算法基本语句
计算机的基本算法语句类型和讲解

计算机从上而下按照语
句排列的顺序执行这些语句.
语句n
输入语句和输出语句分 别用来实现算法的输入信息, 输出结果的功能.
语句n+1
例1.用描点法作函数 yx33x2 的24 图x 象3时0,
需要求出自变量和函数的一组对应值,编写程序, 分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值。
注意: INPUT语句不但可以给单个变量赋值,还可以
给多个变量赋值,其格式为:
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量 3,…
例如,输入一个学生数学,语文,英语三门课的成绩, 可以写成:
INPUT “数学,语文,英语”;a,b,c
二.输出语句 输出语句的一般格式
框图: 开始
输入x
yx33x224x30
程序: INPUT “x=”;x y=x^3+*3 x^2-2*4 x+30 PRINT x PRINT y END
输出x,y 结束
程序:
INPUT “x=”;x -----------------输入语句
y=x^3+3*x^2-24*x+30 ---------赋值语句
PRINT “S=”; S
三.赋值语句 (1)赋值语句的一般格式: 变量=表达式
(2)赋值语句的作用是:先计算出赋值号右边表达 式的值,然后把这个值赋给左边的变量,使该变量的 值等于表达式的值。 (3)赋值语句中的“=”称作赋值号,与数学中的等 号的意义是不同的.赋值号的左右两边不能对换. (4)赋值语句左边只能是变量名字而不是表达式, 如:2=x是错误的
〖例4〗交换两个变量A和B的值,并输出交换前后 的值。
基本算法语句(输入输出赋值)

算 法
程 序 框 图
程 序 设 计 语 言
文字语言
图形语言
程序设计语言的基本算法语句有哪些?
输入语句、输出语句、赋值语句 条件语句、循环语句
例1、任意给定一个正实数,设计一个程序, 求以这个数为半径的圆的面积. 第一步:输入一个正实数r; 第二步:计算S=π r2; 第三步:输出圆的面积S. 输入语句
其中 p
abc 2 开始
,
设计一个求三角形面积的程序。
程序: 程序框图:
输入a,b,c 计算p
计算S 输出,b,c p=(a+b+c)/2 S=SQR(p*(p-a)*(p-b)*(p-c)) PRINT “三角形面积S=”;S END
例4、设计程序交换两个变量A和B的值,并 输出交换前后的值。
程序:
INPUT INPUT PRINT X=A A=B B=X PRINT END “A”;A “B”;B A,B
A,B
小结
作业 P24 练习题 T2 T4
基本算法语句
输入、输出、赋值语句
瑞四中 林光明
回顾
1. 什么是算法?什么是程序框图? 算法通常指按照一定的规则解决的某一类 问题的明确和有限的步骤。 程序框图是一种用程序框、流程线及文字 说明来准确、直观的表示算法的图形。
2. 算法的基本逻辑结构有哪些? 算法的基本结构有三种:顺序结构、条件 结构、循环结构(循环结构又分为当型和直 到型)。
程序框图:
开始
输入数学a
输入语文b 输入英语c 总分s=a+b+c 平均分p=s/3
程序: INPUT “Maths=”;a INPUT “Chinese=”;b INPUT “Enghlish=”;c s=a+b+c p=s/3 PRINT “zongfen=”;s PRINT “The average=”;p END
1[1].2.3基本算法语句_循环语句
![1[1].2.3基本算法语句_循环语句](https://img.taocdn.com/s3/m/827a13d626fff705cc170a5a.png)
——循环语句
循环结构有两种-----当型与直到型. 直到型循环结构 当型循环结构
循环体 循环体
满足条件? 否
是
满足条件?
否
是
即WHILE语句和UNTIL语句。
(1)WHILE语句的一般格式是: WHILE 条件 循环体 WEND WHILE——当…… 时候
WEND——朝……方向 行走
循环体
条件
满足条件?
否
是
(2)UNTIL语句的一般格式是:
直到型循环结构 DO 循环体 LOOP UNTIL
循环体
条件
满足条件?
