《基本算法语句》教案(1)(1)
人教版高二数学上册必修3《基本算法语句》教案

人教版高二数学上册必修3《基本算法语句》教案人教版高二数学上册必修3《基本算法语句》教案本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第二步,解③,得x= .第三步,②-①×2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y= .⑤第四步,把⑤代入③,得x=2× -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1≠0,可以写出类似的求解步骤:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n >2)是否为质数的算法.分析:对于任意的整数n( n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)•f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)•f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学&科&网Z&X&X&K] 解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)•f(b)<0.第三步,取区间中点m= .第四步,若f(a)•f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。
基本算法语句(优质课)教案

基本算法语句(优质课)教案教学目标:1.理解学习基本算法语句的意义.2.学会输入语句、输出语句和赋值语句,条件语句和循环语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.教学过程:1. 赋值、输入和输出语句(1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值。
用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句。
在算法语句中,赋值语句是最基本的语句。
赋值语句的一般格式为:变量名=表达式。
赋值语句中的“=”号,称作赋值号,赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值。
说明:①赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或表达式;②赋值语句中的赋值号“=”的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;③不能利用赋值语句进行代数式(或符号)的演算(如化简、因式分解等)。
在赋值语句中的赋值号右边的表达式中的每一个“变量”都必须事先赋给确定的值。
在一个赋值语句中只能给一个变量赋值,不能出现两个或多个“=”;④赋值号与数学中的等号的意义不同。
赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值。
如果原已有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”;⑤对于一个变量可以多次赋值。
(2)输入语句在某些算法中,变量的初值要根据情况经常地改变。
一般我们把程序和初始数据分开,每次算题时,即使初始数据改变,也不必改变程序部分,只要每次程序运行时,输入相应的数据即可。
这个过程在程序语言中,用“输入语句”来控制。
不同的程序语言都有自己的输入指令和方法。
在Scilab2.7中的输入语句之一是“input”。
“input”在计算机程序中,通常称为键盘输入语句。
“input”不仅可以输入数值,也可以输入单个或多个字符,如X=input(“What is your name?”.“string”)输入你的名字。
人教A版高中数学必修三基本算法语句教案(1)(1)

基本算法语句(2)教学目标:使学生能结合选择结构的流程图学习条件语句,能用条件语句编写程序. 教学重点:如何在伪代码中运用条件语句. 教学难点:如何在伪代码中运用条件语句. 教学过程: Ⅰ.课题导入某百货公司为了促销,采用购物打折的优惠办法:每位顾客一次购物 (1)在1000元以上者,按九五折优惠. (2)在2000元以上者,按九折优惠. (3)在3000元以上者,按八五折优惠. (4)在5000元以上者,按八折优惠. 编写程序求优惠价.解析:设购物款数为x 元,优惠价为y 元,则优惠付款公式为 y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<.5000)( 8.0)5000(3000 85.0)3000(2000 9.0)2000(1000 95.0)1000( x x x x x x x x x x 用条件语句表示为: Read x If x <1000 theny =xElseIf x <2000 theny =0.95xElseIf x <3000 theny =0.9xElseIf x <5000 theny =0.85xElsey =0.8xEnd if Print y点评:在准确理解算法的基础上,学会条件语句的使用. Ⅱ.