河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题(word无答案)
河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题

2019-2020学年度第一学期期末素质测试九年级数学一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的图形中,是轴对称图形但不是中心对称图形的是( )A. B. C. D. 2.下列说法正确的是 ( (A. “经过有交通信号的路口遇到红灯”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6(则他投10次一定可投中6次C. 投掷一枚硬币正面朝上是随机事件D. 明天太阳从东方升起是随机事件3. 如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB ',若∠AOB=15°,则∠AOB'的度数是( )A. 25°B. 30°C. 35°D. 40° 4.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A. 1a ≥B. 1a >且5a ≠C. 1a ≥且5a ≠D. 5a ≠ 5.若将抛物线y =2(x +4)2﹣1平移后其顶点落y 在轴上,则下面平移正确的是( )A. 向左平移4个单位B. 向右平移4个单位C. 向上平移1个单位D. 向下平移1个单位6.已知方程210x x --=的两根为,a b ,则22a a b --的值为( )A. -1B. 1C. 2D. 07.如图,菱形ABCD 中,∠B =70°,AB =3,以AD 为直径⊙O 交CD 于点E ,则弧DE 的长为( ) A. 13π B. 23π C. 76π D. 43π 8.在同一直角坐标系中,函数y =kx -k 与k y x=(k ≠0)的图象大致是 ( ) A. B.C. D.9.如图△ABC 中,BE 平分∠ABC ,DE ∥BC ,若DE =2AD ,AE =2,那么AC 的长为( )A. 3B. 4C. 5D. 610.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )的A. B.C. D.二、填空题(每小题3分,满分15分,将答案填在答题纸上)11.若函数()21m m y m +=-是二次函数,则m 的值为__________.12.如图,在△ABC 中,AB =4(BC =7((B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到(ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为__________(13.如图,在平面直角坐标系中,▱ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数y =﹣3x (x <0)与y =k x(x >0)的图象上,若▱ABCD 的面积为4,则k 的值为:_____.14.在矩形ABCD 中,24AB AD ==,以点A 为圆心,AB 为半径的圆弧交CD 于点E ,交AD 的延长线于点F ,连接AE ,则图中阴影部分的面积为:__________.15.动手操作:在矩形纸片ABCD 中,AB=3,AD=5.如图所示,折叠纸片,使点A 落在BC 边上A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为 .三、解答题(本大题共8小题,满分75分.解答应写出文字说明、证明过程或演算步骤.) 16.用你喜欢方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=017.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .(1)求证:BE=EC(2)填空:①若∠B=30°,DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点四边形是正方形.18.“每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.的(1)请用树状图或列表法求出所有可能的结果;(2)请问这个游戏规则公平吗?并说明理由.19.如图,在ABC ∆中,CD 是AB 边上的高,且2CD AD BD =⋅.(1)求ACB ∠的度数;(2)在(1)的条件下,若4,10AC AB ==,求AD 的长.20.如图,反比例函数y =k x(x >0)和一次函数y =mx +n 的图象过格点(网格线的交点)B 、P .(1)求反比例函数和一次函数的解析式;(2)观察图象,直接写出一次函数值大于反比例函数值时x 的取值范围是: .(3)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件: ①四个顶点均在格点上,且其中两个顶点分别点O ,点P ;②矩形的面积等于k 的值.21.某商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润W (元)最大,最大是多少元?22.(1)问题发现:如图1,在等腰直角三角形ABC 中,90,∠=︒=ACB BC a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,则BCD ∆的面积为__________;(请用含a 的式子表示BCD ∆的面积;提示:过点D 作BC 边上的高DE )(2)类比探究:如图2,在一般的Rt ABC ∆中,90,∠=︒=ACB BC a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形ABC 中,,AB AC BC a ==,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .试直接用含a 的式子表示BCD ∆的面积.(不写探究过程)23.已知直线y =x +3交x 轴于点A ,交y 轴于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线解析式;(2)点C (m ,0)在线段OA 上(点C 不与A ,O 点重合),CD ⊥OA 交AB 于点D ,交抛物线于点E ,若DE AD ,求m 的值;(3)点M 在抛物线上,点N 在抛物线的对称轴上,在(2)的条件下,是否存在以点D ,B ,M ,N 为顶点的四边形为平行四边形?若存在,请求出点N 的坐标;若不存在,请说明理由.。
驻马店地区2020年九年级上学期数学期末考试试卷(II)卷

驻马店地区2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为()A . y=-B . y=C . y=D . y=-2. (2分)如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A . 倍B . 倍C . 2倍D . 4倍3. (2分) (2019九上·石家庄月考) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△AEF:S△CAB=1:4;④AF2=2EF2 .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个4. (2分)(2016·毕节) 如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A . 100°B . 72°C . 64°D . 36°5. (2分) (2019九上·杭州月考) 抛物线与轴的交点坐标是()A . (0, 1)B . (1, 0)C . (0, -1)D . (0, 0)6. (2分) (2020八下·景县期中) 如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为()A . 3B . 4C . 5D . 47. (2分) (2017八下·海淀期末) 如图,在△ 中, ,,边上的中线,那么的长是()A .B .C .D .8. (2分) (2016九上·宝丰期末) 在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A . y=3(x+1)2+2B . y=3(x+1)2﹣2C . y=3(x﹣1)2+2D . y=3(x﹣1)2﹣2二、填空题 (共8题;共24分)9. (2分)若y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式(其中m,k为常数),则m+k=________;当x=________时,二次函数y=x2+2x﹣2有最小值.10. (1分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为________ 。
