初一行程问题应用题1
初一行程问题应用题初一行程问题及答案

初一行程问题应用题初一行程问题及答案25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。
问: 若已知队长320米,则通讯员几分钟返回? 若已知通讯员用了25分钟,则队长为多少米?31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
初一行程问题应用题1

初一行程问题应用题1初一行程问题应用题基本数量关系:相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。
相背而行的公式:相背距离=速度和×时间(甲的速度×时间+乙的速度×时间=相背距离)同向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差。
若在环形跑道上,(速度快的在前,慢的在后)追及距离=速度差×时间。
流水问题公式:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间【练巩固】1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?4、一只汽船飞行于甲、乙两地之间,逆水用3小时,逆水比逆水多30分钟,已知汽船在静水中速率是每小时26千米,求水流的速率.5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?6、一队学生去校外加入劳动,以4千米/时的速率步行前往.走了半小时,学校有紧急通知要传给队长,通信员骑自行车以14千米/时的速率按原路追上去.通信员要几何分才能追上学生部队?针对练:1.甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。
已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?。
七年级一元一次方程解应用题

七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米,然后甲、乙共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度×时间,可列方程:8x+6(x - (12)/(8))=285(这里x-(12)/(8)表示乙走的时间,因为甲先走了12米这段时间乙没走)。
- 化简方程得8x + 6x-9 = 285。
- 移项合并得14x=294。
- 解得x = 21。
- 所以甲出发21秒与乙相遇。
2. 一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
- 设船在静水中的速度为x千米/小时。
- 顺水速度 = 船在静水中的速度+水流速度,即(x + 3)千米/小时;逆水速度=船在静水中的速度 - 水流速度,即(x-3)千米/小时。
- 根据路程相等,可列方程2(x + 3)=3(x - 3)。
- 展开括号得2x+6 = 3x - 9。
- 移项得3x-2x=6 + 9。
- 两码头之间的距离为2×(15 + 3)=36千米。
3. 甲、乙两人在400米的环形跑道上练习跑步,甲每秒跑6米,乙每秒跑4米。
若两人同时同地同向出发,几秒后两人首次相遇?- 设x秒后两人首次相遇。
- 同向出发首次相遇时,甲比乙多跑一圈,即400米。
- 根据路程差 = 速度差×时间,可列方程(6 - 4)x=400。
- 化简得2x = 400。
- 解得x = 200。
- 所以200秒后两人首次相遇。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
初一行程问题及解答

初一行程问题及解答1.轮船在两个码头之间航行,顺水航行需要4小时,逆水行驶需要5小时,水流的速度是2千米/时,求轮船在静水中的行驶速度用方程解应用题2.甲,乙两站相距360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米,慢车先开出25分钟,两车相向而行,慢车开几小时与快车相遇用方程解应用题3.一个人从甲村走到乙村.如果他每小时走4千米,那么走到预定的时间,离乙村还有0.5千米;如果他每小时走5千米,那么比一定时间少用半小时就可以到达乙村.求预定时间是多少小时,甲村到一寸的路程是多少千米用方程解应用题4.一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和.一号队员从离队开始到与队员重新会和,经过多长时间用方程解应用题5.某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.6.甲、乙两站相距380km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,慢车先开25分钟.两车相向而行,慢车开出多长时间后与快车相遇7.一队学生从学校出发去部队军训,行进速度是5千米/时,走了45千米时,一名通讯员按原路返回学校报信,然后他随即追赶队伍,通讯员的速度是14千米/时,他距部队6千米处追上队伍.问学校到部队的距离是多少8.某人原计划骑车以每小时12千米的速度由A第到B地,这样便可在规定的时间到达,但他因有事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到B地,求AB两地距离.9.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米.两车从车头相遇到车尾相离需多少时间10.矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米每秒,人离开的速度是5米/秒,问引火线至少需要多少厘米11.甲,乙两人相距22.5千米,且分别以2.5km/h相向而行,同时甲所带的小狗以每小时7.5千米的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙,……直到甲乙相遇,求小狗所走的路程.12.育红学校七年级的学生步行到郊区野营,一班的学生组成前队,步行速度为4千米/小时,二班的学生组成后队,速度为6千米/小时,前队出发一小时后后队才出发,,同时后队派一名联络员骑自行车在两队之间不断的来回联络,他骑自行车的速度为12千米/小时,问联络员骑了多少路答案1.设轮船静水中速度为X则x+24=x-25 得X=182.设为X小时相遇则72x+2548/60+48x=360 得X3.设预定时间为X4x+0.5=5x-0.5 得X甲乙距离:4x+0.54.设X则35x+x-10/4545=105.设甲乙两地的距离为x千米则:x/10=x+8/12-1/66x=5x+8-10x=30 所以甲乙两地之间的距离为30千米6.设慢车开出X小时后与快车相遇,则 48X+72X-25/60=380 X=41/127.设学校到部队的距离是X千米,则 X-6-45/514=X-6+45 X=1018.设AB两地距是X千米,则 X/12=X/15+20/60+4/60 X=249.设需X小时,则 60+75X=150+120/1000 X=0.00210.设需要X厘米,则 X/0.8=3000/5 X=48011.设小狗所走的路程为X千米,则 X/7.5=22.5/2.52 X=33.7512.设二班追上一班用了x小时,得:4x+1=6x13.解,得:x=2 联络员骑的路程为212=24千米。
行程问题(1)

