行程问题应用题大全

合集下载

行程问题九大题型

行程问题九大题型

行程问题九大题型一、相遇问题1. 基本概念两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇。

2. 公式相遇路程= 速度和×相遇时间,相遇时间= 相遇路程÷速度和,速度和= 相遇路程÷相遇时间。

3. 例题甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时3千米,经过4小时两人相遇。

求A、B两地的距离。

解:根据公式相遇路程= 速度和×相遇时间,速度和为\(5 + 3=8\)(千米/小时),相遇时间是4小时,所以相遇路程(即A、B两地距离)为\(8×4 = 32\)千米。

二、追及问题1. 基本概念两个物体同向运动,慢者在前,快者在后,经过一定时间快者追上慢者。

2. 公式追及路程= 速度差×追及时间,追及时间= 追及路程÷速度差,速度差= 追及路程÷追及时间。

3. 例题甲以每小时6千米的速度先走1小时后,乙以每小时8千米的速度从同一地点出发去追甲。

问乙多长时间能追上甲?解:甲先走1小时的路程就是追及路程,为\(6×1 = 6\)千米,速度差为\(8 - 6 = 2\)千米/小时。

根据追及时间= 追及路程÷速度差,可得追及时间为\(6÷2 = 3\)小时。

三、环形跑道问题1. 同地出发同向而行基本概念:在环形跑道上,两人同地出发同向而行,快者每追上慢者一次,就比慢者多跑一圈。

公式:追及路程= 环形跑道一圈的长度,追及时间= 环形跑道一圈的长度÷速度差。

例题:在周长为400米的环形跑道上,甲的速度是每秒6米,乙的速度是每秒4米。

如果两人同时同地同向出发,经过多长时间甲第一次追上乙?解:追及路程为400米,速度差为\(6 - 4 = 2\)米/秒,根据追及时间= 追及路程÷速度差,可得追及时间为\(400÷2 = 200\)秒。

行程问题应用题大全

行程问题应用题大全

行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。

在途中,火车经过C地,小明在C地停留了20分钟。

请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。

因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。

2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。

飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。

请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。

在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。

因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。

3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。

汽车在途中经过C地,小李在C地停留了45分钟。

请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。

因此,小李在C地停留的时刻是(t0+6小时)+45分钟。

根据题目要求,我们需要求得小李在A地出发的时刻,即t0。

可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。

4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。

在途中,小张在C地停留了30分钟。

请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。

因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。

5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。

自行车在途中经过C地,小王在C地停留了15分钟。

六年级数学行程问题

六年级数学行程问题

六年级数学行程问题一、行程问题题目1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地同时出发相向而行,快车每小时行60千米,慢车每小时行30千米。

问几小时后两车相遇?解析:两车相向而行,它们的相对速度就是两车速度之和,即公式千米/小时。

根据时间 = 路程÷速度,总路程是450千米,所以相遇时间为公式小时。

2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?解析:根据路程 = 速度×时间,从甲地到乙地的路程为公式千米。

返回时路程不变,时间为5小时,所以返回速度为公式千米/小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是6米/秒,小红的速度是4米/秒。

