复合材料课件 第4章 复合材料设计原理
合集下载
复合材料的设计原理和复合理论

以上两式可由通式表示,即:
K K n c
n ii
(2-3)
对于并联混合定律,n=1;对于串联混合定律,n=-1。当n处在1与-1之间某一确定值时,可用来描 述复合材料的某项性能(如介电常数、热传导率等)随组分体积分数的变化。
2.平行效应 是最简单的一种线性复合效应。指复合材料的某项性能与其中某一组分的该项 性能基本相当。例如,玻璃纤维增强环氧树脂复合材料的耐腐蚀性能与环氧树脂的耐腐蚀性 能基本相同。
不同组分复合后,可能发生的复合效应有:线性效应和非线性效应。如表2-1
表2-1 复合效应类型
2.3.1 线性效应 概念:
1.平均效应 平均效应又称混合效应,具有平均效应的复合材料的某项性能等于组成复合材料各组分 的性能乘以该组分的体积分数之加和,可用混合定律来描述:
KC = Kii 1/KC = i /Ki
1. 由于当前科技水平的限制,可供选用的组分(包括增强体、基体及它们所组成的材料体系) 品种有限,其性能不能够呈连续函数而是呈阶梯形式变化。
2. 选择单元组分时,应事先明确各组分在组成复合材料后所承担的使用功能。
3. 所选择的各组分应符合材料设计的主要目标和服役期间的环境条件,在组成复合材料后, 能发挥各组分的特殊使用性能。
4. 相抵效应 各组分之间出现性能相互制约,结果使复合材料的性能低于混合定律的预测值,这 是一种负的复合效应。
表示为:
K K
c
ii
(2-6)
2.3.2 非线性效应 概念:
1. 相乘效应 是把两种具有能量(信息)转换功能的组分复合起来,使它们相同的功能得到复 合,而不相同的功能得到新的转换。
相乘效应可以表示为:
复合材料制品的设计和研制步骤:
《复合材料结构设计》PPT课件

传统机械按键结构层图:
按键
PCBA
开关键Байду номын сангаас
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公
差,以防按键手感不良。
§4.3 层合板与层合件设计
4.3.4 变厚度层合板设计
20
§4.2 设计选材与设计许用值确定
4.2.2 设计许用值的定义与确定原则
金属材料设计许用值以应力表示,称设计许用应力 ;复合材料 结构的设计许用值选择应变,称设计许用应变。
确定设计许用值的一般原则: ★ 结构的拉伸设计许用值主要取决于含孔试样的许用值,结
构的压缩设计许用值主要取决于含冲击损伤试样的许用值。 ★ 薄蒙皮或薄面板蜂窝夹层结构设计许用值的确定,还需根
§4.4 夹层结构设计
4.4.1 夹层结构的破 坏模式与设计 准则
(1)夹层结构破坏模式
37
§4.4 夹层结构设计
4.4.1 夹层结构的破坏模式与设计准则
(2)夹层结构设计准则
◆ 在设计载荷下,面板的面内应力应小于材料强度,或在设计载荷下,面 板应变小于设计许用应变;
◆ 芯子应有足够的厚度(高度)及刚度 ; ◆ 芯子应有足够的弹性模量和平压强度,以及足够的芯子与面板平拉强度; ◆ 面板应足够厚,蜂窝芯格尺寸应合理; ◆ 应尽量避免夹层结构承受垂直于面板的平拉或平压局部集中载荷; ◆ 胶粘剂必须具有足够的胶接强度,同时还要考虑耐环境性能和老化性能; ◆ 碳纤维层合面板与铝蜂窝芯子胶接面要注意防止电偶腐蚀问题; ◆ 对雷达罩等有特殊要求的夹层结构,面板、芯子和胶粘剂选择必须考虑 电性能、阻燃、毒性和烟雾等特殊设计要求。
第四章第二节金属基复合材料(MMC)制备工艺

8.3.3液态法(非连续增强相金属基复合材料制备工艺) (1)压铸法
在压力的作用下,将液态或半液态金属以一定速度充填 压铸模型腔或增强材料预制体的空隙中,在压力下快速凝固 成型。
(2)半固态复合铸造 将颗粒加入半固态的金属熔体中,通过搅拌使颗粒在基
体中分布均匀,并取得良好的界面结合,然后将半固态复合 材料注入模具进行压铸成型。
1.3.4 原位(In situ)生长(复合)法 增强相从基体中直接生成,生成相的热力学稳定
性好,不存在基体与增强相之间的认识润湿和界面反 应等问题,基体与增强相结合良好,较好的解决了界 面相容性问题。
