四年级奥数班讲义_等差数列
四年级奥数第四讲_等差数列含答案

例(1) 在数列 3、6、9……,201 中,共有多少数?如果继续写下去,第 201 个数 是多少? 分析: (1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:
项数=(末项-首项) 公差+1,便可求出。 (2)根据公式:末项=首项+公差 (项数-1) 解: 项数=(201-3) 3+1=67 末项=3+3 (201-1)=603
=1+600×99÷2 =29701(个) 答:这个点阵共有点 29701 个。
5、解: 当 X=1991 时,则 Y+Z=2, Y=Z=1
有1组
y 1 y 2 当 X=1990 时,则 Y+Z=3, z z 或 z 1
有2组
当 X=1989 时,则 Y+Z=4.
Y 1 y 2 y 3 Z 3 或 z 2 或 z 1 有 3 组
答:有 15 个男生参加了比赛。
练一练:从 1 到 50 这 50 个连续自然数中,取两数相加,使其和大于 50,有多少种不 同的取法?
答案: 625 种
例(6)若干人围成 16 圈,一圈套一圈,从外向内圈人数依次少 6 人,如果共有 912 人,问最外圈有多少人?最内圈有多少人?
分析:从已知条件 912 人围成 16 圈,一圈套一圈,从外到内各圈依次减少 6 人,也就
它前面两个数中大数减去小数的差,从第一个数开始到第 2002 个数为止这 2002 个数的和
是
。
二、简答题 (每小题 10 分)
1、有 10 只盒子,54 个乒乓球,能不能把 54 个乒乓球放进盒子中去,使各盒子的乒乓球
数不相等?
2、小明家住在一条胡同里,胡同里的门牌号从 1 号开始摸着排下去。小明将全胡同的门牌 号数进行口算求和,结果误把 1 看成 10,得到错误的结果为 114,那么实际上全胡同有多 少家?
【四升五】小学数学奥数第10讲:等差数列-课件

练习三
有一个等差数列的第1项是2.4,第7项是26.4, 求它的第5项。
a7a6da16d
a12.4,a7 26.4代入上式,
2.4 62.46d, d 4, a 5 a 1 4 d 2 .4 4 4 1.4 8
答:第5项是18.4。
例题四
游乐园的智慧梯最高一级宽60厘米,最低一级宽 150厘米,中间还有9级,各级的宽度成等差数列,求 正中间一级的宽。
首项 项数
通项公式:
ana1(n1)d
第n项
公差
例题三
一批货箱,上面的标号是按等差数列排列的, 第一项是3.6,第五项是12,求它的第2项。
a5a4da14d
a13.6,a5 12代入上式,
123.64d, d2.1 a 2 a 1 d 3 .6 2 .1 5 .7
答:第二项是5.7。
580 8n4, n=(580+4)÷8=73
答:580是第73项。
练习二
等差数列3,9,15,21,…中,381是第几项?
a1 3, d936,
an a1 (n 1)d
3(n1)6
6n3
我们把381代入
a
,
n
381 6n3, n=(381+3)÷6=64
答:381是第64项。
小结
等差数列:
ana1(n1)d
通项公式
例题一
求等差数列3,8,13,18,…的第38项和第69项。
a1 3, d835,
an a1 (n 1)d 3(n1)5 5n2
a3853 82188 a69569 2343
答:第38项是188,第69项是343。
练习一
等差数列1,4,7,10,13,…的第20项和第89项。
小学奥数_等差数列

四年级奥数课程部分第八讲:等差数列一,数列有关知识点:⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 4.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)后一项减前一项为一定值,我们把这个定值叫公差,用d 表示5.等差数列的通项公式:(每一项都可用通项公式来表示)d n a a n )1(1-+=6.数列的前n 项和:数列{}n a 中,n a a a a ++++ 321称为数列{}n a 的前n 项和,记为n S .求和公式:总和=(首项+末项)×项数÷2=等差中项×项数等差数列的前n 项和公式1:2)(1n n a a n S +=等差数列的前n 项和公式2:2)1(1d n n na S n -+=二.例题精讲例1,认识数列:等差数列:3、6、9、 (96)这是一个首项为3,末项为96,项数为32,公差为3的数列。
例2,有一个数列:4、7、10、13、…、25,这个数列共有多少项提示仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
小学数学奥数四年级第2讲等差数列