九年级上册驻马店数学全册期末复习试卷测试卷(解析版)

九年级上册驻马店数学全册期末复习试卷测试卷(解析版)一、选择题1.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 722.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º3.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.1x=14.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-25.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,106.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A.23B.1.15C.11.5D.12.57.已知反比例函数kyx=的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 9.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 11.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .12.一元二次方程x 2﹣3x =0的两个根是( ) A .x 1=0,x 2=﹣3 B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣313.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个14.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点二、填空题16.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.19.如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.2m,测得1.6,12.4==,则建筑物CD的高是__________m.AB m BC m20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.21.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.22.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).23.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)24.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.25.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__.26.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .28.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.29.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题31.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)32.如图,已知菱形ABCD ,对角线AC 、BD 相交于点O ,AC =6,BD =8.点E 是AB 边上一点,求作矩形EFGH ,使得点F 、G 、H 分别落在边BC 、CD 、AD 上.设 AE =m .(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.33.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.34.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?35.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.38.如图,已知矩形ABCD 中,BC =2cm ,AB 3,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.39.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.D解析:D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.6.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..7.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.12.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.15.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.【解析】试题分析:连接BC,∴∠D=∠A,∵A B是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.21.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.22.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧. 23.【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】 【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF =()21112022360OE CD FC AD AE OG π•+-•-=(21112022222360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.24.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD =4,在Rt △ECF 中,sin ∠AEC =25CF CE ==,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.25.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公 解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.26.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离27.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.28.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.29.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-8+b,解得:b=8,故-1<b<8;故答案为:-1<b<8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.30.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5, 将Rt △ABC 绕点C 顺时针旋转90°得到△DEC , ∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4, ∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题31.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.32.(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<95时,存在2个矩形EFGH;③当m=95时,存在1个矩形EFGH;④当95<m≤185时,存在2个矩形EFGH;⑤当185<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【解析】【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m <5时,如图,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH . 【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O 与菱形的边的交点个数,综合性较强.33.