否
是
WHILE语句的一般格式 WHILE 条件 循环体 WEND
UNTIL语句的一般格式
DO 循环体 LOOP UNTIL
条件
区别:在WHILE语句中,是当条件满足时执行循环 体,而在UNTIL语句中,是当条件不满足时执行循环 体。
结束
结构
变式训练(2): 编写程序求:1×3×5×7×……×101的值. 直到型 开始 如何修改? UNITL语句
i=1 S=0 S=1 S=S+i S=S*i
i=i+2 i=i+1
i>100? i>101? 否
是
输出S 结束
i=1 S=0 S=1 DO S=S+i S=S*i i=i+1 i=i+2 LOOP UNTIL i>100 101 PRINT S END
是
S=S+i
结束
直到型
开始
UNTIL语句 i=1 S=0 DO S=S+i i=i+1 LOOP UNTIL i>100 PRINT S END
基本算法语句

说明: (1)“提示内容”提示用户输出什么样的信息,表 达式是指程序要输出的数据;
(2)输出语句的用途: ①输出常量,变量的值和字符串等系统信息。 ②输出数值计算的结果。
(3)同输入语句一样,表达式前也可以有“提示内
容”. 如的输出框 句:
输出S 可以转化为输出语
PRINT “S=”; S
(1)WHILE语句的一般格式是 WHILE 条件
当计算机遇到WHILE语句时,
循环体
先判断条件的真假,如果条件 WEND
符合,就执行WHILE与WEND之间
的循环体;然后再检查上述条 当型循环结构 件,如果条件仍符合,再次执行
循环体,这个过程反复进行,直
到某一次条件不符合为止.这
循环体
时,计算机将不执行循环体,直 接跳到WEND语句后,接着执行 WEND之后的语句.
PRINT “Yes.” ELSE
PRINT “No.” END IF END
算法中的循环结构是由循环语句来实现的 .
循环结构有两种-----当型与直到型. 当型循环结构(当条件满 直到型循环结构(反复执 足时反复执行循环体) 行循环体直到条件满足)
循环体
循环体
满足条件? 是
否
否
满足条件?
是
对应于程序框图中的两种循环结构,一般 程序设计语言中也有当型(WHILE型)和直到型 (UNTIL型)两种语句结构。
三.赋值语句 (1)赋值语句的一般格式: 变量=表达式
(2)赋值语句的作用是:先计算出赋值号右边表达 式的值,然后把这个值赋给左边的变量,使该变量的 值等于表达式的值。 (3)赋值语句中的“=”称作赋值号,与数学中的等 号的意义是不同的.赋值号的左右两边不能对换. (4)赋值语句左边只能是变量名字而不是表达式, 如:2=x是错误的;右边表达式可以是一个数据、 常量或算式;不能利用赋值语句进行代数式的 演算。(如化简、因式分解、解方程等) (5)对于一个变量可以多次赋值。
高二数学教学教案人教版上册必修《基本算法语句》

高二数学教学教案人教版上册必修《基本算法语句》种子牢记着雨滴献身的叮嘱,增强了冒尖的勇气。
下面是XX小编为您推荐高二数学教学教案人教版上册必修《基本算法语句》。
一、本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣. 数学建模也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到算法思想转化思想,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考): 1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计二、教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时三、教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤. (3)结合教材实例总结用代入消元法解二元一次方程组的步骤. (4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+② 2,得5x=1.③第二步,解③,得x= .第三步,②-① 2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y= .⑤第四步,把⑤代入③,得x=2 -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1 0,可以写出类似的求解步骤:第一步,① b2-② b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,② a1-① a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. 不重是指不是可有可无的,甚至无用的步骤,不漏是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的第一步直到最后一步之间做到环环相扣,分工明确,前一步是后一步的前提,后一步是前一步的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2 6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出判断35是否为质数的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n 2)是否为质数的算法.分析:对于任意的整数n( n 2),若用i表示2 (n-1)中的任意整数,则判断n是否为质数的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断 r=0 是否成立.若是,则n不是质数,结束算法;否则,将i 的值增加1,仍用i表示.第五步,判断 i (n-1)是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用二分法求方程x2-2=0 (x 0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x 0)的解就是函数f(x)的零点.二分法的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f (a) f(b) 0)一分为二,得到[a,m]和[m,b].根据 f(a) f(m) 0 是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b] 足够小,则[a,b]内的数可以作为方程的近似解.[来源:学科网Z X X K]解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a) f(b) 0.第三步,取区间中点m= .第四步,若f(a) f(m) 0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为数学机械化 .数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算 =b2-4ac的值.第三步,判断 0是否成立.若 0成立,输出方程有实根;否则输出方程无实根,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t 3,那么y=0.22;否则判断t Z 是否成立,若成立执行 y=0.2+0.1 (t-3);否则执行y=0.2+0.1 ([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。
基本算法语句

2.两种条件语句的执行过程 计算机在执行条件语句时,首先对 If 后的条件进行判断, 如果条件符合,就执行 Then 后的语句 1,若条件不符合, 对于 If—Then—Else 语句就执行 Else 后的语句 2,然后 结束这一条件语句.对于 If—Then 语句,则直接结束该 条件语句.