(1)共晶合金定向凝固 :共晶合金定向凝固要求合 金成分为共晶或接近共晶成分,开始为二元合金,后 发展为三元单变共晶,以及有包晶或偏晶反应的两相 结合。定向凝固时,参与共晶反应的 和 相同时从 液相中生成,其中一相以棒状(纤维状)或层片状规 则排列生成(上图)。
金属基复合材料的界面优化以及界面设计一般有以下 几种途径:
2.4.2.1增强剂的表面改性处理 增强材料的表面改性(涂层)处理可起到以下作用:
(1)改善增强剂的力学性能,保护增强剂的外来物理 和化学损伤(保护层);
(2)改善增强剂与基体的润湿性和粘着性(润湿层); (3)防止增强剂与基体之间的扩散、渗透和反应(阻挡层) (4)减缓增强剂与基体之间因弹性模量、热膨胀系数等的
2.4.2.2金属基体改性(添加微量合金元素) 在金属基体中添加某些微量合金元素以改善增
与基体的润湿性或有效控制界面反应。 (1)控制界面反应。 (2)增加基体合金的流动性,降低复合材料的制备
温度和时间。 (3)改善增强剂与基体的润湿性。
2.4.3金属基复合材料的性能
复合材料
复合材料pdfPPT课件

复合材料的热膨胀系数通常低于单一材料,使其在温度变化时能保 持较好的尺寸稳定性。
良好的热导性
某些复合材料具有良好的热导性,适用于需要散热或传热的场合。
耐高温性能
通过选择合适的基体和增强材料,复合材料可以在高温环境下保持 较好的力学性能。
电学性能
绝缘性能
大多数复合材料具有良好的绝缘性能,适用于电气 和电子设备中。
后处理与加工
固化处理
对成型的复合材料进行加热或自然固化,使其达到所需的物理和化 学性能。
机械加工
对固化后的复合材料进行切割、钻孔、打磨等机械加工,以满足产 品形状和尺寸的要求。
表面处理
对复合材料表面进行喷漆、电镀、阳极氧化等处理,以提高其耐腐蚀 性、装饰性等性能。
04
复合材料的性能特点
力学性能
成型工艺
手糊成型
在模具上涂刷脱模剂,然后铺贴一层纤 维布或毡,再涂刷一层树脂,如此反复
直至达到所需厚度。
模压成型
将预浸料或纤维与树脂混合物放入模 具中,在加热和加压的条件下固化成
型。
喷射成型
将树脂和固化剂分别通过喷嘴喷到模 具上,同时用喷枪将纤维切断并喷到 树脂中,形成复合材料层。
注射成型
将树脂和固化剂混合后注入到装有纤 维的模具中,然后在一定温度和压力 下固化成型。
复合材料的组成与结构
基体材料
聚合物基体
如环氧树脂、聚酰亚胺等,具有良好的可加工性和韧 性。
金属基体
如铝、镁、钛等合金,具有高比强度和优异的导电导 热性能。
陶瓷基体
如氧化铝、氮化硅等,具有高温稳定性和耐磨损性。
增强材料
纤维增强材料
如碳纤维、玻璃纤维、芳纶纤维等,具有高比 强度和模量。
良好的热导性
某些复合材料具有良好的热导性,适用于需要散热或传热的场合。
耐高温性能
通过选择合适的基体和增强材料,复合材料可以在高温环境下保持 较好的力学性能。
电学性能
绝缘性能
大多数复合材料具有良好的绝缘性能,适用于电气 和电子设备中。
后处理与加工
固化处理
对成型的复合材料进行加热或自然固化,使其达到所需的物理和化 学性能。
机械加工
对固化后的复合材料进行切割、钻孔、打磨等机械加工,以满足产 品形状和尺寸的要求。
表面处理
对复合材料表面进行喷漆、电镀、阳极氧化等处理,以提高其耐腐蚀 性、装饰性等性能。
04
复合材料的性能特点
力学性能
成型工艺
手糊成型
在模具上涂刷脱模剂,然后铺贴一层纤 维布或毡,再涂刷一层树脂,如此反复
直至达到所需厚度。
模压成型
将预浸料或纤维与树脂混合物放入模 具中,在加热和加压的条件下固化成
型。
喷射成型
将树脂和固化剂分别通过喷嘴喷到模 具上,同时用喷枪将纤维切断并喷到 树脂中,形成复合材料层。
注射成型
将树脂和固化剂混合后注入到装有纤 维的模具中,然后在一定温度和压力 下固化成型。
复合材料的组成与结构
基体材料
聚合物基体
如环氧树脂、聚酰亚胺等,具有良好的可加工性和韧 性。
金属基体
如铝、镁、钛等合金,具有高比强度和优异的导电导 热性能。
陶瓷基体
如氧化铝、氮化硅等,具有高温稳定性和耐磨损性。