(1)证明见解析;(22933()22cm . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°. ∴∠DOP=180°﹣120°=60°. ∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°. ∴OD ⊥DP . ∵OD 为半径, ∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm , ∴OP=6cm ,由勾股定理得:DP=33cm . ∴图中阴影部分的面积221603933333()236022ODPDOBS SS cm 扇形 34.38【解析】 【分析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为38. 【详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为38.【点睛】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.35.(1)证明见解析;(2)证明见解析;(3). 【解析】 【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线; (2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似; (3)根据三角形相似得出AB ACAF EF=,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB ACAF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度. 【详解】解:(1)如答图1,连接CD , ∵AC 是⊙O 的直径,∴∠ADC=90° ∴∠ADB+∠EDC=90° ∵∠BAC=∠EDC ,∠EAB=∠ADB , ∴∠BAC=∠EAB+∠BAC=90° ∴EA 是⊙O 的切线; (2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90° ∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF ∴∠BAC=∠AFE ∴△EAF ∽△CBA . (3)∵△EAF ∽△CBA ,∴AB ACAF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB . ∴642AB AB=,解得∴∴。
河南省驻马店地区九年级上学期数学期末考试试卷

河南省驻马店地区九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分) (2019九上·江津期中) 已知a、b为实数,且满足(a2+b2)2﹣9=0,则a2+b2的值为()A . ±3B . 3C . ±9D . 92. (3分) (2017九上·上城期中) 当时,二次函数有最大值,则实数的值为().A .B . 或C . 或D . 或或3. (3分)用配方法解方程x2﹣8x+3=0,下列变形正确的是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=194. (3分) (2017九上·上蔡期末) 如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是().A . ∠ABD=∠CB . ∠ADB=∠ABCC .D .5. (3分)如图,P为⊙O外一点,PA切⊙O于点A,且OP=5,PA=4,则sin∠APO等于()A .B .C .D .6. (3分) (2019八下·新田期中) 下列说法中,真命题的是()A . 平行四边形既是轴对称图形又是中心对称图形B . 平行四边形的邻边相等C . 矩形的对角线互相垂直D . 菱形的面积等于两条对角线长乘积的一半7. (3分) (2019八上·西安月考) 如图,梯子靠在墙上,梯子的应用到墙根的距离为,梯子的顶端到地面的距离为,现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于,同时梯子的顶端下降至,那么()A . 小于B . 大于C . 等于D . 小于或等于8. (3分)已知二次函数y1=ax2+bx+c与一次函数y2=kx+b的图象交于A(-1,5)和B(4,2),则能使y1>y2成立的X的取值范围是A . x<-1B . x>4C . -1<x<4D . x<-1或x>4二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)9. (3分)(2018·青岛) 计算:2﹣1× +2cos30°=________.10. (3分) (2019九上·忻城期中) 若关于x的方程(m﹣2)x2+2x+1=0有两个实数根,则m的取值是________.11. (3分) (2020九上·敦化期末) 如图,抛物线交轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点在轴左侧.于点,于点,四边形与四边形的面积分别为6和10,则与的面积之和为________.12. (3分)如图,甲船从点O出发,自南向北以40海里/时的速度行驶;乙船在点O正东方向120海里的A 处,以30海里/时的速度自东向西行驶,经过________小时两船的距离为100海里.13. (3分) (2018九上·嵩县期末) 如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB干点E,且tan∠α= ,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤ .其中正确的结论是________(填入正确结论的序号).14. (3分)已知二次函数y= x2的图象如图所示,线段AB∥x轴,交抛物线于A、B两点,且点A的横坐标为2,则AB的长度为________.三、解答题(本大题共10小题,共78分) (共10题;共78分)15. (6分) (2019九上·长白期中) 用公式法解方程:16. (6分) (2019八下·长春期末) 如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC的顶点在格点上.点D是BC的中点,连接AD.(1)在图2、图3两个网格图中各画出一个与△ABC相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC的相似比不为1;(2)tan∠CAD=________.17. (6分) (2019九上·芜湖月考) 如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.18. (7.0分)(2019·宁波模拟) 已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.19. (7.0分)(2016·抚顺模拟) 计算:(1)sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.20. (7.0分) (2020九上·来安期末) 东坡商贸公司购进某种水果成本为20元/ ,经过市场调研发现,这种水果在未来48天的销售单价(元/ )与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020…日销售量()11811410810080…(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?21. (8分) (2019九上·北京月考) 如图,在平面直角坐标系xOy中,点,,.(1)以点C为旋转中心,把逆时针旋转,画出旋转后的△ ;(2)在(1)的条件下,点A经过的路径的长度为________ 结果保留;点的坐标为________.22. (9分)已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.(3)当△CG是直角三角形时,求x和y值.23. (10.0分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.24. (12分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC ,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.参考答案一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题(本大题共10小题,共78分) (共10题;共78分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题(解析版)