讲授新课例1:写出下面流程图所表述的算法的功能并用伪代码表示.开始结束答案:解:输出两个不同的数中小的一个数.用伪代码表示为 Begin Read a ,b If a >b then Print b Else Print a End if End例2:某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超过100度时,按每度0.57元计算;每月用电超过100度时,其中的100度仍按原标准收费,超过部分每度按0.50元计算.问:如何设计一个计算应交电费的算法?答案:解:设月用电x 度时,应交电费y 元,当x ≤100和x >100时,写出y 关于x 的函数关系式为y =⎩⎨⎧>-+≤<.100 )100(5.057,1000 57.0x x x x所以,计算应交电费的算法可以用伪代码表示为 Begin Read x If x ≤100 theny ←0.57xElsey ←57+0.5(x -100)End if Print y End例3:试用条件语句描述计算应纳税所得额的算法过程,其算法如下: S1 输入工资x (x ≤5000); S2 如果x ≤800,那么y =0;如果800<x ≤1300,那么y =0.05(x -800); 如果1300<x ≤2800, 那么y =25+0.1(x -1300), 否则y =175+0.15(x -2800); S3 输出税收y ,结束.答案:解:这个算法用条件语句描述为 Begin Read x If x ≤800 theny ←0Else if 800<x ≤1300 theny ←0.05(x -800)Else if 1300<x ≤2800 theny ←25+0.1(x -1300)Elsey ←175+0.15(x -2800)End if Print y End例4:在水果产地批发水果,100 kg 为批发起点,每100 kg 40元;100 kg 至1000 kg 8折优惠;1000 kg 至5000 kg ,超过1000 kg 部分7折优惠;5000 kg 至10000 kg ,超过5000 kg 的部分6折优惠;超过10000 kg ,超过部分5折优惠.请写出销售金额y 与销售量x 之间的函数关系,并用伪代码表示计算销售金额的算法.答案:y =⎪⎪⎩⎪⎪⎨⎧>+≤<+≤<+≤<.10000 6402.0,100005000 24024.0,50001000 4028.0,1000100 32.0x x x x x x x x这个算法用条件语句描述为BeginRead xIf 100<x≤1000 theny←0.32xElse if 1000<x≤5000 theny←0.28x+40Else if 5000<x≤10000 theny←0.24x+240Elsey←0.2x+640End ifPrint yEndⅢ.课堂练习课本P20 1,2,3.Ⅳ.课时小结算法中的选择结构可以用条件语句实现.if选择结构:if/else选择结构:开始Ⅴ.课后作业课本P24 3,4.。
高中5.3.1《基本算法语句》教案苏教版

高中数学:5.3.1《基本算法语句》教案(苏教版必修3)第7课时5.3 基本算法语句一、知识结构重点难点重点:1、学习和理解几种语句的作用和形式,既要有形式上的把握也要理解本质的内涵2、能进行最简单的语句的书写,通过训练能编写出一些简单的程序语言难点:几种语句形式上的把握,理解其本质;语句的书写,编写一些简单的程序语言【学习导航】学习要求1.理解赋值语句的含义2.理解赋值语句、输入输出语句中的变量与表达式的含义【课堂互动】自学评价1.赋值语句:赋值:顾名思义就是赋予某一个变化量一个具体的数值。
例如:变速运动某一时刻的速度大小是5m/s,就是将5赋予速度v,在算法的描述中可以写成如下形式:v←5注意:变化量只能写在"←"左边,值写在"←"的右边。
对于匀变速直线运动,v=v0+at,在算法的描述中可以写成如下形式:v←v0+at"←"右边可以是一个具体的值,也可以是一个表达式,程序会将该表达式进行计算后再将结果赋给v。
【经典范例】例1:写出求x=23时多项式的值的算法。
【解】算法一x←23p←算法二x←23p←【说明】在计算时只要进行3次乘法,而在算法一中则要进行6次算法。
显然这种算法更好一些,算法的好坏会直接影响运算速度。
这就是著名的秦九韶算法,其特点是:通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只要做n次乘法和n次加法。