增强材料
纤维增强材料
如碳纤维、玻璃纤维、芳纶纤维等,具有高比 强度和模量。
《复合材料》PPT课件(2024)

优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
化学课件《复合材料》优秀ppt5 鲁科版1

1)、玻璃钢
玻璃钢
基体:合成树脂 增强体:玻璃纤维
玻璃钢克服了玻璃易碎、密度较大,合成树脂强 度不够高的缺点,它具有强度高、密度小、韧性 好、耐腐、耐磨、耐撞、绝缘、产品美观、制造 方便等优良特性。可广泛用于制作小型娱乐设施、 管道、小舟、化工设施、小型建筑等
2)、碳纤维复合材料
碳纤维复 合材料
基体:合成树脂 增强体:碳纤维
2)机身隔热复合材料:
组成
基体:陶瓷
增强体:碳纤维、碳化硅纤维、氧 化铝纤维
性能:耐高温、韧性好
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
复合材料PPT教学课件

原有材料的特点,又使各组分间 协同作用,形成了优于原材料的 特性。
4 复合材料的分类:
(1)按基体分类
树脂基复合材料 金属基复合材料 陶瓷基复合材料
(2)按增强体 的形状分类
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
二 形形色色的复合材料
1 生产、生活中常用的复合材料
常见的复合材料有玻璃钢和 碳纤维增强复合材料。
玻璃钢是一种以玻璃纤维做增强体、合成树 脂做基体的复合材料。
优点:玻璃钢的强度可达到甚至超过合金的强度,
而密度只有钢铁的1/5左右;同时,这种材料保持着 较好的耐化学腐蚀性、电绝缘性和机械加工性能, 而且又不像普通玻璃那样硬脆。
玻璃钢制品
交流·研讨
你经常打羽毛球吗?现在羽毛球使用的大 多是碳素球拍,但几年前用的多是铝合金 球拍,人们还曾使用过木制球拍。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体, 延缓胰岛素从注射部位进入血液,从而延缓了其降血 糖作用,也增加了抗原性,这是胰岛素B23-B28氨基 酸残基结构所致。利用蛋白质工程技术改变这些残基, 则可降低其聚合作用,使胰岛素快速起作用。该速效 胰岛素已通过临床实验。
4.治癌酶的改造
请与同学们讨论:用于制造碳素球拍的材 料有哪 些优越性?它为什么会具有这些 优越性?
• 碳纤维增强体 • 碳纤维复合材料
• 合成树脂做基体 优点:具有韧性好,强度高而质轻的特点。
• 碳纤维增强复合材料也广泛应用于纺织机 械和化工机械的制造,以及医学上人体组 织中韧带的制作等。
2 航空、航天领域中的复合材料
本节教材小结 复 合 材 料
认识复合材料
基体 增强体
形形色色的复合材料
4 复合材料的分类:
(1)按基体分类
树脂基复合材料 金属基复合材料 陶瓷基复合材料
(2)按增强体 的形状分类
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
二 形形色色的复合材料
1 生产、生活中常用的复合材料
常见的复合材料有玻璃钢和 碳纤维增强复合材料。
玻璃钢是一种以玻璃纤维做增强体、合成树 脂做基体的复合材料。
优点:玻璃钢的强度可达到甚至超过合金的强度,
而密度只有钢铁的1/5左右;同时,这种材料保持着 较好的耐化学腐蚀性、电绝缘性和机械加工性能, 而且又不像普通玻璃那样硬脆。
玻璃钢制品
交流·研讨
你经常打羽毛球吗?现在羽毛球使用的大 多是碳素球拍,但几年前用的多是铝合金 球拍,人们还曾使用过木制球拍。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体, 延缓胰岛素从注射部位进入血液,从而延缓了其降血 糖作用,也增加了抗原性,这是胰岛素B23-B28氨基 酸残基结构所致。利用蛋白质工程技术改变这些残基, 则可降低其聚合作用,使胰岛素快速起作用。该速效 胰岛素已通过临床实验。
4.治癌酶的改造
请与同学们讨论:用于制造碳素球拍的材 料有哪 些优越性?它为什么会具有这些 优越性?