名师堂学校小学四年级春季班讲义第2讲等差数列及其应用时间:9月10日教学目标1、理解等差数列的意义。
2、理解等差数列相关公式。
3、能熟练运用相关公式解决实际问题。
等差数列:从第二项起,每一项与它前一项的差都相等,这样的数列叫做等差数列,其中相邻两项的差叫做公差。
考点一:判断等差数列下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;考点一、末项=首项+公差×(项数-1)例1.等差数列2、7、12、17中,第15项是多少?第41项是多少?【练习】1、在等差数列:3、5、7、9……中第20项是多少?第159项是多少?2、在等差数列2、8、14、20……中第18项是多少?第150项是多少?考点二、项数=(首项—末项)÷公差+1例2。
等差数列1、4、7、10中, 211是第几项?193是第几项?【练习】1.在等差数列5、10、15、20中,155是第几项?350是第几项?2、在等差数列6、13、20、27……中,第几个数是1994?考点三:和=(首项+末项)×项数÷2例3:小红读一本长篇小说,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完,问这本小说共有多少页?【练习】1、11+12+13+ (31)2、4+6+8+10…+1998+2000=考点四、等差数列的应用例4、求所有被2除余数是1的三位数的和.【练习】1、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多2个座位,这个剧场共有多少个座位?2、求所有除以4余1的两位数的和是多少?课后巩固练习1、 3、12、21、30、39、48、57、66……(1)第12个数是多少?(2)912是第几个数?2、已知等差数列5,8,11…,求出它的第15项和第20项。
小学数学奥数等差数列四年级讲课上课精品PPT教学课件

等差数列求和(笔记)
☆认识名称:
①首项→头; ②末项→尾; ③项→几个数。
认识等差数列
(1)1 2 3 4 5 6 7… 1 111 11
(2)2 4 6 8 10 12 … 222 2 2
(3)5 10 15 20 25 30 … 555 5 5
等差数列求和(笔记)
☆认识等差数列:
①每一项与前面的差都相等;②连续增加或者连续减小。 ☆认识名称:
①首项→头;②末项→尾;③项→几个数;④公差→等差 ☆等差数列求和公式:
①(首项+末项)×项数÷2=总和 ②(末项-首项)÷ 公差+1=项数
综合 计算:5+10+15+20+......+195+200
(末项-首项)÷ 公差+1=项数
综1 计算:1+2+3+4+......+99+100
(末项-首项)÷ 公差+1=项数
等差数列求和(笔记)
☆认识等差数列:
①每一项与前面的差都相等;②连续增加或者连续减小。 ☆认识名称:
①首项→头;②末项→尾;③项→几个数;④公差→等差 ☆等差数列求和公式:
①(首项+末项)×项数÷2=总和 ②(末项-首项)÷ 公差+1=项数
③ 首项+公差×(项数-1)=某一项
例4 已知有一堆粗细均匀的圆木,堆成梯形,最上面的一层 有5根圆木,每向下一层增加一根,一共堆了28层。最下面 一层有多少根?
①首项→头;②末项→尾;③项→几个数;④公差→等差
观察: 6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38
四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。
要求这本书共有多少页也就是求出这列数的和。
解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数=(21-3)÷2+1=10。
所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。
2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?答:(25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。
例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。
解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
小学四年级奥数班讲义(等差数列)

小学四年级奥数班讲义等差数列姓名: 计算等差数列的相关公式:项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2平均数公式:平均数=(首项+末项)÷2例题1 小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?课堂练习1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?课堂练习2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?课堂练习3、体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?课堂练习4、一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
课堂练习1、建筑工地有一批砖,码成如下图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层398块砖,这堆砖共有多少块?课堂练习2、某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?例题3 有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?课堂练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?课堂练习2、四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?课堂练习3、学校进行书法大赛,每个选手都要和其他所有选手各赛一场。
如果有16人参加比赛,一共要进行多少场比赛?例4、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?计算下面各题:1+2+3+4+……+2007+20085+10+15+……+95+1002+4+6+……198+200 5000-2-4-6-…-98-100 9+18+27+36+……+261+27081+79+……+17+15+13(2+4+6+……+2000)-(1+3+5+……+1999)=1+2-3+4+5-6+7+8-9+……+58+59-60=课后练习:一、填空1、三角形的两个内角之和是89°,这个三角形是()2、在括号里填上“>”、“<”或“=”。
四年级奥数等差数列和等比数列