【拓展】A←23A←A+10你能说出第二行的意义吗?2.输入、输出语句在用伪代码描述算法的过程中,用read表示输入,用print 表示输出,如:"read a,b"表示输入的数依次赋给a和b。
例1 的算法可以描述为:S1 read xS2 p←S3 print p【经典范例】例2 "鸡兔同笼"是我国隋朝时期的数学著作《孙子算经》中的一个有趣且有深远影响的题目:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何"【分析】设有x只鸡,y只兔,则下面我们设计一个解二元一次方程组的通用算法,设二元一次方程组为用消元法解得:因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解。
高二数学基本算法语句课程教案

高二数学基本算法语句课程教案一、高二数学基本算法语句概述《基本算法语句-条件语句》是《普通高中课程标准实验教科书数学必修3》(人教A版)第一章算法初步第1.2.2节内容。
条件语句是算法中最基本语句之一,它是学生在学习了程序框图、输入、输出和赋值语句之后的后续内容,是循环语句的基础,更是计算科学的基础。
而算法思想在初中数学已有所体现,并渗透于高中数学的各个部分。
所以通过对条件语句的学习,可以帮助学生更好地学习和体会算法的基本思想,提高逻辑思维能力,发展有条理的思考和表达能力。
点评:在知识与技能的基础上能够考虑到思想方法,准确把握教材意图。
二、高二数学基本算法语句教学目标分析^p《标准》将数学探究作为贯穿高中数学课程的重要活动之一,而提出问题是数学探究的一个重要方面。
发展学生的数学应用意识,注重信息技术与数学课程的整合,运用信息技术改变学生的学习方式是课标的基本理念。
结合本节课内容和学生的实际情况,制定教学目标、教学重点、难点如下:1、知识与技能理解条件语句和条件结构之间的对应关系。
掌握条件语句的语法规则和用算法解决问题的一般步骤。
提高学生逻辑思维能力,发展有条理的思考与表达能力。
2、过程与方法教师设置情境,引导学生提出问题这一过程,培养了学生的创造性思维。
写算法步骤,画程序框图,编写程序,QBasic实现算法这一解决问题的步骤,培养理性精神和实践能力。
点评:引入数学实验,将计算机作为一个认知工具,具体实现信息技术与课程的整合。
通过小组合作交流,更深层次理解算法的基本思想。
3、情感态度与价值观利用QBasic实现算法,提高学生学习兴趣,树立学好数学的信心。
认识数学的价值,培养学生良好的个性品质,形成积极的学习态度。
教学重点:条件语句的格式、结构;用所学算法语句解决问题的过程和方法。
教学难点:利用条件语句编写解决问题的程序;用QBasic 实现算法。
三、高二数学基本算法语句学习者特征分析^p1、高一已经开设了信息技术课程,对计算机知识有了一定的了解,他们对计算机有着较浓厚的兴趣。
高中数学必修3第一章第二节《基本算法语句》全套教案

1.2.1输入语句、输出语句和赋值语句1、知识与技能(1)正确理解输入语句、输出语句、赋值语句的结构.(2)会写一些简单的程序.(3)掌握赋值语句中的“=”的作用.2、过程与方法实例使学生充分地感知、体验应用计算机解决数学问题的方法;通过模仿,操作,探索的过程,体会算法的基本思想,在此基础上由算法语句表示算法,从而细致的刻画算法,进一步体会算法的基本思想。
3、情感态度价值观本节内容的学习,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养.使他们认识到计算机与人们生活密切相关,增强计算机应用意识,让学生体会成功的喜悦。
【教学重点难点】重点:正确理解输入语句、输出语句、赋值语句的作用.难点:准确写出输入语句、输出语句、赋值语句.【学前准备】:多媒体,预习例题计算机、ppt、3个杯子、两瓶饮料。
2430x+第三步:输出y的值。
直接ppt展示算法步骤和程序按照程序框图中流程线的方向,依次将程序框图中的内容用英文翻译出来(板书英,然后展示数学符号与程序符号的的计算机验证:第一次有start程序错误(为什么有start程序是错误的?)教师:若有start程序将会自动运行,将不受人为控制,所以若有会显示语法错误,因为计算机输出的结果都会显示在屏幕上或者说是打印到屏幕上,所以程序语言中没有使用output表示输出而是使用打印的95)32(⨯-=x y 三步:输出y 的值.程序框图: 程序:教师:能否再编写一个不同的程序?2:给一个变量重复赋值.(请学生回答,教师用计算机检验是否正确)注:题目3的程序给变量A 赋了两次值,A 的初值为10;第二次赋值后,初值被“覆盖”,A 的值变为25,因此输出值为25.变式:在横线上,补充程序,要求最后A 的输出值是30.赋值语句的一个典型用法:给一个变量重复赋值。
变式答案不唯一,如A=A+5或A=30都可以。
让学生深刻意识到,先后给一个变量赋多个不同的值,但变量的取值总是最近被赋予的值。
人教A版高中数学必修三基本算法语句教案