• 碳纤维增强体 • 碳纤维复合材料
• 合成树脂做基体 优点:具有韧性好,强度高而质轻的特点。
• 碳纤维增强复合材料也广泛应用于纺织机 械和化工机械的制造,以及医学上人体组 织中韧带的制作等。
2 航空、航天领域中的复合材料
本节教材小结 复 合 材 料
认识复合材料
基体 增强体
形形色色的复合材料
《复合材料原理》PPT课件

的树脂(如乙烯基酯树脂)为基体; 对于碱性介质:宜采用无碱玻璃纤维为增强体和耐碱性
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
涤纶纤维增强聚丙烯复合材料
横晶
球晶
21
(3)系统效应
指将不具备某种性能的诸组分通过特定的复合状态复 合后,使复合材料具有单个组分不具有的新性能。
• 红、黄、蓝三色组成的彩色世界 • 涂膜的硬度大于基体和膜层硬度之和
(4)共振效应
它是指某一组分A具有一系列性能,与另一组分B复合后,能使 A组分的大多数性能受到较大抑制,而使其中某一项性能在复
(1)相乘效应
两种具有转换功能的组分复合 在一起,有可能产生新的功能。
(X/Y)·(Y/Z)= X/Z
A相性质 X/Y 压磁效应 压磁效应 压电效应
磁致伸缩效应 光电效应 热电效应
热致变形效应Βιβλιοθήκη 表4-1 复合材料的乘积效应
B相性质 Y/Z
复合后的乘积性质 X/Z
磁阻效应
压敏电阻效应
磁电效应
压电效应
场致发光效应
压力发光效应
压阻效应
磁阻效应
电致效应
光致伸缩
电致发光效应
红外光转换可见光效应
压敏电阻效应
热敏电阻效应
变形-电 阻效应
石墨粉
复合
热致变形 高聚物
自控发热体
(2)诱导效应
在一定条件下,复合材料中的一组分材料可以通过诱导作用使 另一组分材料的结构改变而改变整体性能或产生新的效应。
例如: 结晶的纤维增强体对非晶 基体的诱导结晶或基体的晶形取 向作用。
h
EI E bh3
b
12
EI
EI1
EI2=2E
b 12
h 2
3
1 4
bh3 12
4.1.2 复合效应
线性效应 非线性效应
线性指量与量之 间成正比关系
非线性指量与量 之间成曲线关系
一次函数y=kx+b 叫线性函数,它的图象是一条直线。
非一次函数(如y=x2, y=k/x, y=sinx...)都叫非线性函数,它们的图象 都不是直线。
影响结构的 腐蚀、磨损、 老化等
(4)结构的可靠性和经济性
• 可靠性是指结构在所规定的使用寿命内,在给予的载荷
情况和环境条件下,充分实现所预期的性能时结构正常 工作的能力,这种能力用一种概率来度量称为可靠度。 • 结构静强度可靠性和结构疲劳寿命可靠性。
①结构所能承受的各种载荷,确保使用期内的安全 ②对结构形状和尺寸的限制,提供附件的空间 ③ 隔绝外界的环境状态而保护内部物体
结构的性能
飞机火箭、船 舶、车辆
化工装置
雷达罩、天 线
飞行器
结构质量 耐腐蚀性 电磁性能
防雷击
(2)载荷情况
•静
•动
载
载
荷
荷
瞬时作用载荷 冲击载荷 交变载荷
例如,风扇叶片由于旋转式的惯性力将引起拉应力
➢在静载荷作用下结构应具有足够的强度和 刚度;
➢在冲击载荷下要求结构有一定的韧性; ➢交变载荷下要求结构有耐疲劳性能。
(3)环境条件
a力学条件:加速度、冲击、振动、声音等 b物理条件:压力、温度、湿度等 c气象条件:风雨、冰雹、日光等 d大气条件:放射线、霉菌、盐雾、风沙等
影响结构 的强度和 刚度
合材料中突出地发挥。又称强选择效应。