四年级奥数等差数列和等比数列
简介
本文将介绍四年级奥数中的等差数列和等比数列概念及其求和公式。
等差数列
等差数列是指一个数列中的每一项与它的前一项之差都相等。
例如,2、4、6、8、10 就是一个等差数列,其中公差为2。
公式
对于等差数列,可以使用以下公式来求前n项和:
$$S_n = \frac{n}{2} (a_1 + a_n)$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,
$a_n$表示数列的第n项。
等比数列
等比数列是指一个数列中的每一项与它的前一项之比都相等。
例如,2、6、18、54、162 就是一个等比数列,其中公比为3。
公式
对于等比数列,可以使用以下公式来求前n项和:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,$q$表示公比,$n$表示项数。
总结
等差数列和等比数列是四年级奥数中常见的数列类型。
通过掌握它们的概念和求和公式,可以帮助学生更好地理解数列的特点和规律,并能应用到实际问题中。
以上是对四年级奥数中的等差数列和等比数列的简要介绍。
希望本文能够对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数班讲义_等差数列
姓名:
计算等差数列的相关公式:
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
平均数公式:平均数=(首项+末项)÷2
例题1 小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?
课堂练习1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?
课堂练习2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?
课堂练习3、体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?
课堂练习4、一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?
例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
课堂练习1、建筑工地有一批砖,码成如下图形状,最上层两块砖,第2层6块砖,第3层
10块砖…,依次每层都比其上面一层多4块砖,已知最下层398块砖,这堆砖共有多少块?
课堂练习2、某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?
例题3 有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
课堂练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?
课堂练习2、四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?
课堂练习3、学校进行书法大赛,每个选手都要和其他所有选手各赛一场。
如果有16人参加比赛,一共要进行多少场比赛?
例4、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?
计算下面各题:
1+2+3+4+……+2007+2008
5+10+15+……+95+100
2+4+6+……198+200 5000-2-4-6-…-98-100 9+18+27+36+……+261+270
81+79+……+17+15+13
(2+4+6+……+2000)-(1+3+5+……+1999)=
1+2-3+4+5-6+7+8-9+……+58+59-60=
课后练习:
一、填空
1、三角形的两个内角之和是89°,这个三角形是()
2、在括号里填上“>”、“<”或“=”。
2.82÷0.1○2.82 4.54×0.99○4.54 1.25÷1.1○1.25
3、一个数(除0外)除以0.1,这个数就()。
4、把0.016扩大()倍是16,把6.25缩小10倍是()
5、0.32扩大10倍与()缩小100倍,结果相等。
6、不改变数的大小,把3改写成三位小数是()。
7、25.067 ≈()(保留一位小数) 9.9985≈()(精确到0.01)
8、一个数百位和百分位上都是5,其余各位上都是0,这个数是()。
9、8800÷800=88÷()=11÷()=990÷()
10、0.4里面有()个0.1,0.025里面有()个0.001。
二、判断
1、所有的小数都比整数小。
…………………………………………()
2、一个正方形的边长缩小10倍,面积就缩小10倍。
……………()
3、由远到近看景物,看到的范围越小,也越清楚。
………………()
4、等边三角形一定是等腰三角形。
…………………………………()
5、用3厘米、2厘米、6厘米的三根小棒能摆成一个三角形。
()
6、小数点的后面添上“0”或去掉“0”,小数大小不变。
()
7、4.525252是循环小数。
()
8、一个三角形的两条边的长分别为6cm和5cm,第三边的长度一定小于11cm。
()
9、等腰三角形中,一个顶角为50度,一个底角就是65度。
()
10、6.0与6的数值相等,但精确度不同。
三、解决问题
光明超市开展促销活动,买一箱牛奶(24盒)44元,送一盒;同样的牛奶,晨光超市的促销方法是5盒9.40元。
哪一家的价格更便宜。