如果他们同时同地同向起跑,多少秒后小明第一次追上小红?解析:同向起跑时,小明第一次追上小红时,小明比小红多跑了一圈,即400米。

小明每秒比小红多跑公式米,所以追及时间为公式秒。

4. 两列火车同时从相距720千米的两地相对开出,一列火车每小时行50千米,另一列火车每小时行70千米。

经过几小时两车相遇?解析:两车相对开出,相对速度为公式千米/小时。

根据时间 = 路程÷速度,路程为720千米,所以相遇时间为公式小时。

5. 一辆客车和一辆货车分别从A、B两地同时出发,相向而行,客车的速度是每小时75千米,货车的速度是每小时65千米,经过3小时两车相遇。

A、B两地相距多少千米?解析:两车相向而行,它们的速度和为公式千米/小时,经过3小时相遇。

根据路程 = 速度×时间,所以A、B两地相距公式千米。

6. 甲、乙两人分别从相距24千米的两地同时出发相向而行,甲每小时走4千米,乙每小时走2千米,几小时后两人相遇?解析:两人相向而行,速度和为公式千米/小时。

根据路程÷速度= 时间,总路程24千米,所以相遇时间为公式小时。

7. 一辆汽车以每小时60千米的速度从甲地开往乙地,3小时后到达乙地,然后又以每小时45千米的速度返回甲地,求汽车往返的平均速度。

四年级上册应用题大全可打印

四年级上册应用题大全可打印

四年级上册应用题大全可打印一、行程问题。

1. 一辆汽车从甲地开往乙地,速度是每小时65千米,共用了5小时,返回时只用了4小时,返回时的速度是多少?- 解析:根据路程 = 速度×时间,先求出甲地到乙地的路程为65×5 = 325千米。

返回时的路程也为325千米,返回时间是4小时,所以返回速度 = 路程÷返回时间,即325÷4 = 81.25千米/小时。

2. 小明步行上学,每分钟走70米,12分钟到达学校。

如果要9分钟到达学校,每分钟要走多少米?- 解析:先求出家到学校的距离为70×12 = 840米。

如果要9分钟到达,那么速度 = 路程÷时间,即840÷9=(280)/(3)≈93.33米/分钟。

二、工程问题。

3. 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?- 解析:把这项工程的工作量看作单位“1”。

甲队每天的工作效率是1÷10=(1)/(10),乙队每天的工作效率是1÷15=(1)/(15)。

两队合作每天的工作效率是(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。

根据工作时间 = 工作量÷工作效率,两队合作完成需要的时间是1÷(1)/(6)=6天。

4. 修一条路,甲工程队每天修80米,15天可以修完。

乙工程队每天修100米,多少天可以修完?- 解析:先求出这条路的总长度为80×15 = 1200米。

乙工程队每天修100米,那么乙队修完需要的时间 = 路程÷乙队速度,即1200÷100 = 12天。

三、购物问题。

5. 一支钢笔12元,一个笔记本5元。

小明买了4支钢笔和5个笔记本,一共花了多少钱?- 解析:根据总价 = 单价×数量。

4支钢笔的总价是12×4 = 48元,5个笔记本的总价是5×5 = 25元。

行程问题应用题

行程问题应用题

1. 一辆汽车从甲地到乙地,每小时行驶70公里,行驶了2小时到达。

返回时每小时行驶80公里,用了1.75小时。

求甲地到乙地的距离。

2. 小明骑自行车去图书馆,每小时骑行15公里,骑行了1小时。

然后他步行每小时4公里,步行了0.5小时到达图书馆。

小明家到图书馆有多远?3. 小红和小华分别从两个相距120公里的城市出发,相向而行,小红每小时行驶35公里,小华每小时行驶30公里。

经过多长时间两人相遇?4. 小张开车从家到公司,前半段路每小时行驶60公里,后半段路每小时行驶70公里,总共行驶了2小时,行驶了130公里。

求家到公司的距离。

5. 一列火车从A城出发,前1小时每小时行驶100公里,然后以每小时90公里的速度行驶了2小时,最后以每小时80公里的速度行驶了1小时。

求A城到B城的距离。

6. 小明和小李分别从两个相距150公里的城市出发,相向而行,小明每小时行驶40公里,小李每小时行驶35公里。

经过多长时间两人相遇?7. 一辆汽车从甲地出发前往乙地,行驶了2小时每小时行驶75公里,中途休息了30分钟,然后继续以每小时65公里的速度行驶,直到到达乙地,总共行驶了4.5小时。