基本算法语句(1)教学目标:通过伪代码学习基本的算法语句,更好地了解算法思想.教学重点:如何进行算法分析.教学难点:如何进行算法分析.教学过程:Ⅰ.课题导入算法基本语句包括赋值语句、输入输出语句、条件语句、循环语句.伪代码问题:已知某学生一次考试中语文、数学和英语学科的得分分别为85,90,95,试设计适当的算法求出这名学生三科的总分和平均分.解:sum ←0C ←85M ←90E ←95sum ←C +M +EA ←sum /3Print sum ,AendⅡ.讲授新课例1:设计一个解二元一次方程组的通同算法.设二元一次方程组为⎩⎨⎧a 1x +b 1y =c 1a 2x +b 2y =c 2(a 1b 2-a 2b 1≠0) 用消元法解得⎩⎨⎧x =b2c 1-b 1c 2a 1b 2-a 2b 1 y =a 1c 2-a 2c 1a 1b 2-a 2b 1用伪代码表示为 用伪代码表示为Read a 1,b 1,c 1,a 2,b 2,c 2x ← b 2c 1-b 1c 2a 1b 2-a 2b 1y ← a 1c 2-a 2c 1a 1b 2-a 2b 1Print x ,y例2:已知三角形的三边,试用流程图和伪代码表示求这个三角形的周长的算法.解:流程图 伪代码Read a ,b ,cM ← a +b +cPrint MEnd例3:已知一匀变速运动的物体的初速度、末速度和加速度分别为V 1,V 2,a ,求物体运动的距离s .试编写求解这个问题的一个算法的流程图,并用伪代码表示这个算法.解:由题意可知,V 2=V 1+a t ,故运动时间t =V 2-V 1a 所以,物体运动的距离s =V 1 t +12 a t 2=V 22-V 122a. 据此,可设计算法如下: 将此算法程序用伪代码表示为:Read V 1,V 2,as ← V 22-V 122aPrint sEnd例4:写出下列用伪代码描述的算法执行后的结果.(1)算法开始a ←2;a ←4;a ←a +a ;输出a 的值;算法结束执行结果:()答案:8(2)算法开始n←10;i←2;sum←0;while(i≤n)sum←sum+i;i←i+2;输出sum的值;算法结束执行结果:()答案:30点评:本题主要考查学生对基本算法语句的灵活准确应用和自然语言与符号语言的转化,让学生理解用伪代码表示的算法.Ⅲ.课堂练习课本P17 1,2,3.Ⅳ.课时小结Read是输入语句的一种,输入数据还有其它方式;输入语句与赋值语句不同,赋值语句可以将一个代数表达式的赋于一个变量,而输入语句只能读入具体的数据.Ⅴ.课后作业课本P24 1,2.。
算法基本语句教案

算法基本语句教案教案标题:算法基本语句教案教学目标:1. 了解算法基本语句的概念和作用;2. 掌握算法基本语句的常见类型和使用方法;3. 能够设计简单的算法基本语句解决问题。
教学准备:1. 教师准备:计算机、投影仪、白板、书籍和教学辅助资料;2. 学生准备:笔记本电脑、纸和笔。
教学过程:一、导入(5分钟)1. 教师引入算法基本语句的概念,解释其在计算机编程中的重要性和作用;2. 引导学生回顾之前学过的基本算法概念,如变量、循环和条件语句。
二、讲解(15分钟)1. 教师介绍算法基本语句的常见类型,包括赋值语句、条件语句和循环语句;2. 通过示例代码,详细讲解每种语句的语法和使用方法;3. 强调语句的执行顺序和逻辑,以及不同语句之间的关系。
三、练习与巩固(20分钟)1. 学生根据教师提供的练习题,设计算法基本语句解决问题;2. 学生可以自由选择编程语言,但需按照教师要求使用算法基本语句;3. 学生互相交流和分享自己的解决方案,教师进行点评和指导。
四、拓展与应用(15分钟)1. 学生尝试设计更复杂的算法,结合多种基本语句解决实际问题;2. 学生可以选择自己感兴趣的领域,如游戏、数学问题等;3. 学生展示自己的解决方案,与同学进行交流和讨论。
五、总结与反思(5分钟)1. 教师总结本节课的重点内容,强调算法基本语句的重要性;2. 学生进行自我评价,回顾自己在本节课中的学习收获和困难。
教学延伸:1. 学生可以尝试使用不同编程语言实现同一个算法,比较它们的异同;2. 学生可以进一步学习高级算法语句,如函数、数组等,拓展编程能力。
教学评估:1. 教师观察学生在练习和拓展应用环节的表现,评估其对算法基本语句的掌握程度;2. 学生完成的练习题和解决方案,以及课堂讨论和交流的参与度,也可作为评估依据。
教学反馈:1. 教师及时给予学生反馈,指出其在算法基本语句应用中存在的问题和改进方向;2. 鼓励学生继续学习和实践,提高算法设计和编程能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本算法语句
教学目标:
1.了解循环语句的概念,并读懂其结构;
2.能读懂用循环语句编写的程序
教学重点:
两种循环语句的表示方法、结构和用法,用循环语句表示算法
教学难点:
了解循环语句的表示方法、结构和用法,能读懂程序中的循环语句
教学过程:
一、问题情境
在学习流程图时,我们知道基本算法结构有三种,即顺序结构、选择结构与循环结构.选择结构对应于条件语句,那循环结构就对应于循环语句.
