主成分、因子分析报告步骤

合集下载

主成分、因子分析步骤

主成分、因子分析步骤

主成分分析、因子分析步骤因子分析1 【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置方法:默认主成分法。

主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。

输出:为旋转的因子图抽取:默认选1.最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋转解”。

(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

(5)选项(Options)对话框设置2 结果分析(1)KMO及Bartlett’s检验KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。

.515Bartlett 的球形度检验近似卡方df6Sig..706当KMO值愈大时,表示变量间的共同因子愈多,愈适合作因子分析。

根据Kaiser的观点,当KMO>(很棒)、KMO>(很好)、KMO>(中等)、KMO>(普通)、KMO>(粗劣)、KMO<(不能接受)。

(2)公因子方差公因子方差起始撷取卫生.855饭量.846等待时间.819味道.919亲切.608撷取方法:主体元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<就可以认为是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。

eviews中主成分分析和因子分析详解

eviews中主成分分析和因子分析详解

灵活的编程接口
eviews提供了灵活的编程接口, 支持多种编程语言和脚本语言, 方便用户进行二次开发和定制。
未来发展趋势预测
大数据分析
随着大数据时代的到来,eviews将更加注重对大数据的处理和 分析能力,提高处理效率和准确性。
人工智能融合
eviews将与人工智能技术相结合,实现智能化数据分析,提高 分析的自动化程度和准确性。
总结在使用eviews进行主成分分析 和因子分析过程中可能遇到的常见问 题,并提供相应的解决方案。
07 总结与展望
CHAPTER
主成分分析和因子分析应用前景
多元统计分析方法
主成分分析和因子分析作为多元统计分析的重要方法,在多个领域 具有广泛的应用前景,如经济、金融、社会学、医学等。
数据降维
主成分分析通过线性变换将原始数据转换为新的变量,实现数据降 维,简化数据结构,提高数据处理的效率。
因子分析步骤
在eviews中导入数据,选择因子分析功能,按照步骤进行 操作,包括数据预处理、选择因子个数、进行因子旋转等 。
结果解读
根据因子分析结果,提取影响消费者行为的公共因子,分 析各因子的含义和重要性,以及各因子对不同消费者群体 的影响程度。
实战演练:eviews操作技巧分享
数据导入与预处理
介绍如何在eviews中导入数据、进 行数据清洗和预处理等操作。
主成分与因子分析功能使用
详细演示如何在eviews中使用主成 分分析和因子分析功能,包括参数设 置、模型选择等。
结果解读与可视化
分享如何解读主成分分析和因子分析 结果,以及如何利用eviews的图形 功能进行结果可视化展示。
常见问题与解决方案
结果解读
根据输出的结果,可以了解各因子对原始变量的解释程度 ,以及各样本在因子上的得分情况。同时,通过载荷矩阵 可以了解各原始变量与因子的关系。

因子分析的步骤范文

因子分析的步骤范文

因子分析的步骤范文
第一步是问题陈述。

在进行因子分析之前,需要明确研究的目的和涉及的变量。

例如,假设我们想研究消费者偏好,并将其归因于一些特定因素。

在这种情况下,我们需要选择相关的变量,如消费者对产品特征的偏好、购买意愿等。

第二步是样本选择。

我们需要选择一个代表性的样本,以确保研究结果具有一般性。

样本的数量和特点将取决于研究的范围和目的。

第三步是因子提取。

在此步骤中,我们将通过因子分析算法提取潜在的共同因素。

常用的提取方法包括主成分分析和最大似然估计。

主成分分析通过将方差最大化来提取因子,而最大似然估计通过最大化变量之间的协方差来提取因子。

因子提取后,我们将获得一组因子矩阵。

第四步是因子旋转。

在因子提取之后,因子矩阵可能会变得复杂和难以解释。

因此,我们需要对因子进行旋转,以简化和解释因子的含义。

常见的旋转方法包括正交旋转和斜交旋转。

正交旋转使因子之间保持垂直关系,而斜交旋转允许因子之间存在相关性。

第五步是因子解释。

在进行因子旋转之后,我们将解释因子的含义和影响。

常见的解释方法包括因子载荷和因子得分。

因子载荷表示每个因子与原始变量之间的关系强度,而因子得分表示每个观察值在各个因子上的得分。

因子分析是一种强大的数据分析工具,可以帮助我们理解和解释复杂的变量关系。

通过清晰的问题陈述、样本选择、因子提取、因子旋转和因子解释,我们可以获得有意义和可解释的研究结果。

主成分分析、因子分析步骤

主成分分析、因子分析步骤

主成分分析、因子分析步骤最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋转解”。

(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

(5)选项(Options)对话框设置2结果分析(1)KMO及Bartlett’s检验(很、Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。