求甲地到乙地的距离。

8. 小明和小华同时从家出发去公园,小明每小时骑行20公里,小华每小时骑行15公里。

小明到达公园后立即返回家,与小华在距家30公里的地方相遇。

求小明和小华家到公园的距离。

9. 一辆火车从甲地到乙地,每小时行驶110公里,需要2.5小时到达。

返回时每小时行驶120公里,需要2.3小时到达甲地。

甲地到乙地有多少公里?10. 小红骑自行车去郊游,每小时骑行18公里,骑行了1小时后,发现忘记带水,于是返回家拿水,再以相同速度前往目的地。

小红总共花了多长时间?目的地离家有多远?11. 一艘船顺流而下,从A港到B港每小时行驶30公里,行驶了2小时到达B港。

返回时逆流而上每小时行驶20公里。

求A港到B港的距离及返回的时间。

12. 小张骑自行车去朋友家,每小时行驶20公里,骑行了30分钟。

行程问题应用题

行程问题应用题

行程问题应用题1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2.甲乙两辆汽车同时从东站开往西站。

甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?4、兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校多远?5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。

某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。

问再过多少秒后,甲、乙两人相遇?6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。

货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。

相遇后快车又行了8小时到达乙地。

慢车还要行多少小时到达甲地?8、两地相距380千米。

有两辆汽车从两地同时相向开出。

原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。

如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?10、客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

五年级数学行程应用题

五年级数学行程应用题

五年级数学行程应用题一、行程应用题20题及解析。

1. 甲、乙两人分别从A、B两地同时出发相向而行,甲每小时行5千米,乙每小时行4千米,经过3小时两人相遇。

A、B两地相距多少千米?- 解析:这是一个相遇问题,根据公式:路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4=9千米/小时,相遇时间是3小时,所以A、B两地相距9×3 = 27千米。

2. 一辆汽车从甲地开往乙地,速度是每小时60千米,5小时到达。

如果速度变为每小时75千米,那么几小时可以到达?- 解析:首先根据公式路程 = 速度×时间,求出甲地到乙地的路程为60×5 = 300千米。

当速度变为75千米/小时时,再根据时间 = 路程÷速度,可得时间为300÷75 = 4小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是每分钟200米,小红的速度是每分钟150米。

如果两人同时同地同向出发,几分钟后小明第一次追上小红?- 解析:这是一个追及问题,在环形跑道上同向出发,追及路程就是跑道的周长。

根据追及时间 = 追及路程÷速度差,小明和小红的速度差为200 - 150 = 50米/分钟,追及路程为400米,所以追及时间为400÷50 = 8分钟。

4. 甲、乙两车分别从相距600千米的A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米。

几小时后两车相距100千米?- 解析:分两种情况讨论。

- 情况一:两车还未相遇时相距100千米,此时两车行驶的路程和为600 - 100 = 500千米,速度和为40+60 = 100千米/小时,根据时间 = 路程和÷速度和,可得时间为500÷100 = 5小时。

= 700千米,速度和为100千米/小时,时间为700÷100 = 7小时。

5. 一艘轮船从甲港开往乙港,顺水每小时行25千米,4小时到达。

小学六年级数学应用题行程问题(可锻炼学生思维)

小学六年级数学应用题行程问题(可锻炼学生思维)

1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了 公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用 秒.、B 两城相距56千米.有甲、乙、丙三人.甲、乙从A 城,丙从B 城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经 小时,乙在甲丙之间的中点6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了 步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走 米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有 公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C 时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B ;第二个人在C 处下车后继续步行前往B 地.结果三个人同时到达B 地.那么,C 距A 处多少千米D 距A 处多少千米13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时公里,骑车人速度为每小时公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时千米.已知A 、C 两镇水路相距50千米,水流速度为每小时千米.某人从A 镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.AD、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑米,乙每秒钟跑米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同11.一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间(按小时计算)14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题专题专练
【行程问题】
速度×时间=路程v ×t = s
【相遇问题】
速度和×相遇时间=相遇路程( v1 + v2 ) ×t相遇= s相遇
【追及问题】
速度差×追及时间=相差路程( v1 - v2 ) ×t追及= s追及
【相遇点距离中点问题】
遇点中点距离×2÷速度差×速度和=总路程
s遇中×2÷( v1 - v2 ) ×( v1 + v2 )= s总
★1 甲乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:两人几小时后相遇?
★2 一列货车早晨6点从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比甲车快15千米,已知客车比货车晚发车2小时,中午12点时两车同时经过中途的某站,然后不停地继续前进。