2019-2020学年度第一学期期末素质测试九年级数学一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A. 不是轴对称图形,是中心对称图形,故此选项错误;B. 不是轴对称图形,是中心对称图形,故此选项错误;C. 是轴对称图形,也是中心对称图形,故此选项错误;D. 是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.2.下列说法正确的是( (A. “经过有交通信号的路口遇到红灯”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6(则他投10次一定可投中6次C. 投掷一枚硬币正面朝上是随机事件D. 明天太阳从东方升起是随机事件【答案】C【解析】试题解析:A. “经过有交通信号的路口遇到红灯”是随机事件, 说法错误.B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C. 投掷一枚硬币正面朝上是随机事件,说法正确.D. 明天太阳从东方升起是必然事件.说法错误.故选C.3. (((((AOB((O((((((((45°((((A(OB((((AOB=15°(((AOB(((((( (A. 25°B. 30°C. 35°D. 40°【答案】B【解析】 【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA -∠A′OB′=45°-15°=30°,故选B .4.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A. 1a ≥B. 1a >且5a ≠C. 1a ≥且5a ≠D. 5a ≠【答案】A【解析】【分析】 分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x -1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a -5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5.若将抛物线y =2(x +4)2﹣1平移后其顶点落y 在轴上,则下面平移正确的是( )A. 向左平移4个单位B. 向右平移4个单位C. 向上平移1个单位D. 向下平移1个单位 【答案】B【解析】分析】抛物线y =2(x +4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y 轴上,则原抛物线向右平移4个单位即可. 【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t )(t 为常数),则原抛物线向右平移4个单位即可.故选:B .【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案. 6.已知方程210x x --=的两根为,a b ,则22a a b --的值为( ) A. -1 B. 1C. 2D. 0 【答案】D【解析】【分析】先根据一元二次方程的解的定义得到a 2-a-1=0,即a 2-a=1,则a 2-2a-b 可化简为a 2-a-a-b ,再根据根与系数的关系得a+b=1,ab=-1,然后利用整体代入的方法计算. 【详解】解:∵a 是方程210x x --=的实数根, ∴a 2-a-1=0,∴a 2-a=1,∴a 2-2a-b=a 2-a-a-b=( a 2-a)-(a+b),∵a 、b 是方程210x x --=的两个实数根,∴a+b=1,∴a 2-2a-b=1-1=0. 【故选D .【点睛】本题考查了根与系数关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= b a -,x 1⋅x 2= c a. 7.如图,菱形ABCD 中,∠B =70°,AB =3,以AD 为直径的⊙O 交CD 于点E ,则弧DE 的长为( )A. 13πB. 23π C. 76π D. 43π 【答案】A【解析】【分析】连接OE ,由菱形的性质得出∠D =∠B =70°,AD =AB =3,得出OA =OD =1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE =40°,再由弧长公式即可得出答案.【详解】连接OE ,如图所示:∵四边形ABCD 是菱形,∴∠D =∠B =70°,AD =AB =3,∴OA =OD =1.5,∵OD =OE ,∴∠OED =∠D =70°,∴∠DOE =180°﹣2×70°=40°,∴»DE的长= 40 1.511803ππ⨯=. 故选:A.的【点睛】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.8.在同一直角坐标系中,函数y=kx-k与kyx=(k≠0)的图象大致是()A. B.C. D.【答案】D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.9.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A. 3B. 4C. 5D. 6【答案】D 【解析】【分析】首先证明BD=DE=2AD,再由DE∥BC,可得AD AEBD EC=,求出EC即可解决问题.【详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD AE BD EC=,∴122EC =,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【点睛】此题考查平行线分线段成比例,由DE∥BC,可得AD AEBD EC=,求出EC即可解决问题.10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.【答案】C【解析】【分析】通过相似三角形△EFB∽△EDC 的对应边成比例列出比例式1x y 11y--=,从而得到y 与x 之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x ,BE=y ﹣1,∵AD//BC ,∴△EFB∽△EDC , ∴BF BE DC EC=,即1x y 11y --=, ∴y=1x (0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分. A 、D 图象都是直线的一部分,B 的图象是抛物线的一部分,C 的图象是双曲线的一部分.故选C .二、填空题(每小题3分,满分15分,将答案填在答题纸上)11.若函数()21m my m +=-是二次函数,则m 的值为__________.【答案】-2【解析】【分析】 直接利用二次函数的定义分析得出答案.【详解】解:∵函数()21m m y m +=-是二次函数, ∴m 2+m=2,且m-1≠0,∴m=−2. 的故答案为-2.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的次数与系数的值是解题关键. 12.如图,在△ABC 中,AB =4(BC =7((B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到(ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为__________(【答案】3【解析】试题解析: 由旋转性质可得:AD =AB (60B ∠=o Q , ∴△ABD 是等边三角形,∴BD =AB (∵AB =4(BC =7(∴CD =BC −BD =7−4=3.故答案为3.13.如图,在平面直角坐标系中,▱ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数y =﹣3x(x <0)与y =k x (x >0)的图象上,若▱ABCD 的面积为4,则k 的值为:_____. 【答案】1【解析】【分析】连接OA 、OD ,如图,利用平行四边形的性质得AD 垂直y 轴,则利用反比例函数的比例系数k 的几何意义得到S △OAE 和S △ODE ,所以S △OAD =32+2k ,,然后根据平行四边形的面积公式可得到▱ABCD 的面积=2S △OAD =4,即可求出k 的值.的【详解】连接OA 、OD ,如图,∵四边形ABCD 为平行四边形,∴AD 垂直y 轴,∴S △OAE =12×|﹣3|=32,S △ODE =12×|k |, ∴S △OAD =32+2k , ∵▱ABCD 的面积=2S △OAD =4.∴3+|k |=4,∵k >0,解得k =1,故答案为1.【点睛】此题考查平行四边形的性质、反比例函数的性质,反比例函数图形上任意一点向两个坐标轴作垂线构成的矩形面积等于k ,再与原点连线分矩形为两个三角形,面积等于2k.14.在矩形ABCD 中,24AB AD ==,以点A 为圆心,AB 为半径的圆弧交CD 于点E ,交AD 的延长线于点F ,连接AE ,则图中阴影部分的面积为:__________.