行程问题(1)行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇距离=相遇时间×速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离×速度差 解决行程问题的主要方法:行程图;将复杂行程问题分解成我们熟悉的类型。
一、过中点相遇例1 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行11千米,两人在距中点4千米处相遇,求两地的距离。
练习:(1)甲乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米,已知甲的速度是乙的速度的65,甲每分钟行800米。
求AB 的距离。
(2)快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?二、追及问题例2 甲乙两人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早五分钟到达西村。
东村到西村的路程是多少米?练习:(1)甲乙两人上午甲乙两人上午8时同时从东村去西村,甲每小时比乙快6千米,中午12时甲到西村后立即返回东村,在距西村15千米处和乙相遇。
求东西两村相距多少千米?(2)汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?例3一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?练习:(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
行程问题应用题及答案

行程问题应用题及答案行程问题应用题及答案 11、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
已知甲车在第一次相遇时行了120千米。
AB两地相距多少千米?10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。
行程应用题举一反三:第1讲 一般行程问题1
典型例题1早晨,张老师从家骑自行车以每小时15千米的速度去上班,用0.4小时到达学校。
中午下班,因逆风,张老师骑自行车以每小时12千米的速度沿原路回家,需多少小时到家?举一反三11、小明从家去学校,每分钟走80米,用了12分钟;中午放学沿原路回家,每分钟走100米,多少分钟到家?2、汽车从甲地到乙地平均每小时行50千米,6小时到达;原路返回时每小时比去时快10千米,返回时用了几个小时?3、货车从A城到B城,去时每小时行50千米,4小时到达;沿原路返回时比去时多用了1小时,返回时每小时比去时慢多少千米?典型例题2一辆汽车以每小时40千米的速度从甲地到乙地,出发1.5小时后,超过中点8千米。
照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?举一反三21、一辆汽车以每小时50千米的速度从A地到B地,出发1.2小时后,超过中点6千米。
照这样的速度,这辆汽车还要行驶多长时间才能达到B地?2、一辆摩托车从甲地开往乙地,出发1.8小时,行了72千米,距离中点还有8千米。
照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?3、一辆汽车以每小时40千米的速度从东站开往西站,1.5小时后,剩下的路程比全程的一半少6千米。
照这样的速度,这辆汽车从东站到西站共需多长时间?典型例题3小明上学时坐车,回家时步行,在路上共用了1.25小时。
如果往返都坐车,全部行程只需30分钟。
如果往返都步行,全部行程需要多少小时?举一反三31、小红上学时坐车,回家步行,在路上一共用了36分钟。
如果往返都坐车,全部行程只需10分钟,如果往返都步行,需要多少分钟?2、张师傅上班坐车,下班步行,在路上共用了1.5小时。
如果往返都步行,在路上一共需要2.5小时。
问张师傅往返都坐车,在路上需要多少分钟?3、李师傅上班骑车,下班步行,在路上共用2小时,已知他骑车的速度是步行的4倍。
问李师傅往返骑车只需多少时间?典型例题4小明每天早晨6:50从家出发,7:20到校,老师要求他明天提前6分钟到校,如果明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
人教版七年级上册《一元一次方程》应用题分类练习(一)
《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。
初一上数学一元一次方程应用题行程问题
答:A、B之间的距离为60千米。
3、某船从A码头顺流而下到B码头,然后逆流返回C码头,共行9 小时,已知船在静水中的速度为7.5千米/时,水流速度是2.5千米/ 时,A.C两码头相距15千米,求A.B之间的距离.
课堂小结: 1.今天我们学习了哪些知识?
行程问题 (1)相遇问题(2)追及问题(3)航海问题
__
。
• ③甲、乙合做1时完成全部工作量的几分之几?
_____
。
• ④甲做x时完成全部工作量的几分之几? ___
__
。
.
22
1. 做某件工作,甲单独做要8时才能完成, 乙单独做要12时才能完成
• ⑤甲、乙合做x时完成全部工作量的几分之几?
_____
。
• ⑥甲先做2时完成全部工作量的几分之几? __
小红跑的路程-爷爷跑的路程=400m
ቤተ መጻሕፍቲ ባይዱ
当小红第一次追上爷爷时,他们所跑的路程可以用 示意图表示:
小红跑的路程 爷爷跑的路程
400m
.
13
练习 汽车以每秒20米的速度笔直地开向寂静的山 谷,驾驶员按一声喇叭,4秒后听到回响,已知声音 的传播速度是每秒340米,听到回响时汽车离山谷距
离是多少米?
.
14
练习 甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀 速前进。已知两人在上午8时同时出发,到上午10时,两人还相距 36千米,到中午12时,两人又相距36千米。求A.B两地间的路程。
例4 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码 头返回甲码头逆流行驶,用了2.5小时,已知水流速度是3千米/ 时,求船在静水中的平均速度.
顺水航行速度= 水流速度 +静水航行速度.
行程问题应用题