问:当客车到达甲地时,货车距离乙地还有多少千米?
★3 甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?
★4 汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?
★5 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?
★6 甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。

上午11时到达B地后立即返回,在距离B地24千米处相遇。

求A、B两地相距多少千米?
【环形跑道问题】
同向跑:追及问题
背向跑:相遇问题
★7 在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少?
※作业
1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?
2、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?
3、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

4、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处相遇。

A、B两地之间相距多少千米?
5、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。

小红每分钟走多少米?
6、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲?
7、甲乙丙三辆车同时从A地出发到B地去,甲乙两车速度分别为60km/h和48km/h,有一辆迎面开来的卡车与甲乙丙三车分别在它们出发后的5小时、6小时、8小时先后与甲乙丙三车分别相遇,求:丙车的速度为每小时多少千米?
8、甲乙两辆车同时从A地出发到B地去,甲乙两车速度分别为4m/s和6m/s,有一辆从B 地迎面开来车速为8m/s的丙车与甲车相遇3分钟后又与乙车相遇,求:AB两地相距多少千米?
【通讯员问题】
牢牢把握住关键隐含条件——时间相等。

【火车过桥问题】
桥长+车长=路程
速度×过桥时间=路程
【火车错车或超车问题】
A车长+B车长=路程
速度和×错车时间=错车路程
速度差×超车时间=超车路程
【流水行船】
船速:在静水中的速度
水速:河流中水流动的速度
顺水船速:船在顺水航行时的速度
逆水速度:船在逆水航行时的速度
★1 甲乙两队学生从相距18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?
★2 长100米的列车,以每秒20米的速度通过了一条座长500米的桥。

列车通过这座桥要用多少秒?
★3 一列货车要通过一条1800米长的大桥。

已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米?
★4 两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时。

这艘船在静水中的速度是多少千米?这条河水流速度是多少千米?
★5 甲、乙两个码头相距336千米。

一艘船从乙码头逆水而上,行了14小时到达甲码头。

已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时?
★6 一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行。

客车从后面追上并完全超过货车要用多少秒?
※作业
1、甲乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。

直到两人相遇时,这只狗一共跑了多少千米?
2、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。

如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。

3、一只小船逆流而上,一个水壶从船上掉入水中,发现时,水壶已经与船相距3千米,已知静水船速为每小时6千米,水流速度为每小时2千米,小船掉头后多久可以追上水壶?
4、一名体育特长生,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米也用了10秒钟。

问:无风的时候,他跑100米需要多少秒?
5、甲船逆水航行360千米需要18小时,返回原地需要10小时;乙船逆水航行同样的一段路程要15小时,请问:乙返回原地需要几小时?
6、一列火车车头和车身共41节,每节长30米,节与节之间间隔1.5米。

现该火车以每分钟2千米速度穿越某山洞,用了4分钟30秒,求:山洞长多少米?
7、火车用26秒通过了一个长256米的隧道,速度不变,又以16秒的时间通过了一个长96米的大桥。

试求:火车的长度为多少。

(尝试用方程解)
8、科学家用两个小汽车模型做运动学实验。

甲乙车速分别为6m/s和9米每秒。

AB两地相距22.5米。

甲乙两车同时从A出发驶向B,到达B后立即掉头返回。

如此循环不止。

求:两车第三次相遇时,距离AB的中点的距离。

相关文档
最新文档