【答案】83π-【解析】【分析】首先利用三角函数求的∠DAE 的度数,然后根据S 阴影=S 扇形AEF −S △ADE 即可求解.【详解】解:∵24AB AD ==,AE=AB ,∴,∴Rt △ADE 中,cos ∠DAE=DA AE =12, ∴∠DAE=60°,则S △ADE =12AD ⋅DE=12S 扇形AEF =2604360⨯π=83π,则S 阴影=S 扇形AEF −S △ADE =83π-故答案为83π- 【点睛】本题考查了扇形的面积公式和三角函数,求的∠DAE 的度数是关键.15.动手操作:在矩形纸片ABCD 中,AB=3,AD=5.如图所示,折叠纸片,使点A 落在BC 边上的A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为 .【答案】2【解析】解:当点P 与B 重合时,BA′取最大值是3,当点Q 与D 重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC 边上移动的最大距离为3-1=2.三、解答题(本大题共8小题,满分75分.解答应写出文字说明、证明过程或演算步骤.) 16.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x2﹣x﹣15=0【答案】(1)x1=x2=3(2)x1=﹣2.5,x2=3【解析】【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x3=x1=x2=3(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②45.【解析】【分析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO.∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,∴∴,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=45°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=45°,∵OA=OD,∴∠ADO=45°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案为45.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.“每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.(1)请用树状图或列表法求出所有可能的结果;(2)请问这个游戏规则公平吗?并说明理由.【答案】(1)见解析;(2)此游戏规则不公平,理由见解析【解析】【分析】(1)利用树状图展示所有有12种等可能的结果;(2)两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P (小亮获胜)和P (小明获胜),然后通过比较两概率的大小判断游戏的公平性.【详解】(1)画树状图如下:(2)此游戏规则不公平.理由如下:由树状图知,共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P (小亮获胜)=812=23;P (小明获胜)=1﹣23=13, 因为23>13, 所以这个游戏规则不公平.【点睛】此题考查列树状图求概率,(1)中注意事件是属于不放回事件,故第一次牌面有4种,第二次牌面有3种,(2)中计算概率即可确定事件是否公平.19.如图,在ABC ∆中,CD 是AB 边上的高,且2CD AD BD =⋅.(1)求ACB ∠的度数;(2)在(1)的条件下,若4,10AC AB ==,求AD 的长.【答案】(1)90ACB ∠=︒;(2) 1.6AD =【解析】【分析】(1) CD 是AB 边上的高,且2CD AD BD =⋅,就可以得出ADC CDB ∆~∆,可得∠A=∠BCD ,由直角三角形的性质可求解;(2证明~ACD ABC ∆∆,可得AD AC AC AB=,再把4,10AC AB ==代入可得答案. 【详解】(1)证明:在ABC ∆中,∵CD 是AB 边上的高,(090ADC CDB ∠=∠=,∵2CD AD BD =g , ∴AD CD CD BD=, ∴ADC CDB ∆~∆,∴A BCD ∠=∠,∴090ACB ACD BCD ACD A ∠=∠+∠=∠+∠=;(2)由(1)知ABC ∆是直角三角形,在Rt ABC ∆中,(090ACD A B A ∠+∠=∠+∠=,∴ACD B ∠=∠,又(A A ∠=∠,∴~ACD ABC ∆∆, ∴AD AC AC AB=, 又(4,10AC AB ==, ∴4410AD =, ∴ 1.6AD =【点睛】本题考查了相似三角形的判定和性质,证明三角形相似是关键.20.如图,反比例函数y =k x(x >0)和一次函数y =mx +n 的图象过格点(网格线的交点)B 、P .(1)求反比例函数和一次函数的解析式;(2)观察图象,直接写出一次函数值大于反比例函数值时x 的取值范围是: .(3)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件: ①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.【答案】(1)y =4x ,y =﹣12x +3;(2)2<x <4;(3)见解析 【解析】【分析】(1)利用待定系数法即可求出反比例函数和一次函数的解析式;(2)根据图象即可求得;(3)根据矩形满足的两个条件画出符合要求的两个矩形即可.【详解】(1)∵反比例函数y =k x (x >0)的图象过格点P (2,2), ∴k =2×2=4,∴反比例函数的解析式为y =4x, ∵一次函数y =mx +n 的图象过格点P (2,2),B (4,1),∴2241m n m n +=⎧⎨+=⎩,解得123m n ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为y =﹣12x +3; (2)一次函数值大于反比例函数值时x 的取值范围是2<x <4,故答案为2<x <4.(3)如图所示:矩形OAPE 、矩形ODFP 即为所求作的图形.【点睛】此题是一道综合题,考查待定系数法求函数解析式、矩形的性质,(3)中画矩形时把握矩形特点即可正确解答.21.某商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润W (元)最大,最大是多少元?【答案】(1)每次下降的百分率为20%;(2)每千克水果应涨价7.5元时,商场获得的利润W 最大,最大利润是6125元.【解析】【分析】(1) 设每次下降百分率为m ,,得方程()250132m -=,求解即可 (2)根据销售利润=销售量×(售价−−进价),列出每天的销售利润W(元))与涨价x 元之间的函数关系式.即可求解.【详解】解:(1)设每次下降百分率为m ,根据题意,得 ()250132m -=,解得120.2, 1.8m m ==(不合题意,舍去)答:每次下降的百分率为20%;(2)设每千克涨价x 元,由题意得: ()()1050020W x x =+-2203005000x x =-++()2207.56125x =--+(200a =-<,开口向下,W 有最大值,(当7.5x =(元)时,6125W =最大值(元)答:每千克水果应涨价7.5元时,商场获得的利润W 最大,最大利润是6125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案22.(1)问题发现:如图1,在等腰直角三角形ABC 中,90,∠=︒=ACB BC a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,则BCD ∆的面积为__________;(请用含a 的式子表示BCD ∆的面积;提示:过点D 作BC 边上的高DE )(2)类比探究:如图2,在一般Rt ABC ∆中,90,∠=︒=ACB BC a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形ABC 中,,AB AC BC a ==,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .试直接用含a 的式子表示BCD ∆的面积.(不写探究过程)【答案】(1)212BCD S a ∆=;(2)成立,理由见解析;(3)214BCD S a ∆= 【解析】【分析】 (1)如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出△ABC ≌△BDE ,就有DE=BC=a 进而由三角形的面积公式得出结论; (2)如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出△ABC ≌△BDE ,就有.DE=BC=a 进而由三角形的面积公式得出结论;(3)如图3,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,由等腰三角形的性质可以得出BF= 12BC ,由条件可以得出△AFB ≌△BED 就可以得出BF=DE ,由三角形的面积公式就可以得出结论. 