,直 线l1 : x = 1, 可 得:|AB| = 4, |CD| = 4√3,四 边 形ABCD面 积8√3.
1
圆 锥 曲 线-面 积 及 其 取 值 范 围 答 案 解 析
欢欢老师的数学课堂
(iii)当l与x轴 不 垂 直 时,设l的 方 程 为y = k(x − 1)(k ̸= 0), A(x1, y1), B(x2, y2).
+ x2
=
−4k2 1 + 2k2 , x1x2
=
2k2 − 2 ,
1 + 2k2
√ ∴ |y1 − y2| = (y1 + y2)2 − 4y1y2 =
4k2
4k2
+
,
(1 + k2)2 1 + 2k2
1
1
2
∵ S△OAB = 2 |OF √| · |y1 − y2| = 2 |y1 − y2| = 3
4 ∴ |y1 − y2| = 3 ∴
4k2 (1 + 2k2)2
+
1
4k2 + 2k2
=
4 3

k4
+ k2

2
=
0, ∴
k
=
±1
∴直 线l的 方 程 为x − y + 1 = 0或x + y + 1 = 0
2.(1)解:由 题 意 知 c
=
1 ,
则a
=
2c,
a2
圆M 的 标 准 方 程 为(x + 1)2 + y2 = 16,从 而 椭 圆 的 右 焦 点 为F1(−1, 0),即c = 1,
1.解:(2)设 椭 圆E的 方 程 为 x2 + y2 = 1(a > b > 0),则 a√2 b2
∵椭 圆E过 点(0, 1),离 心 率 为
2 ,
2
b
=
1 √

c =
a a2 =
2 ,
2 b2 +
c2
, ∴ a2 = 2, b2 = 1, ∴椭 圆E的 方 程 为 x2 + y2 = 1; 2
(2)当l⊥x轴
时,A(−1,
√ 2
− ),
B(−1,
√ 2 ),
|AB|
=
√ 2

△OAB的



1 2
×
2 √

1
=
√2 2 ,不 满 足 题 意; 2
当l与x轴 不 垂 直 时,设 方 程 为y = k(x + 1),代 入 椭 圆 方 程,
可 得(1
+
2k2)x2
+
4k2x
+ 2k2
相关文档
最新文档