3.两种循环语句的区别 在当型语句中,是当条件满足时执行循环体,而在直到型 语句中是当条件不满足时执行循环体,二者是有区别的, 在解决问题时用两种循环语句编写应注意条件的不同.
则输出的结果是________.
伪代码所示的算法是一个求和运算:
1×1 3+3×1 5+5×1 7+…+99×1101 =[1-13+13-15+15-17+…+919-1101]×12 =1-1011×12=15001.
答案
50 101
对应的流程图为
要点梳理
说明:上面“For”和“End For”之间缩进的步骤称为循环体, 如果省略“Step 步长”,那么重复循环时,I 每次增加 1. (2)不论循环次数是否确定都可以用下面循环语句来实现循环结 构当型和直到型两种语句结构.
当型语句的一般格式是
,
对应的流程图为
要点梳理
直到型语句的一般格式是
输入、输出和赋值语句
例 1 要求输入两个正数 a 和 b 的值,输出 ab 与 ba 的值,画 出流程图,写出伪代码.
解 流程图:
伪代码如下
变式训练 1
编写伪代码,求用长度为 l 的细铁丝分别围成一个正方形和 一个圆时的面积.要求输入 l 的值,输出正方形和圆的面积.(π 取 3.14)
解 伪代码如下:
要点梳理
3.算法的选择结构由 条件语句来表达,条件语句有两种,一
基本算法语句(输入输出、条件)

If A Then B End If
A N
Y B
回顾反思
条件语句的一般格式:
If A Then B Else C End If
A Y B
N
C
回顾反思
条件语句一般用在需要对条件进行判断的 算法设计中,如判断一个数的正负,确定 两个数的大小等问题,还有求分段函数的 函数值等,往往要用条件语句,有时甚至 要用到条件语句的嵌套
算法步骤: S1 测量儿童身高h; S2 如果 h 1.1,那么免费乘车;
否则,如果 h 1.4 ,那么购买半票乘车;
否则,购买全票乘车.
流程图
开始 输入h
Y
输出 “免费乘车”
h
输出“半票乘车”
输出“全票乘车”
结束
伪代码 Read h
条件语句“If Then Else”
b b x1 , x2 2a 2a
Print x1
if
, x2
End
运行程序: Read A,B If A>B Then C←A/2 Else C←B/2 End If Print C 在两次运行中分别输入8,4和2,4,则 两次运行程序的输出结果分别为
例2.儿童乘坐火车时,若身高不超过1.1m, 则无需购票;若身高超过1.1m但不超过 1.4m,可买半票;若超过1.4m,应买全票.试 设计一个购票的算法,画出流程图,并写 出伪代码
If h 1.1 Then Print “免费乘车” Else If h 1.4 Then Print “半票乘车” Else
可以嵌套
若乘车的旅 客以成人为
主,如何设
计算法可以 更有效率?