(4)成分矩阵与旋转成分矩阵成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每个变量到底应归属于哪个因子。

旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。

此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。

一般的,因子负荷量的绝对值0.4以上,认为是显着的变量,超过0.5时可以说是非常重要的变量。

如味道与饭量关于因子1的。

=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5因子2的分数=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5(6)因子转换矩阵元件转换矩阵元件 1 21 .723 -.6912 .691 .723撷取方法:主体元件分析。

转轴方法:具有Kaiser正规化的最大变异法。

因子转换矩阵是主成分形式的系数。

(7)因子得分协方差矩阵,【得分】:“保存为变量”【方法】:“回归”;再选中“显示因子得分系数矩阵”。

因子分析、主成分分析

因子分析、主成分分析

通过主成分分析,可以研究多个变量之间的相关性,揭示变量
之间的内在联系。
多元回归分析
03
在多元回归分析中,主成分分析可以用来消除变量间的多重共
线性,提高回归分析的准确性和稳定性。
金融数据分析
风险评估
在金融数据分析中,主成分分析可以用来评估投资组合的风险, 通过提取主要因子来反映市场的整体波动。
市场趋势分析
主成分分析案例:金融数据分析
总结词
主成分分析用于金融数据分析中,能够 降低数据维度并揭示主要经济趋势。
VS
详细描述
在金融领域,主成分分析被广泛应用于股 票、债券等资产组合的风险评估和优化。 通过对大量金融数据进行主成分分析,可 以提取出几个关键主成分,这些主成分代 表了市场的主要经济趋势。投资者可以利 用这些信息进行资产配置和风险管理。
特征提取
主成分分析能够提取出数据中的 主要特征,突出数据中的主要变 化方向,有助于揭示数据的内在 规律。
数据可视化
降低数据维度后,数据的可视化 变得更加容易,有助于直观地理 解和分析数据。
多元统计
多元数据描述
01
主成分分析可以用来描述多元数据的总体特征,提供对多元数
据分布的整体理解。
多元相关分析
02
目的
通过找出影响观测变量的潜在结构, 更好地理解数据的意义,简化复杂数 据的分析,并解决诸如多重共线性等 问题。
因子分析的原理
1 2 3
基于相关性
因子分析基于观测变量之间的相关性,通过找出 这些相关性背后的公因子来解释变量之间的依赖 关系。
降维
通过提取公因子,将多个观测变量的复杂关系简 化为少数几个潜在因子的线性组合,实现数据的 降维。

因子分析和主成分分析的方法步骤

因子分析和主成分分析的方法步骤

因子分析和主成分分析的方法步骤
一、主成分分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1)对原始数据进行标准化处理
2)计算相关系数矩阵R
3)计算特征值和特征向量
(要对特征向量进行正则化,即特征向量值/sqrt(对应的特征值),这一步需要自己计算)
4)根据累计贡献率得到主成分P,计算综合评价值
5)②计算综合得分
二、因子分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1.选择分析的变量
2.计算所选原始变量的相关系数矩阵
3.提出公共因子
4.因子旋转
5.计算因子得分
用SPSS解决步骤:
注:以上为主成分分析和因子分析对应的操作步骤,对得到的结果进行相应的分析可以参考《SPSS 统计分析高级教程》中的主成分分析和因子分析。

实验:SPSS主成分分析和因子分析

实验:SPSS主成分分析和因子分析

实验:SPSS主成分分析和因子分析实验:SPSS主成分分析和因子分析实验目的:1、掌握如何确定主成分的个数;2、熟练解释主成分分析的结果:载荷矩阵、共同度、方差贡献率等;3、掌握应用主成分分析进行数据降维和综合评价的方法。