【详解】解:(1)如图1,过点D 作DE⊥CB 交CB 的延长线于E ,∴∠BED=∠ACB=90°,由旋转知,AB=BD ,∠ABD=90°,∴∠ABC+∠DBE=90°,的∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC 和△BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△BDE(AAS)∴BC=DE=a.∵S △BCD =12 BC ⋅DE =212a 故答案为212a (2)(1)中结论仍然成立,理由:如图,过点D 作BC 边上的高DE ,在Rt ABC ∆中,(090ACB ∠=,由旋转可知:0,90AB BD ABD E =∠=∠=,∴090ABC A EBD ABC ∠+∠=∠+∠=,∴A EBD ∠=∠,又(090ACB E ∠=∠=,∴()ABC BDE AAS ∆≅∆,∴DE BC a ==,212BCD S a ∆= (3)214BCD S a ∆=. 如图3,过点A 作AF ⊥BC 与F ,过点D 作DE⊥BC 的延长线于点E ,∴∠AFB=∠E =90°,BF=12BC=12a. ∴∠FAB+∠ABF =90°∵∠ABD =90°,∴∠ABF+∠DBE =90°,∴∠FAB=∠EBD∵线段BD 是由线段AB 旋转得到的,∴AB=BD在△AFB 和△BED 中, AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFB≌△BED(AAS),∴BF=DE=12 a. ∵S △BCD =12 BC ⋅DE=12 ⋅12 a ⋅a=214a . ∴△BCD 的面积为214a . 【点睛】此题是几何变换综合题,主要考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,判断出△ABC ≌△BDE 是解本题的关键. 23.已知直线y =x +3交x 轴于点A ,交y 轴于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,点N的坐标为(﹣1,﹣2)或(﹣1,0),理由见解析【解析】【分析】(1)先确定出点A,B坐标,再用待定系数法即可得出结论;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出结论;(3)分两种情况:①以BD为一边,判断出△EDB≌△GNM,即可得出结论.②以BD为对角线,利用中点坐标公式即可得出结论.【详解】(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入抛物线y=﹣x2+bx+c中得:9303b cc--+=⎧⎨=⎩,解得:23bc=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC =m +3,CD =m +3,由勾股定理得:AD(m +3),∵DEAD ,∴﹣m 2﹣3m =2(m +3),∴m 1=﹣3(舍),m 2=﹣2;(3)存在,分两种情况:①以BD 为一边,如图1,设对称轴与x 轴交于点G ,∵C (﹣2,0),∴D (﹣2,1),E (﹣2,3),∴E 与B 关于对称轴对称,∴BE ∥x 轴,∵四边形DNMB 是平行四边形,∴BD =MN ,BD ∥MN ,∵∠DEB =∠NGM =90°,∠EDB =∠GNM ,∴△EDB ≌△GNM ,∴NG =ED =2,∴N (﹣1,﹣2);②当BD 为对角线时,如图2,此时四边形BMDN 是平行四边形,设M (n ,﹣n 2﹣2n +3),N (﹣1,h ),∵B(0,3),D(-2,1),∴21202313n n n h +⎧⎨-+++⎩﹣=﹣﹣= ∴n =-1,h =0∴N (﹣1,0);综上所述,点N 的坐标为(﹣1,﹣2)或(﹣1,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,根据线段之间的数量关系求点坐标,根据点的位置构建平行四边形,(3)中以BD 为对角线时,利用中点坐标公式计算更简单.。
河南省驻马店地区2020年九年级上学期数学期末考试试卷(I)卷

河南省驻马店地区2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分) (2018九上·扬州期中) 下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A . 4个B . 3个C . 2个D . 1个2. (3分)(2020·南漳模拟) 下列事件中,属于随机事件的是()A . 方程在实数范围内有解B . 在平面上画一个矩形,这个矩形一定是轴对称图形C . 在一副扑克牌中抽取一张牌,抽出的牌是黑桃AD . 十边形有15条对角线3. (3分)(2016·北仑模拟) 在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A .B .C .D . 14. (3分) (2019九上·普陀期末) 下列二次函数中,如果图像能与y轴交于点A(0,1),那么这个函数是()A .B .C .D .5. (3分) (2020九上·兴化月考) 如图,点A、C、B在⊙O上,已知∠AOB=∠ACB= ,则的值为()A . 135°B . 100°C . 110°D . 120°6. (3分)(2019·株洲模拟) 从-2、-1、0、1、2这5个数中任取一个数,作为关于x的一元二次方程x2-2x+k=0的k值,则所得的方程中有两个不相等的实数根的概率是()A .B .C .D .7. (3分) (2015九上·揭西期末) 关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m 的值是()A . 0B . 8C . 4±2D . 0或88. (3分)如图,已知□ABCD中,AE⊥BC于点E,以点b为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到ABA’E’,连接DA’.若∠ADC=60°,∠ADA’=50°,则∠DA’E’的大小为()A . 130°B . 150°C . 160°D . 170°9. (3分) (2019九上·玉田期中) 关于的一元二次方程,下列说法错误的是()A . 方程无实数解B . 方程有一个实数解C . 有两个相等的实数解D . 方程有两个不相等的实数解10. (3分)(2019·云霄模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为A(3,0),其部分图象如图所示,下列结论中:①b2<4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④a+b+c<0;⑤当0<x<3时,y随x增大而减小;其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题(共24分) (共6题;共24分)11. (4分) (2020九上·武汉月考) 方程的根是________.12. (4分) (2019九上·普陀期中) 如果二次函数的图像经过原点,那么的值是________.13. (4分)(2019·渝中模拟) 有七张正面分别标有数字,,,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则使关于的一元二次方程有两个不相等的实数根,且以为自变量的二次函数的图象不经过点(1,0)的概率是________.14. (4分)如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是________ cm.15. (4分)(2017·无棣模拟) 如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.16. (4分) (2019八上·龙山期末) 对于数a,b,c,d,规定一种运算 =ad-bc,如=1×(-2)-0×2=-2那么当 =27,则x= ________ .三、解答题(一)(共18分) (共3题;共18分)17. (6分) (2019九上·定边期中) 解方程: .18. (6分) (2020九上·广安期末) 如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.19. (6分) (2020九上·前郭尔罗斯蒙古族期中) 如图,在中,,将以点B为旋转中心顺时针旋转得到.连接,求的长.四、解答题(二)(共21分) (共3题;共21分)20. (7.0分) (2020九上·齐齐哈尔月考) 下图是一个风车图案的一部分,风车图案是一个关于点的中心对称图形,请你把它补全.21. (7.0分)(2017·临高模拟) 已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2 ,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.22. (7.0分) (2020八下·萧山期末) 已知:如图,在 ABCD中,延长DC至点E,使得DC=CE,连结AE 交BC于点F。