Print “全票乘车” End If
基本算法语句——赋值、输入、输出语句

§1.6 基本算法语句——赋值、输入、输出语句 教学目标(1)正确理解赋值语句、输入语句、输出语句的结构;(2)让学生充分地感知、体验应用计算机解决数学问题的方法;(3)通过实例,使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点正确理解输入语句、输出语句、赋值语句的作用.教学难点准确写出输入语句、输出语句、赋值语句.教学过程一、问题情境1.问题1:已知我班某学生上学期期末考试语文、数学和英语学科成绩分别为80、100、89,试设计适当的算法求出这名学生三科的平均分. 二、学生活动1.学生讨论,教师引导学生写出算法并画出流程图.2.怎样将以上算法转换成计算机能理解的语言呢?下面我们将通过伪代码学习基本的算法语句. 三、建构数学1.伪代码:伪代码是介于自然语言和计算机语言之间的文字和符号,是表达算法的简单而实用的好方法.为了今后能学好计算机语言,我们在伪代码中将使用一种计算机语言“BASIC 语言”的关键词.2.赋值语句:赋值语句是将表达式所代表的值赋给变量的语句.例如:“x y ←”表示将y 的值赋给x ,其中x 是一个变量,y 是一个与x 同类型的变量或表达式.说明:①赋值语句中的赋值号“←”的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;②赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或表达式; ③对于一个变量可以多次赋值.例1.写出求23x =时多项式3273511x x x +-+的值的算法.算法1 算法: S1 a ←80S2 b ←100S3 c ←89 S4 A ←(a+b+c)/3S5 输出A流程图:322373511x p x x ←←+-+算法2 23((73)5)11x p x x x ←←+-+ 说明:①以上两种算法,算法1要做6次乘法,算法2只要做3次乘法,由此可见,算法的好坏会影响运算速度;②算法2称为“秦九韶算法”,其算法特点是:通过一次式的反复计算,逐步得出高次多项式的值;对于一个n 次多项式,只要做n 次乘法和n 次加法.附:秦九韶(1202—1261年),字道古,普州安岳(今四川安岳)人.他是我国古代最有成就的数学家之一.著有数学名著《数书九章》(又名数学九章》).该书共十八卷,分为大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易等九大类,每类用九个例题全书共八十一题)来阐明各种算法.这部中世纪的数学杰作,许多方面都有创造,而书中最突出的成就是“大衍求一术”和高次方程的数值解法“正负开方术”,是具有世界意义的成就.3.输入、输出语句:输入、输出语句分别用“Input ”(或者“Read ”)和“Print ”来描述数据的输入和输出.(1)输入语句与赋值语句的区别在于:赋值语句可以将一个代数表达式的值赋于一个变量,而输入语句由于要求输入的值只能是具体的常数,不能是函数、变量或表达式,因此输入语句只能将读入的具体数据赋给变量.(2)输出语句的主要作用是:①输出常量、变量的值和系统信息;②输出数值计算的结果. 例如:可以将问题1中的算法改进为求任意三门功课的平均值的算法.流程图:说明:输入语句“Read a ,b ”表示输入的数据依次送给a ,b ;“Print A ”表示输出运算结果A .四、数学运用1.例题:例2.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请你先列出解决这个问题的方程组,并设计一个解二元一次方程组的通用算法,并画出流程图,写出伪代码.解:设有x 只鸡,y 只兔子,则352494x y x y +=⎧⎨+=⎩. 伪代码: Read a ,b ,c A ←(a+b+c)/3 Print A设二元一次方程组为1111221222,(0),a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩用消元法解得2112122112211221b c b c x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩, 因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可输出,x y 的值.2.练习:1)将五进制数化为十进制数的方法是“按权展开”,如将(5)1403化为十进制数为321015450535228⨯+⨯+⨯+⨯=.试用输入输出语句、赋值语句表示将五进制数(5)abcd 化为十进制数的算法.2)请用伪代码编写程序,实现三个变量1,2,3A B C ===的值按顺序互换,即A B C A →→→之间的交换.3)已知一个正三棱柱的底面边长为3,高为4,用输入、输出和赋值语句表示计算这个正三棱柱的体积的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时作业66 基本算法语句
1.运行下列程序时,若输入2,则输出的结果是____________. INPUT A
A=A 2
*
A=A 3
*
A=A 4
*
PRINT A
END
解析:2×2×3×4=48.
答案:48
WHILE循环语句的执行次数是( )
C.15
D.19 解析:解读程序时,可采用一一列举的形式:
(1)N=0+1=1;N=1×1=1;
(2)N=1+1=2;N=2×2=4;
(3)N=4+1=5;N=5×5=25.
故选A.
答案:A
3.运行下面的程序后输出的结果为__________.
x=-3
y=-10
IF y<0 THEN
x=2 y
*
ELSE
y=y^2
END IF
PRINT x,y
END
解析:因为y=-10<0,所以x=2×y=-20,而y的值不变,仍为-10.