4、了解因子分析法的应用条件5、掌握因子分析法的应用;6、掌握因子分析法输出结果的解释。

实验内容:1、(主成分分析)P253见实验数据8-1 PCA20.sav某公司有20个工厂,现在要对每个工厂作经济效益分析。

从所取得的生产成果和所消耗的人力、物力、财力的比率等指标中,选取5个指标(变量)进行分析。

X1——固定资产的产值率;X2——净产值的劳动生产率;X3——百元产值的流动资金占用率;X4——百元产值的利润率;X5——百元资金的利润率。

现在对这20个工厂同时按照这5项指标收集数据,然后找出1个综合指标对它们的经济效益进行排序,找出经济效益较高的工厂。

应用主成分分析法,要求主成分只要能够反映出全部信息的85%就可以了。

2、(主成分分析)实验数据8-2 给出了中国历年国民经济主要指标统计(2005-2012)。

试用主成分分析法对这些指标提取主成分并写出提取的主成分与这些指标之间的表达式。

3、(因子分析)P281见实验数据8-3 cereals.sav 某市场调查项目需要了解消费者是否偏爱某个谷物品牌。

现有117个受访者对12个销量比较好的谷物产品的25个属性进行评分。

现在用因子分析法对消费者的偏好习惯进行分析。

哪些品牌的谷物产品易受消费者青睐?消费者喜欢哪些属性?这些属性之间有什么关系?4、(因子分析)见实验数据8-4给出了中国历年国民经济主要指标统计(2004-2012)。

试用因子分析法对这些指标提取公因子并写出提取的公因子与这些指标之间的表达式。

实验要求:题目1写一份实验报告;题目3写一份实验报告。

实验数据:见实验八数据文件夹实验步骤、结论:学生填写实验成绩:教师填写。

卫生统计学:主成分分析与因子分析

卫生统计学:主成分分析与因子分析
〔factor loading〕矩阵
通常先对x作标准化处理,使其均值为 零,方差为1.这样就有
x i a i1 f1 a i2 f2 a im fm e i
假定〔1〕fi的均数为 i22 0,方差为1; 〔2〕ei的均数为0,方差为δi; 〔3〕 fi与ei相互独立.
那么称x为具有m个公共因子的因子模型
〔2〕δi称为特殊方差〔specific variance〕,是不能由公共因子解 释的局部
▪ 因子载荷〔负荷〕aij是随机变量xi与 公共因子fj的相关系数。
▪设
p
g
2 j
a
2 ij
i1
j 1, 2 ,..., m
▪ 称gj2为公共因子fj对x的“奉献〞, 是衡量公共因子fj重要性的一个指标。
根本思想:使公共因子的相对负荷 〔lij/hi2〕的方差之和最大,且保持 原公共因子的正交性和公共方差总和 不变。
可使每个因子上的具有最大载荷的变量 数最小,因此可以简化对因子的解释。
〔2〕斜交旋转〔oblique rotation〕
因子斜交旋转后,各因子负荷发生 了较大变化,出现了两极分化。各 因子间不再相互独立,而彼此相关。 各因子对各变量的奉献的总和也发 生了改变。
ai2j
g
2 j
i1
▪ 极大似然法〔maximum likelihood factor〕
▪ 假定原变量服从正态分布, 公共因子和特殊因子也服从正态分 布,构造因子负荷和特殊方差的似 然函数,求其极大,得 factor〕
▪ 设原变量的相关矩阵为 R=(rij),其逆矩阵为R-1=(rij)。 各变量特征方差的初始值取为逆 相关矩阵对角线元素的倒数, δi’=1/rii。那么共同度的初始值 为(hi’) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析、因子分析步骤不同点主成分分析因子分析概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量主要目标减少变量个数,以较少的主成分来解释原有变量间的大部分变异,适合于数据简化找寻变量间的内部相关性及潜在的共同因素,适合做数据结构检测强调重点强调的是解释数据变异的能力,以方差为导向,使方差达到最大强调的是变量之间的相关性,以协方差为导向,关心每个变量与其他变量共同享有部分的大小最终结果应用形成一个或数个总指标变量反映变量间潜在或观察不到的因素变异解释程度它将所有的变量的变异都考虑在内,因而没有误差项只考虑每一题与其他题目共同享有的变异,因而有误差项,叫独特因素是否需要旋转主成分分析作综合指标用,不需要旋转因子分析需要经过旋转才能对因子作命名与解释是否有假设只是对数据作变换,故不需要假设因子分析对资料要求需符合许多假设,如果假设条件不符,则因子分析的结果将受到质疑因子分析1 【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置方法:默认主成分法。

主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。

输出:为旋转的因子图抽取:默认选1.最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋转解”。

(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

(5)选项(Options)对话框设置2 结果分析(1)KMO及Bartlett’s检验KMO 和 Bartlett 的检验取样足够度的 Kaiser-Meyer-Olkin 度量。

.515Bartlett 的球形度检验近似卡方 3.784df 6Sig. .706当KMO值愈大时,表示变量间的共同因子愈多,愈适合作因子分析。

根据Kaiser的观点,当KMO>0.9(很棒)、KMO>0.8(很好)、KMO>0.7(中等)、KMO>0.6(普通)、KMO>0.5(粗劣)、KMO<0.5(不能接受)。