河南省驻马店地区九年级上学期数学期末考试试卷

河南省驻马店地区九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)若关于x的一元二次方程为的解是,则的值是()A . 2018B . 2008C . 2014D . 20122. (1分)(2017·临高模拟) 下列交通标志中,是中心对称图形的是()A .B .C .D .3. (1分) (2019九上·无锡月考) 已知⊙O的半径为5㎝,P到圆心O的距离为6㎝,则点P在⊙O()A . 外部B . 内部C . 圆上D . 不能确定4. (1分)函数y=的图象是()A .B .C .D .5. (1分)下列事件中,必然事件是()A . 掷一枚硬币,正面朝上.B . 是有理数,则≥0.C . 某运动员跳高的最好成绩是20 .1米.D . 从车间刚生产的产品中任意抽取一个,是次品.6. (1分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A . 3B . 2.5C . 2D . 17. (1分)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为()A . 6B . 5C . 4D . 38. (1分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . a>0B . 当-1<x<3时,y>0C . c<0D . 当x≥1时,y随x的增大而增大9. (1分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A . 144(1﹣x)2=100B . 100(1﹣x)2=144C . 144(1+x)2=100D . 100(1+x)2=14410. (1分)如上图⊙O的直径垂直于弦,垂足是,,,的长为()A .B . 4C .D . 811. (1分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在 OB上),则∠A′CO的度数为()A . 85°B . 75°C . 95°D . 105°12. (1分) (2019八下·长沙期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc >0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 ,且x1≠x2 ,则x1+x2=2.其中,符合题意结论的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分) (2016九上·无锡期末) 一元二次方程x2-3x-1=0的两根是x1 , x2 ,则x1+x2=________.14. (1分) (2018九上·江海期末) 把抛物线先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________15. (1分) (2020九上·石城期末) 如图,直线y= x+2与x轴交于点A,与y轴交于点B,点D在x轴的正半轴上OD=0A,过点D作CD⊥x轴交直线AB于点C,若反比例函数y= (k≠0)的图象经过点C,则k的值为________ 。
河南省驻马店地区2020版九年级上学期数学期末考试试卷B卷

河南省驻马店地区2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·深圳期末) 下列运算中正确的是()A .B .C .D .2. (2分)cos45°的值等于()A .B .C .D .3. (2分)下列二次根式中属于最简二次根式的是()A .B .C .D .4. (2分) (2018九上·扬州期末) 方程配方后,下列正确的是()A .B .C .D .5. (2分)下列各命题中正确的是()①方程x2=-4的根为x1=2,x2=-2②∵(x-3)2=2,∴x-3= ,即x=3± ③∵x2- =0,∴x=±4④在方程ax2+c=0中,当a>0,c>0时,一定无实根B . ②③C . ③④D . ②④6. (2分)(2017·绵阳模拟) 如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A . 1B . 2C . 3D . 47. (2分) (2017八下·重庆期末) 在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A . 都不变B . 都扩大5倍C . 正弦扩大5倍、余弦缩小5倍D . 不能确定8. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④二、填空题 (共6题;共7分)9. (1分)计算的结果是________.10. (1分) (2017九上·钦州期末) 在Rt△ABC中,∠C=90°,AC=BC,那么sinA=________.11. (1分)(2017·薛城模拟) 20170+2|1﹣sin30°|﹣()﹣1+ =________.12. (1分) (2018九上·长兴月考) 已知两个相似三角形的对应边之比为2,则它们的周长之比是________.13. (2分)(2018·青浦模拟) 如果两个相似三角形周长的比是2:3,那么它们面积的比是________.14. (1分)已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为________ .三、解答题 (共10题;共60分)15. (5分) (2020八下·绍兴月考) 解方程:(1)(x+1)(x+2)=2(x+2)(2)16. (5分)(2018·河源模拟) 计算:17. (5分)转盘被均匀分为37格,分别标以0~36这37个数字,且所有写有偶数(0除外)的格子都涂成了红色,写有奇数的格子都涂成了蓝色,而0所在的格子被涂成了绿色.游戏者用此转盘(如图)做游戏,每次游戏游戏者交游戏费1元,游戏时,游戏者先押一个数字,然后快速地转动转盘,若转盘停止转动时,指针所指格子中的数字恰为游戏者所押数字,则游戏者将获得奖励36元,该游戏对游戏者有利吗?转动多次后,游戏者平均每次将获得或损失多少元?18. (11分) (2018八上·青山期中) 如图1,点A(2,1),点A与点B关于y轴对称,AC∥y轴,且AC=3,连接BC交y轴于点D.(1)点B的坐标为________,点C的坐标为________;(2)如图2,连接OC,OC平分∠ACB,求证:OB⊥OC;(3)如图3,在(2)的条件下,点P为OC上一点,且∠PAC=45°,求点P的坐标.19. (10分) (2016八上·吴江期中) 解方程(1) x2﹣6x﹣18=0(配方法)(2) 3(x﹣2)2=x(x﹣2)(3) x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.20. (5分)已知三角函数值,可以先利用计算器求出锐角α与β,从而比较它们的大小.你能否不用计算器来比较以下的锐角α与β的大小?如果能,说说你的想法.(1)cosα=,tanβ=;(2)sinα=0.456 7,cosβ=0.567 8.21. (5分)关于x的方程x2+mx+m=0的两个根的平方和为3,求m的值.22. (10分)(2016·遵义) 如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD 分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面积.23. (2分)(2016·梅州) 如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.24. (2分) (2018八上·顺义期末) 已知:如图,在中,.(1)求作:的角平分线(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若,,求的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共60分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、答案:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省驻马店市平舆县2019-2020学年九年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 下面的图形中,是轴对称图形但不是中心对称图形的是()
A.B.C.D.