答案:-20 -10
)
C.11,210
D.12,210 解析:采用一一列举的形式,寻求规律:
(1)x=100+10,k=1+1=2;
(2)x=100+2 10,k=2+1=3;
*
(3)x=100+3 10,k=3+1=4;
*
…
(11)x=100+11 10=210>200,k=11+1=12,
*
故选D.
答案:D
__________.
解析:程序执行如下:
(1)j=1+1=2,j=2+1=3;
(2)j=3+1=4,n=0+1=1,j=4+1=5;
(3)j=5+1=6,j=6+1=7;
(4)j=7+1=8,n=1+1=2,j=8+1=9;
(5)j=9+1=10,j=10+1=11;
(6)j=11+1=12,n=2+1=3,j=12+1=13.
答案:3
_________.
解析:本题实质是用辗转相除法求两数的最大公约数,程序执行如下:
m =238,n =102
(1)r =34,m =102,n =34;
(2)r =0,m =34,n =0.
故程序输出的结果为34.
答案:34
7.已知下列程序:
h =0
k =0
p =0
q =0
i =1
DO
INPUT “x ,y =”;x,y
h =h+x
k =k+y
p =p+x^2
q =q+y^2
i =i+1
LOOP UNTIL i >20
h =h/20
k =k/20
Sx =SQR((p-20 h^2)/20)
*
Sy =SQR((q-20 k^2)/20)
*
PRINT “Sx =”;Sx,“Sy =”;Sy
END
阅读上述程序,解答下列问题:
(1)程序的横线上的内容可以改为______________;
(2)该程序的功能是___________________________;
(3)试用另一种循环结构的形式改写上述的程序.
解析:循环结构中累加变量从1取到20,因此总共输入了20个数对(x,y),循环终止后的h 是20个x 的和,k 是20个y 的和,∑∑====20
122012,i i i i y q x
p ,最后的h =x ,k =y . ∴程序的功能是计算输入的20个x 值的标准差和20个y 值的标准差.程序横线上“i >20”可以改为“i >=21”.
解:(1)i >=21
(2)计算输入的20个x 值的标准差和20个y 值的标准差
(3)该程序使用的循环结构是直到型循环结构,可以改为用当型循环结构表达的程序如下: h =0
k =0
p =0
q =0
i =1
WHILE i <=20
INPUT “x ,y =”;x,y
h =h+x
k =k+y
p =p+x^2
q =q+y^2
i =i+1
WEND
h =h/20
k =k/20
Sx =SQR((p-20 h^2)/20)
*
Sy =SQR((q-20 k^2)/20)
*
PRINT “Sx =”;Sx,“Sy =”;Sy
END
8.设计一个可以输入长方体的长a 、宽b 和高h ,再计算出该长方体的外接圆的体积和表面积的算法,并写出程序.
解:算法如下:
第一步:输入长方体的长a 、宽b 和高h. 第二步:计算外接圆的直径222c b a d ++=
. 第三步:计算体积36
1d V π=. 第四步:计算表面积S =πd 2.
第五步:输出V 和S.
程序如下:
INPUT a,b,h
p =a^2+b^2+c^2
d =SQR(p)
V =pi d^3/6
*
S =pi d^2
*
PRINT V
PRINT S
END
9.任意给一个实数,设计算法,并编写程序求它的算术平方根.
解:算法如下:
第一步:输入一个实数a.
第二步:若a 为负数,则输出:“a 没有算术平方根”;否则执行第三步. 第三步:计算a p =.
第四步:输出p.
程序如下:
INPUT a
IF a <0 THEN
PRINT “a 没有算术平方根”
ELSE
p =SQR(a)
END IF
PRINT p
END
10.编写程序求20
14131211-+-+- 的值. 解:i =1
S =0
DO
S =S+(-1)^(i+1)/i
i =i+1
LOOP UNTIL i >20
PRINT S
END
11.在所有的三位数中,如果该数等于三个数位上的数字的立方和,则称这样的数为水仙花数,编写程序找出100至1 000之间所有的水仙花数.
解:n =100
WHILE n <1 001
i =n\100
j =(n-i 100)\10
*
k =n-I 100-j 10
* *
IF n =i^3+j^3+k^3 THEN
PRINT n
END IF
n =n+1
WEND
END。