(2)公因子方差公因子方差起始撷取卫生 1.000 .855饭量 1.000 .846等待时间 1.000 .819味道 1.000 .919亲切 1.000 .608撷取方法:主体元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。

如因子1的特征值为2.451,因子2的特征值为1.595,因子3,4,5的特征值在1以下。

因子1的贡献率为49.0%,因子2的贡献率为31.899%,这两个因子贡献率累积达80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。

至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。

(4)成分矩阵与旋转成分矩阵成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每个变量到底应归属于哪个因子。

旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。

此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。

一般的,因子负荷量的绝对值0.4以上,认为是显著的变量,超过0.5时可以说是非常重要的变量。

如味道与饭量关于因子1的负荷量高,所以聚成因子1,称为饮食因子;等待时间、卫生、亲切关于因子2的负荷量高,所以聚成因子2,又可以称为服务因子。

(5)因子得分系数矩阵元件评分系数矩阵元件1 2卫生-.010 .447饭量.425 -.036等待时间-.038 .424。

因子1的分数=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5因子2的分数=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5(6)因子转换矩阵元件转换矩阵元件 1 21 .723 -.6912 .691 .723撷取方法:主体元件分析。

转轴方法:具有 Kaiser 正规化的最大变异法。

因子转换矩阵是主成分形式的系数。

(7)因子得分协方差矩阵看各因子间的相关系数,若很小,则因子间基本是两两独立的,说明这样的分类是较合理的。

主成分分析1 【分析】——【降维】——【因子分析】(1)设计分析的统计量【相关性矩阵】中的“系数”:会显示相关系数矩阵;【KMO和Bartlett的球形度检验】:检验原始变量是否适合作主成分分析。

【方法】里选取“主成分”。

【旋转】:选取第一个选项“无”。

【得分】:“保存为变量”【方法】:“回归”;再选中“显示因子得分系数矩阵”。

2 结果分析(1)相关系数矩阵相关性矩阵食品 衣着 燃料 住房 交通和通讯娱乐教育文化相关食品 1.000 .692 .319 .760 .738 .556 衣着 .692 1.000 -.081 .663 .902 .389 燃料 .319 -.081 1.000 -.089 -.061 .267 住房 .760 .663 -.089 1.000 .831 .387 交通和通讯 .738 .902 -.061 .831 1.000 .326 娱乐教育文化.556.389.267.387.3261.000两两之间的相关系数大小的方阵。

通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。

由表中可知许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。

(2)KMO 及Bartlett ’s 检验KMO 与 Bartlett 检定Kaiser-Meyer-Olkin 测量取样适当性。

.602 Bartlett 的球形检定 大约 卡方 62.216 df 15显著性.000根据Kaiser 的观点,当KMO >0.9(很棒)、KMO >0.8(很好)、KMO >0.7(中等)、KMO >0.6(普通)、KMO >0.5(粗劣)、KMO <0.5(不能接受)。

(3)公因子方差Communalities起始 擷取 食品 1.000 .878 衣着 1.000.825燃料 1.000 .841住房 1.000 .810交通和通讯 1.000 .919娱乐教育文化 1.000 .584擷取方法:主體元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。

80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。

(5)成分矩阵(因子载荷矩阵)元件矩阵a元件1 2食品.902 .255衣着.880 -.224燃料.093 .912住房.878 -.195交通和通讯.925 -.252娱乐教育文化.588 .488撷取方法:主体元件分析。

a. 撷取 2 个元件。

该矩阵并不是主成分1和主成分2的系数。

主成分系数的求法:各自主成分载荷向量除以主成分方差的算数平方根。

则第1主成分的各个系数是向量(0.925,0.902,0.880,0.878,0.588,0.093)除以568.3后才得到的,即(0.490,0.478,0.466,0.465,0.311,0.049)才是主成分1的特征向量。

第1主成分的函数表达式:Y1=0.490*Z交+0.478*Z食+0.466*Z衣+0.465*Z住+0.311*Z娱+0.049*Z燃(6)因子得分因子得分显示在SPSS的数据窗口里。

通过因子得分计算主成分得分。

(7)主成分得分主成分的得分是相应的因子得分乘以相应方差的算数平方根。

即:主成分1得分=因子1得分乘以3.568的算数平方根主成分2得分=因子2得分乘以1.288的算数平方根【转换】—【计算变量】(8)综合得分及排序综合得分是按照下列公式计算:综合得分Y为:【数据】——【排序个案】。

相关文档
最新文档