(★) 2 . 下列说法正确的是()
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.投掷一枚硬币正面朝上是随机事件
D.明天太阳从东方升起是随机事件
(★) 3 . 如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则
∠AOB'的度数是()
A.25°B.30°C.35°D.40°
(★★) 4 . 关于的方程有实数根,则满足()
A.B.且C.且D.
(★) 5 . 若将抛物线 y=2( x+4)2﹣1平移后其顶点落 y在轴上,则下面平移正确的是()
A.向左平移4个单位B.向右平移4个单位
C.向上平移1个单位D.向下平移1个单位
(★) 6 . 已知方程的两根为,则的值为()
A.-1B.1C.2D.0
(★★) 7 . 如图,菱形 ABCD中,∠ B=70°, AB=3,以 AD为直径的⊙ O交 CD于点 E,则弧 DE的长为()
A.πB.πC.πD.π
(★★) 8 . 在同一直角坐标系中,函数 y= kx-k与( k≠0)的图象大致是()
A.B.
C.D.
(★) 9 . 如图△ ABC中, BE平分∠ ABC,DE∥ BC,若 DE=2 AD, AE=2,那么 AC的长为()
A .3
B .4
C .5
D .6
(★★★★) 10 . 如图,边长为1的正方形 ABCD 中,点 E 在 CB 的延长线上,连接 ED 交 AB 于
点 F , AF = x (0.2≤ x≤0.8), EC = y .则在下面函数图象中,大致能反映 y 与 x 之间函数关系的是( )
A .
B .
C .
D .
二、填空题
(★) 11 . 若函数
是二次函数,则
的值为__________.
(★★) 12 . 如图,在△ ABC 中, AB=4, BC=7,∠ B=60°,将△ ABC 绕点 A 按顺时针旋转一
定角度得到△ ADE,当点 B 的对应点 D 恰好落在 BC 边上时,则 CD 的长为
__________ .
(★★) 13 . 如图,在平面直角坐标系中,▱ ABCD 的顶点 B , C 在 x 轴上, A , D 两点分别在
反比例函数 y =﹣ ( x <0)与 y = ( x >0)的图象上,若▱ ABCD 的面积为4,则 k 的值
为:_____.
(★) 14 . 在矩形
中, ,以点 为圆心,
为半径的圆弧交 于点 ,
交
的延长线于点
,连接
,则图中阴影部分的面积为:
__________.
(★★) 15 . 动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在
BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定
点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .
三、解答题
(★★) 16 . 用你喜欢的方法解方程
(1) x 2﹣6 x﹣6=0
(2)2 x 2﹣ x﹣15=0
(★★) 17 . 如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点
D作⊙O的切线.交BC于点
A.
(1)求证:BE=EC
(2)填空:①若∠B=30°,AC=2,则DE=______;
②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.
(★★)18 . “每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人
当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽
取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.
(1)请用树状图或列表法求出所有可能的结果;
(2)请问这个游戏规则公平吗?并说明理由.
(★) 19 . 如图,在中,是边上的高,且.
(1)求的度数;
(2)在(1)的条件下,若,求的长.
(★★★★) 20 . 如图,反比例函数 y=( x>0)和一次函数 y= mx+ n的图象过格点(网格线的交点) B、 P.
(1)求反比例函数和一次函数的解析式;
(2)观察图象,直接写出一次函数值大于反比例函数值时 x的取值范围是:.
(3)在图中用直尺和2 B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点 O,点 P;
②矩形的面积等于 k的值.
(★★) 21 . 某商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?
(★★) 22 . (1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含
的式子表示的面积;提示:过点作边上的高)
(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.
(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)
(★★★★★) 23 . 已知直线 y= x+3交 x轴于点 A,交 y轴于点 B,抛物线 y=﹣ x 2+ bx+ c经过点 A, B.
(1)求抛物线解析式;
(2)点 C( m,0)在线段 OA上(点 C不与 A, O点重合),CD⊥ OA交 AB于点 D,交抛物线于点 E,若 DE= AD,求 m的值;
(3)点 M在抛物线上,点 N在抛物线的对称轴上,在(2)的条件下,是否存在以点 D, B,M, N为顶点的四边形为平行四边形?若存在,请求出点 N的坐标;若不存在,请说明理由.。