行程问题应用题库1:早晨8点一辆汽车从甲地开往乙地,第一小时行驶了40千米,照这样的速度,比原计划要迟到1小时,于是,以每小时50千米的速度行驶,结果比原计划早到1小时,这辆汽车原计划用多少时间?2:小明从甲地到乙地,去时每小时走6千米,回来时每小时走9千米,来回共用了5小时,小明来回走了多少千米?3:AB两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停了30分钟,如果按原定时间到达B城,汽车在后半段路程时速应加快多少千米?4:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想这辆汽车从甲地到乙地的平均速度变为每小时50千米,剩下的路程每小时要行多少千米?5:某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来有辆时速18千米的的拖拉机把他送到了农场,总共用了5.5小时,他步行了多远?6:一个人骑自行车从甲地到乙地,如果每小时行走10千米,下午1点到达;如果每小时行15千米,上午11点到达;要在中午12点到达乙地,他每小时要行多少千米?7:邮递员早晨7时出发送一份邮件到对面山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路,他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?8:学校组织春游,同学们下午1点出发,走了一段平坦的路,爬了一座山,然后按照原路返回,下午7点回到学校,已知他们步行的速度每小时4千米,上山为每小时3千米,下山每小时6千米,一共走了多少路?9:两城市相距328千米,甲乙两人骑自行车同时从两城市相向开出,甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误了1小时,然后继续行驶与甲相遇,求出发到相离经过多少小时?10:甲乙两辆汽车同时从AB两地相向开出,4小时相遇,相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米,求AB两地的距离?11:甲乙两辆汽车每小时分别行52千米和40千米,他们同时从甲地出发到乙地去,出发后6小时,甲车遇到一辆迎面开来的卡车,1小时后乙车遇到了这辆卡车,求这辆卡车的速度和甲乙两地的距离?12:甲乙两地间的铁路长800千米,当日上午5时30分从甲地开出一列慢车,当日上午9时从乙地开出一列快车,两车相向而行,当日下午4时30分相遇,快车每小时行48千米,慢车每小时行多少千米?13:甲乙两辆汽车早上8时分别从A B两城同时相向开出,到10时两车相距112.5千米;继续行到下午1时,两车还是相距112.5千米,A B两地的距离是多少千米?14:一辆卡车和一辆大客车从相距320千米的两地相向而行,已知卡车每小时行45千米,大客车每小时行40千米,如果卡车上午8时开出,大客车要何时开出,两车才能在中午12时相遇?15:甲乙两辆车同时从A B两地相向而行,它们相遇时距AB两地中间点处8千米,已知甲车速度是乙车的1.2倍,求AB两地的距离?16:甲乙两车同时从A B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离终点32千米处相遇,求AB两地的距离?17:两辆汽车同时从A B两地相对开出,在B侧终点20千米处相遇,继续以原速前进,到达对方出发站后又立即返回,两车又在距A站160千米处第二次相遇,求A B两地的距离?18:兄弟俩同时离家去学校,哥哥每分钟走90米,弟弟每分钟走6米,哥哥到学校校门时发现忘带课本,立即沿原路返回去取,行至离校180米处和弟弟相遇,他们家离学校多远?19:甲在南北的路上,由南向北行进,乙在东西的路上,由西向东行进甲出发的地点,在两条路交叉点南1120米,乙在交叉点出发,两人同时开始行进,4分钟后,甲乙二人所在位置交叉点等远(甲仍在交叉点南),再经过52分钟后,两人所在位置又距交叉点等远(甲已过交叉点在北),甲乙二人每分钟各行多少米?20:A B两地相距21千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一行程问题应用题
基本数量关系:
相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。
相背而行的公式:相背距离=速度和×时间(甲的速度×时间+乙的速度×时间=相背距离)
同向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差。
若在环形跑道上,(速度快的在前,慢的在后)追及距离=速度差×时间。
流水问题公式:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
【练习巩固】
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?
3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?
4、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.
5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?
6、一队学生去校外参加劳动,以4千米/时的速度步行前往.走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上去.通讯员要多少分才能追上学生队伍?
针对练习:
1.甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。
已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?
2.某零件加工厂要加工零件1200个。
第一车间每天能加工190个,比二车间每天少加工20个。
现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?
3.自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。
两个组共同装配7天后,由乙组单独装配。
乙组还要多少天才能完成任务?
4.甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?
5.两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。
放满224吨水要多少小时?
6.车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?
提高题:
1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?
2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?。