循环语句包括“For 循环”、“While 循环”等. 引例1
设计计算1×3×5×…×99的一个算法. 自然语言的算法为:
S1 S←1; 流程图: S2 I←3;
S3 S←S×I;
S4 I←I +2; S5 如果I≤99,那么转S3;
S6 输出S.
那么,怎样用循环语句表示这个问题的算法呢? 二、建构数学 (1)For 循环: 其一般形式为
注:
①上面的“For”和“End for”之间缩进的步骤“…”称为循环体.
For I from “初值” to “终值” step “步长” …
End for
②“step ‘步长’”被省略时,当重复循环时,变量I 的值每次增加为1.
③“For 循环”常用于循环的次数确定时.
引例1:For 语句:
S←1
(2)While 循环:
其一般形式为
注:①上面A 表示判断执行循环的条件.“While”和“End while”之间缩进的步骤“…”称为循环体.
②“While”语句的特点是“前测试”,即先判断,后执行.若初始条件不成立,则一次也不执行循环体中的内容.任何需要重复处理的问题都可用这种前测试循环来实现. 再提醒:
①在使用“For”循环时,应考虑“step ‘步长’”是否能够省略.缺省时,则默认步长为1.
②当循环的次数已经确定时,可用“For”循环语句来表示;当循环次数不能确定时,可用“While”循环语句来表示.
③循环语句内可有嵌套.
引例2: 求满足1×3×5×…× >10000. 试求满足条件的最小整数解. 解:
S1 S←1
S2 I←3
S3 如果S≤10000,那么S←S×I,I←I+2,(否则转S4)
S4 输出I
While 语句:S←1
I←3
While S≤10000
S←S×I I←I+2
End while
Print I
End
三、数学应用
例1阅读课本第23页例题
While A … End while
例2定义运算“!”为:n!=1×2×3×…×n,其中n 为正整数,并且读作“n 的阶乘”,例如,5!=1×2×3×4×5=120,10!=9!×10= 3628800.试编写一个计算2010!的算法. 分析 解决这一问题的步骤如下:
S1 S←1; S2 I←2;
S3 S←S×I;
S4 I←I+1;
S5 如果I≤2010,转S3;
S6 输出S .
解 流程图如图所示. 伪代码如图所示.
点评 ①本题可用当型语句编写.这时的判断条件应改为I >2010,再执行循环体,便得到下面的流程图和伪代码.
S ←1 For I from 2 to 2010 S ←S*I End for Print S End S ←1 I ←2 While I ≤2010 S ←S*I I ←I+1 End while Print S End
②本题中由于循环次数已经确定,故用“For”语句或
四、课堂练习
1.设计一个计算1×3×5×7×9×11×13的算法.图
中给出了程序的一部分,则在横线①上不能填入下面的
那一个数?答:()
A.13 B.13.5 C.14 D.14.5
2.请将以下流程图补充完整,并根据流程图或以下的
问题写出算法的伪代码.
问题:计算函数值:y=x2,其中x= -10,-9,...,0,1, (10)
x←-10
While x≤10
y←x2
Print x,y
x←x+1
End while
End。