利用这种效应,可以根据外来的工作频率,改变复合材料固 有频率而避免材料在工作时引起的破坏。对于吸波材料,同 样可以根据外来波长的频率特征,调制复合材料频率,达到 吸收外来波的目的。
• 例如,有关领域要求导电而不导热的材料,就是通 过选择组元和复合状态,在保留导体组元导电性的 同时,抑制其导热性而获得的特殊功能材料。
复合材料是一种结构材料
E-1
三次结构
二次结构
一次结构
复合材料设计的基本步骤
对外部环境与载荷的要求
机械载荷 热载荷 潮湿环境
选材要求 基体材料 增强材料 几何形状
成型工艺及 工艺过程优 化的设计料
损伤及破坏分析
强度准则 损伤机理 破坏过程
复合材料的响应 应力场 温度场等 设计变量的优化
代表性单元的性能考察 细观力学方法 有限元方法荷 试验力学方法 典型结构的宏观性能法
Ec=EmVm+ EfVf
Kc—材料性能; Vi—为组分材料的体积分数; c—复合材料;m—基体;f—增强体(功能体)
4.1.2.2 平行效应
复合材料的各组分在复合材料中,均保留本身的性 质,既无制约,也无补偿。
玻璃纤维增强环氧树脂复合材料 与
环氧树脂的耐腐蚀性能基本相当
4.1.2.3 相补效应
各向异性和非均质性导致耦合变形和高温固化翘曲变形 非均质性还将构成复合材料力学性能的其它一些特性
变形复杂性-耦合变形
拉剪耦合
拉弯耦合
屈服 强度
弯扭耦合
极限 强度
各向同性材料强度指标1个: S (塑性材料) b(脆性材料)
正交各向异性强度指标5个: Xt、X c、Yt、Yc、S
(3)层间强度低
组成复合材料的基体与增强体,在性能上互补, 弥补各自的缺点,从而提高了综合性能。
脆性的高强度 纤维增强体
适宜的结合
韧性基体
4.1.2.4 相抵效应
基体与增强体组成复合材料时,若组分间性能相互制约, 限制了整体性能提高,则复合后显示出相抵效应。
脆性的纤维
界面结合很强
脆性断裂
脆性陶瓷 基体
4.1.2.2 非线性效应
• 共振效应在阻尼减振和电磁波吸收复合材料的研究 和设计中获得利用。
4.2 材料的设计目标和设计类型 4.2.1 材料的使用性能和设计目标
①力学性能 ②物理性能 ③化学性能
性能要求 约束条件
4.2.2 复合材料的设计类型
安全设计 单项性能设计 等强度设计 等刚度设计 优化设计
4.3.1复合材料结构设计过程
第4章 复合材料 设计原理
4.1 复合材料的可设计性
复杂性
灵活性
刚度
强度
制造工 艺
复合材料力学性能特点
(1)各向异性
性能是一点方向的函数
正交各向异性 纵向(L)
横向(T)
各向同性材料工程弹性常数:E、μ (G)
正交各向异性工程弹性常数: EL、ET、L、T、GLT
(2)非均质性
性能是位置的函数
不同复合效应的类别
线性效应
非线性效应
平均效应
相乘效应
平行效应
诱导效应
相补效应
共振效应
相抵效应
系统效应
4.1.2.1 平均效应
是复合材料所显示的最典型 的一种复合效应。
并联模型
串联模型
基体
增强体
Kc=∑KiVi(并联模型) 1/Kc =∑Vi/Ki(串联模型)
Knc=∑KniVi
ρc=ρmVm+ρfVf
以确保结构的 强度与刚度
结构设计的步骤:
(1)明确设计条件:性能要求,载荷要求,环境条件, 形状限制等。
(2)材料设计:原材料选择,铺层性能确定,复合 材料层合板的设计。
(3)结构设计: 典型结构件(杆、梁、板、壳)的设 计等,以及复合材料(衍梁、钢架)的设计。
2.复合材料结构设计条件
(1)性能要求